51
|
Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, Tanabe K, Niimi M, Uehara Y, Cannon RD. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:1150-65. [PMID: 17513564 PMCID: PMC1951111 DOI: 10.1128/ec.00091-07] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022]
Abstract
The study of eukaryotic membrane proteins has been hampered by a paucity of systems that achieve consistent high-level functional protein expression. We report the use of a modified membrane protein hyperexpression system to characterize three classes of fungal membrane proteins (ABC transporters Pdr5p, CaCdr1p, CaCdr2p, CgCdr1p, CgPdh1p, CkAbc1p, and CneMdr1p, the major facilitator superfamily transporter CaMdr1p, and the cytochrome P450 enzyme CaErg11p) that contribute to the drug resistance phenotypes of five pathogenic fungi and to express human P glycoprotein (HsAbcb1p). The hyperexpression system consists of a set of plasmids that direct the stable integration of a single copy of the expression cassette at the chromosomal PDR5 locus of a modified host Saccharomyces cerevisiae strain, ADDelta. Overexpression of heterologous proteins at levels of up to 29% of plasma membrane protein was achieved. Membrane proteins were expressed with or without green fluorescent protein (GFP), monomeric red fluorescent protein, His, FLAG/His, Cys, or His/Cys tags. Most GFP-tagged proteins tested were correctly trafficked within the cell, and His-tagged proteins could be affinity purified. Kinetic analysis of ABC transporters indicated that the apparent K(m) value and the V(max) value of ATPase activities were not significantly affected by the addition of His tags. The efflux properties of seven fungal drug pumps were characterized by their substrate specificities and their unique patterns of inhibition by eight xenobiotics that chemosensitized S. cerevisiae strains overexpressing ABC drug pumps to fluconazole. The modified hyperexpression system has wide application for the study of eukaryotic membrane proteins and could also be used in the pharmaceutical industry for drug screening.
Collapse
Affiliation(s)
- Erwin Lamping
- Department of Oral Sciences, University of Otago, PO Box 647, Dunedin 9054, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3065-86. [PMID: 17308034 PMCID: PMC1899933 DOI: 10.1128/mcb.01084-06] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/24/2006] [Accepted: 01/16/2007] [Indexed: 11/20/2022] Open
Abstract
We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.
Collapse
Affiliation(s)
- Patrice Godard
- Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
53
|
Gunasekera AM, Myrick A, Militello KT, Sims JS, Dong CK, Gierahn T, Le Roch K, Winzeler E, Wirth DF. Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. Mol Biochem Parasitol 2007; 153:19-30. [PMID: 17307259 DOI: 10.1016/j.molbiopara.2007.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/29/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Control of gene expression is poorly understood in the Plasmodium system, where relatively few homologues to known eukaryotic transcription factors have been uncovered. Recent evidence suggests that the parasite may utilize a combinatorial mode of gene regulation, with multiple cis-acting sequences contributing to overall activity at individual promoters [1]. To further probe this mechanism of control, we first searched for over-represented sequence motifs among gene clusters sharing similar expression profiles in Plasmodium falciparum. More specifically, we applied bioinformatic tools to a previously characterized micro-array data set from drug-treated asexual stage cultures (Gunasekera et al., submitted). Cluster analysis of 600 drug responsive genes identified only a single 5' motif, GAGAGAA. Two additional 5' motifs, ACTATAAAGA and TGCAC, were also shared among loci displaying patterns of coordinate expression across varying asexual growth stages. Secondly and most importantly, the functional relevance of each motif was tested in two independent assays-transient transfection and gel-retardation experiments. The GAGAGAA and TGCAC motifs were both active in the former. The GAGAGAA and ACTATAAAGA elements formed specific RNA-protein, but not DNA-protein complexes in gel shift assays, suggesting a key level of control at the RNA level. This is the first report of functionally characterized motifs in P. falciparum that were uncovered following clustering analysis of its asexual stage transcriptome. Together, both the bioinformatic and functional data reported here imply that multiple forms of gene regulation, including post-transcriptional control, may be important in the malarial system.
Collapse
Affiliation(s)
- Anusha M Gunasekera
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Harvard University, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Fardeau V, Lelandais G, Oldfield A, Salin HN, Lemoine S, Garcia M, Tanty V, Le Crom S, Jacq C, Devaux F. The central role of PDR1 in the foundation of yeast drug resistance. J Biol Chem 2006; 282:5063-5074. [PMID: 17158869 DOI: 10.1074/jbc.m610197200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widespread pleiotropic drug resistance (PDR) phenomenon is well described as the long term selection of genetic variants expressing constitutively high levels of membrane transporters involved in drug efflux. However, the transcriptional cascades leading to the PDR phenotype in wild-type cells are largely unknown, and the first steps of this phenomenon are poorly understood. We investigated the transcriptional mechanisms underlying the establishment of an efficient PDR response in budding yeast. We show that within a few minutes of drug sensing yeast elicits an effective PDR response, involving tens of PDR genes. This early PDR response (ePDR) is highly dependent on the Pdr1p transcription factor, which is also one of the major genetic determinants of long term PDR acquisition. The activity of Pdr1p in early drug response is not drug-specific, as two chemically unrelated drugs, benomyl and fluphenazine, elicit identical, Pdr1p-dependent, ePDR patterns. Our data also demonstrate that Pdr1p is an original stress response factor, the DNA binding properties of which do not depend on the presence of drugs. Thus, Pdr1p is a promoter-resident regulator involved in both basal expression and rapid drug-dependent induction of PDR genes.
Collapse
Affiliation(s)
- Vivienne Fardeau
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Gaëlle Lelandais
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Andrew Oldfield
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Héle Ne Salin
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Sophie Lemoine
- Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Mathilde Garcia
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Véronique Tanty
- Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Stéphane Le Crom
- Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France; Laboratoire de Biologie Moléculaire du Développement, INSERM U368, and the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Claude Jacq
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France; Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Frédéric Devaux
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France.
| |
Collapse
|
55
|
Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1468-89. [PMID: 16963631 PMCID: PMC1563586 DOI: 10.1128/ec.00107-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We conducted a comprehensive genomic analysis of the temporal response of yeast to anaerobiosis (six generations) and subsequent aerobic recovery ( approximately 2 generations) to reveal metabolic-state (galactose versus glucose)-dependent differences in gene network activity and function. Analysis of variance showed that far fewer genes responded (raw P value of <or=10(-8)) to the O(2) shifts in glucose (1,603 genes) than in galactose (2,388 genes). Gene network analysis reveals that this difference is due largely to the failure of "stress"-activated networks controlled by Msn2/4, Fhl1, MCB, SCB, PAC, and RRPE to transiently respond to the shift to anaerobiosis in glucose as they did in galactose. After approximately 1 generation of anaerobiosis, the response was similar in both media, beginning with the deactivation of Hap1 and Hap2/3/4/5 networks involved in mitochondrial functions and the concomitant derepression of Rox1-regulated networks for carbohydrate catabolism and redox regulation and ending (>or=2 generations) with the activation of Upc2- and Mot3-regulated networks involved in sterol and cell wall homeostasis. The response to reoxygenation was rapid (<5 min) and similar in both media, dominated by Yap1 networks involved in oxidative stress/redox regulation and the concomitant activation of heme-regulated ones. Our analyses revealed extensive networks of genes subject to combinatorial regulation by both heme-dependent (e.g., Hap1, Hap2/3/4/5, Rox1, Mot3, and Upc2) and heme-independent (e.g., Yap1, Skn7, and Puf3) factors under these conditions. We also uncover novel functions for several cis-regulatory sites and trans-acting factors and define functional regulons involved in the physiological acclimatization to changes in oxygen availability.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 S. Goodwin Ave., Urbana, 61801, USA
| | | | | | | |
Collapse
|
56
|
Lemoine S, Combes F, Servant N, Le Crom S. Goulphar: rapid access and expertise for standard two-color microarray normalization methods. BMC Bioinformatics 2006; 7:467. [PMID: 17059595 PMCID: PMC1626094 DOI: 10.1186/1471-2105-7-467] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 10/23/2006] [Indexed: 12/05/2022] Open
Abstract
Background Raw data normalization is a critical step in microarray data analysis because it directly affects data interpretation. Most of the normalization methods currently used are included in the R/BioConductor packages but it is often difficult to identify the most appropriate method. Furthermore, the use of R commands for functions and graphics can introduce mistakes that are difficult to trace. We present here a script written in R that provides a flexible means of access to and monitoring of data normalization for two-color microarrays. This script combines the power of BioConductor and R analysis functions and reduces the amount of R programming required. Results Goulphar was developed in and runs using the R language and environment. It combines and extends functions found in BioConductor packages (limma and marray) to correct for dye biases and spatial artifacts. Goulphar provides a wide range of optional and customizable filters for excluding incorrect signals during the pre-processing step. It displays informative output plots, enabling the user to monitor the normalization process, and helps adapt the normalization method appropriately to the data. All these analyses and graphical outputs are presented in a single PDF report. Conclusion Goulphar provides simple, rapid access to the power of the R/BioConductor statistical analysis packages, with precise control and visualization of the results obtained. Complete documentation, examples and online forms for setting script parameters are available from .
Collapse
Affiliation(s)
- Sophie Lemoine
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex05, France
| | - Florence Combes
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex05, France
| | - Nicolas Servant
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex05, France
| | - Stéphane Le Crom
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex05, France
- INSERM U784, École Normale Supérieure, 46 rue d'Ulm 75230 Paris cedex05, France
| |
Collapse
|
57
|
Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. PLoS Genet 2006; 2:e203. [PMID: 17166056 PMCID: PMC1657058 DOI: 10.1371/journal.pgen.0020203] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd+) and mutant (Nmd−) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% ± 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd− strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are available. Genes determine the structure of proteins through transcription and translation in which an RNA copy of the gene is made (mRNA) and then translated to make the protein. Cellular protein levels reflect the relative rates of mRNA synthesis and degradation, which are subject to multiple layers of controls. Mechanisms also exist to ensure the quality of each mRNA. One quality control mechanism called nonsense-mediated mRNA decay (NMD) triggers the rapid degradation of mRNAs containing coding errors that would otherwise lead to the production of non-functional or potentially deleterious proteins. NMD occurs in yeasts, plants, flies, worms, mice, and humans. In humans, NMD affects the etiology of genetic disorders by affecting the expression of genes that carry disease-causing mutations. Besides quality assurance, NMD plays another role in gene expression by controlling the abundance of hundreds of normal mRNAs that are devoid of coding errors. In this paper, the authors used DNA arrays to monitor the relative decay rates of all mRNAs in budding yeast and found a subset where decay rates were dependent on NMD. Many of the corresponding proteins perform related functional roles affecting both the structure and behavior of chromosomes and the structure and integrity of the cell surface.
Collapse
Affiliation(s)
- Qiaoning Guan
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wei Zheng
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shijie Tang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaosong Liu
- Department of Physics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert A Zinkel
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kam-Wah Tsui
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael R Culbertson
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
58
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
59
|
Chen KH, Miyazaki T, Tsai HF, Bennett JE. The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 2006; 386:63-72. [PMID: 17046176 DOI: 10.1016/j.gene.2006.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/31/2006] [Accepted: 08/05/2006] [Indexed: 11/27/2022]
Abstract
Transcriptional regulation in response to environmental challenges is crucial for survival of many organisms. In this study, we characterized structural and functional properties of CgAP1, a Saccharomyces cerevisiae YAP1 ortholog, which encodes a transcription factor involved in various stress responses. Deletion of CgAP1 led to decreased resistance to hydrogen peroxide, 4-nitroquinoline-N-oxide (4-NQO), benomyl, and cadmium chloride, which could be fully recovered by reintroduction of an intact CgAP1. CgAP1 was shown to function in S. cerevisiae as it restored the drug resistance of the yap1 mutant. Moreover, overexpression of CgAP1 in a S. cerevisiae wild-type strain increased its resistance to cycloheximide, 1,10-phenanthroline, 4-NQO, and fluconazole. Overexpression of CgAP1 also phenotypically suppressed the drug sensitivity of two Yap1p-regulated transporter mutants, Deltaatr1 and Deltaflr1, to diamide, 4-NQO, and cadmium. Northern blot analysis indicated that Cgap1p regulates the benomyl-induced expression of CgFLR1, a homolog of S. cerevisiae FLR1, which encodes a transporter of the major facilitator superfamily. In contrast to the S. cerevisiae flr1 mutant, deletion of CgFLR1 in C. glabrata only resulted in increased sensitivity to benomyl, diamide, and menadione, but not 4-NQO, cycloheximide, or fluconazole. Taken together, this report demonstrated that CgAP1 plays a critical role in response to various stresses in C. glabrata and reduces the stress through transcriptional activation of its target genes including CgFLR1.
Collapse
Affiliation(s)
- Kuang-Hua Chen
- Clinical Mycology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
60
|
Hahn JS, Neef DW, Thiele DJ. A stress regulatory network for co‐ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 2006; 60:240-51. [PMID: 16556235 DOI: 10.1111/j.1365-2958.2006.05097.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock transcription factor (HSF) mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. Although genes encoding heat shock proteins (HSPs) are the best characterized targets of HSF, recent genome-wide localization of Saccharomyces cerevisiae HSF revealed novel HSF targets involved in a wide range of cellular functions. One such target, the RPN4 gene, encodes a transcription factor that directly activates expression of a number of genes encoding proteasome subunits. Here we demonstrate that HSF co-ordinates a feed-forward gene regulatory circuit for RPN4 activation. We show that HSF activates expression of PDR3, encoding a multidrug resistance (MDR) transcription factor that also directly activates RPN4 gene expression. We demonstrate that the HSF binding site (HSE) in the RPN4 promoter is primarily responsible for heat- or methyl methanesulphonate induction of RPN4, with a minor contribution of Pdr3 binding sites (PDREs), while a Yap1 binding site (YRE) is responsible for RPN4 induction in response to oxidative stress. Furthermore, heat-induced expression of Rpn4 protein leads to expression of Rpn4 targets at later stages of heat stress, providing a temporal controlling mechanism for proteasome synthesis upon stress conditions that could result in irreversibly damaged proteins. In addition, the overlapping transcriptional regulatory networks involving HSF, Yap1 and Pdr3 suggest a close linkage between stress responses and pleiotropic drug resistance.
Collapse
Affiliation(s)
- Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | | | | |
Collapse
|
61
|
Romero C, Desai P, DeLillo N, Vancura A. Expression of FLR1 transporter requires phospholipase C and is repressed by Mediator. J Biol Chem 2005; 281:5677-85. [PMID: 16352614 DOI: 10.1074/jbc.m506728200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in benomyl sensitivity, alterations in chromatin structure of centromeres, mitotic delay, and a higher frequency of chromosome loss. Here we intended to utilize benomyl sensitivity as a phenotype that would allow us to identify genes that are important for kinetochore function and are downstream of Plc1p. However, our screen identified SIN4, encoding a component of the Mediator complex of RNA polymerase II. Deletion of SIN4 gene (sin4Delta) does not suppress benomyl sensitivity of plc1Delta cells by improving the function of kinetochores. Instead, benomyl sensitivity of plc1Delta cells is caused by a defect in expression of FLR1, and the suppression of benomyl sensitivity in plc1Delta sin4Delta cells occurs by derepression of FLR1 transcription. FLR1 encodes a plasma membrane transporter that mediates resistance to benomyl. Several other mutations in the Mediator complex also result in significant derepression of FLR1 and greatly increased resistance to benomyl. Thus, benomyl sensitivity is not a phenotype exclusively associated with mitotic spindle defect. These results demonstrate that in addition to promoter-specific transcription factors that are components of the pleiotropic drug resistance network, expression of the membrane transporters can be regulated by Plc1p, a component of a signal transduction pathway, and by Mediator, a general transcription factor. The results thus suggest another layer of complexity in regulation of pleiotropic drug resistance.
Collapse
Affiliation(s)
- Carlos Romero
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
62
|
MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 2005; 49:1745-52. [PMID: 15855491 PMCID: PMC1087678 DOI: 10.1128/aac.49.5.1745-1752.2005] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Candida albicans is responsible for a large proportion of infections in immunocompromised individuals, and the emergence of drug-resistant strains is of medical concern. Resistance to antifungal azole compounds is often due to an increase in drug efflux or an alteration of the pathway for synthesis of ergosterol, an important plasma membrane component in fungi. However, little is known about the transcription factors that mediate drug resistance. In Saccharomyces cerevisiae, two highly related transcriptional activators, Upc2p and Ecm22p, positively regulate the expression of genes involved in ergosterol synthesis (ERG genes). We have identified a homologue in C. albicans of the S. cerevisiae UPC2/ECM22 genes and named it UPC2. Deletion of this gene impaired growth under anaerobic conditions and rendered cells highly susceptible to the antifungal drugs ketoconazole and fluconazole. Conversely, overexpression of Upc2p increased resistance to ketoconazole, fluconazole, and fluphenazine. Azole-induced expression of the ERG genes was abolished in a Delta upc2 strain, while basal levels of these mRNAs remained unchanged. Importantly, the purified DNA binding domain of Upc2p bound in vitro to putative sterol response elements in the ERG2 promoter, suggesting that Upc2p increases the expression of the ERG genes by directly binding to their promoters. These results provide an important link between changes in the ergosterol biosynthetic pathway and azole resistance in this opportunistic fungal species.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Medicine, Royal Victoria Hospital, McGill University, 687 Pine Ave. West, Montréal, Québec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
63
|
Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. EUKARYOTIC CELL 2005; 3:1639-52. [PMID: 15590837 PMCID: PMC539021 DOI: 10.1128/ec.3.6.1639-1652.2004] [Citation(s) in RCA: 307] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ABC transporter genes CDR1 and CDR2 can be upregulated in Candida albicans developing resistance to azoles or can be upregulated by exposing cells transiently to drugs such as fluphenazine. The cis-acting drug-responsive element (DRE) present in the promoters of both genes and necessary for their upregulation contains 5'-CGG-3' triplets that are often recognized by transcriptional activators with Zn(2)-Cys(6) fingers. In order to isolate regulators of CDR1 and CDR2, the C. albicans genome was searched for genes encoding proteins with Zn(2)-Cys(6) fingers. Interestingly, three of these genes were tandemly arranged near the mating locus. Their involvement in CDR1 and CDR2 upregulation was addressed because a previous study demonstrated a link between mating locus homozygosity and azole resistance. The deletion of only one of these genes (orf19.3188) was sufficient to result in a loss of transient CDR1 and CDR2 upregulation by fluphenazine and was therefore named TAC1 (transcriptional activator of CDR genes). Tac1p has a nuclear localization, and a fusion of Tac1p with glutathione S-transferase could bind the cis-acting regulatory DRE in both the CDR1 and the CDR2 promoters. TAC1 is also relevant for azole resistance, since a TAC1 allele (TAC1-2) recovered from an azole-resistant strain could trigger constitutive upregulation of CDR1 and CDR2 in an azole-susceptible laboratory strain. Transcript profiling experiments performed with a TAC1 mutant and a revertant containing TAC1-2 revealed not only CDR1 and CDR2 as targets of TAC1 regulation but also other genes (RTA3, IFU5, and HSP12) that interestingly contained a DRE-like element in their promoters. In conclusion, TAC1 appears to be the first C. albicans transcription factor involved in the control of genes mediating antifungal resistance.
Collapse
Affiliation(s)
- Alix T Coste
- Institute of Microbiology, University Hospital Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
64
|
Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C. Early expression of yeast genes affected by chemical stress. Mol Cell Biol 2005; 25:1860-8. [PMID: 15713640 PMCID: PMC549374 DOI: 10.1128/mcb.25.5.1860-1868.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The variety of environmental stresses is probably the major challenge imposed on transcription activators and the transcriptional machinery. To precisely describe the very early genomic response developed by yeast to accommodate a chemical stress, we performed time course analyses of the modifications of the yeast gene expression program which immediately follows the addition of the antimitotic drug benomyl. Similar analyses were conducted with different isogenic yeast strains in which genes coding for relevant transcription factors were deleted and coupled with efficient bioinformatics tools. Yap1 and Pdr1, two well-known key mediators of stress tolerance, appeared to be responsible for the very rapid establishment of a transient transcriptional response encompassing 119 genes. Yap1, which plays a predominant role in this response, binds, in vivo, promoters of genes which are not automatically up-regulated. We proposed that Yap1 nuclear localization and DNA binding are necessary but not sufficient to elicit the specificity of the chemical stress response.
Collapse
Affiliation(s)
- A Lucau-Danila
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
65
|
Srikanth CV, Chakraborti AK, Bachhawat AK. Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2005; 151:99-111. [PMID: 15632430 DOI: 10.1099/mic.0.27374-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetaminophen (paracetamol), one of the most widely used analgesics, is toxic under conditions of overdose or in certain disease conditions, but the mechanism of acetaminophen toxicity is still not entirely understood. To obtain fresh insights into acetaminophen toxicity, this phenomenon was investigated in yeast. Acetaminophen was found to be toxic to yeast cells, with erg mutants displaying hypersensitivity. Yeast cells grown in the presence of acetaminophen were found to accumulate intracellular acetaminophen, but no metabolic products of acetaminophen could be detected in these extracts. The toxicity response did not lead to an oxidative stress response, although it did involve Yap1p. The cytochrome P450 enzymes of yeast, Erg5p and Erg11p, did not appear to participate in this process, unlike the mammalian systems. Furthermore, we could not establish a central role for glutathione depletion or the cellular glutathione redox status in acetaminophen toxicity, suggesting differences from mammalian systems in the pathways causing toxicity. Investigations of the resistance mechanisms revealed that deletion of the glutathione-conjugate pumps Ycf1p (a target of Yap1p) and Bpt1p, surprisingly, led to acetaminophen resistance, while overexpression of the multidrug resistance pumps Snq2p and Flr1p (also targets of Yap1p) led to acetaminophen resistance. The Yap1p-dependent resistance to acetaminophen required a functional Pdr1p or Pdr3p protein, but not a functional Yrr1p. In contrast, resistance mediated by Pdr1p/Pdr3p did not require a functional Yap1p, and revealed a distinct hierarchy in the resistance to acetaminophen.
Collapse
Affiliation(s)
- Chittur V Srikanth
- Institute of Microbial Technology, Sector 39-A, Chandigarh - 160 036, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 002, India
| | - Anand K Bachhawat
- Institute of Microbial Technology, Sector 39-A, Chandigarh - 160 036, India
| |
Collapse
|
66
|
Imrichova D, Sarinova M, Cernicka J, Gbelska Y, Subik J. -mediated expression in. FEMS Yeast Res 2005; 5:323-9. [PMID: 15691737 DOI: 10.1016/j.femsyr.2004.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/26/2004] [Accepted: 11/18/2004] [Indexed: 10/26/2022] Open
Abstract
The b-Zip transcription factor Yap1p plays an important role in oxidative stress response and multidrug resistance in Saccharomyces cerevisiae. We have previously demonstrated that the KNQ1 gene, encoding a multidrug transporter of the major facilitator superfamily in Kluyveromyces lactis and containing two potential Yap1p response elements in its promoter, is a putative transcriptional target of KlYap1p, the structural and functional homologue of ScYap1p. In this work, we provide evidence that KlYAP1 controls the expression of the KNQ1 gene. Using a P(KNQ1)-gusA fusion construct we showed that the expression of KNQ1 is induced upon cell treatment with the oxidizing agents H2O2 and menadione and that this induction is mediated by KlYap1p. These results were confirmed by Northern-blot analysis showing that the expression of KNQ1 is responsive to hydrogen peroxide and dependent on the presence of KlYap1p. The role of KlYAP1 in the control of KNQ1 expression was further demonstrated by EMSA experiments and drug resistance assays. These results clearly demonstrate the involvement of the KlYap1p transcription factor in the control of KNQ1 gene expression.
Collapse
Affiliation(s)
- Denisa Imrichova
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
67
|
Chua G, Robinson MD, Morris Q, Hughes TR. Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 2005; 7:638-46. [PMID: 15556037 DOI: 10.1016/j.mib.2004.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A major objective in post-genome research is to fully understand the transcriptional control of each gene and the targets of each transcription factor. In yeast, large-scale experimental and computational approaches have been applied to identify co-regulated genes, cis regulatory elements, and transcription factor DNA binding sites in vivo. Methods for modeling and predicting system behavior, and for reconciling discrepancies among data types, are being explored. The results indicate that a complete and comprehensive yeast transcriptional network will ultimately be achieved.
Collapse
Affiliation(s)
- Gordon Chua
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Room 307, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
68
|
Ricicová M, Palková Z. Comparative analyses of Saccharomyces cerevisiae RNAs using Agilent RNA 6000 Nano Assay and agarose gel electrophoresis. FEMS Yeast Res 2004; 4:119-22. [PMID: 14554204 DOI: 10.1016/s1567-1356(03)00145-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Precise quantification and quality characterisation of isolated RNAs are prerequisites for their further exploitation in genome-wide microarrays, Northern blots, cDNA library preparation and others. Our data indicate that RNA analyses using Agilent RNA Nano Assay exhibit several advantages when compared with those performed on ethidium bromide-stained agarose gel electrophoresis or on a spectrophotometer. The RNA Nano Assay makes it possible to estimate RNA concentrations in the range from 1000 ng microl(-1) to 17 ng microl(-1). The presence of impurities including traces of DNA within RNA samples does not influence the concentration measurements. Like agarose gel electrophoresis, RNA Nano Assay allows to analyse RNAs dissolved in formamide and therefore protected against RNase action. Moreover, it allows a clearer distinction of partially degraded samples. The limitation of RNA Nano Assay is the impossibility to detect and to analyse double-stranded RNAs.
Collapse
Affiliation(s)
- Markéta Ricicová
- Department of Genetics and Microbiology, Charles University, Vinicná 5, 12844 Prague 2, Czech Republic
| | | |
Collapse
|
69
|
De Deken X, Raymond M. Constitutive activation of the PDR16 promoter in a Candida albicans azole-resistant clinical isolate overexpressing CDR1 and CDR2. Antimicrob Agents Chemother 2004; 48:2700-3. [PMID: 15215129 PMCID: PMC434214 DOI: 10.1128/aac.48.7.2700-2703.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans azole-resistant clinical isolates overexpressing the CDR1 and CDR2 genes (multidrug transporters) also overexpress the PDR16 gene (phosphatidylinositol transfer protein). We show here that the PDR16 promoter displays higher transcriptional activity following integration in an azole-resistant isolate than in the matched azole-susceptible one. Thus, the upregulation of PDR16 in the resistant strain results from a mutation acting in trans.
Collapse
Affiliation(s)
- Xavier De Deken
- Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7
| | | |
Collapse
|
70
|
Boyer J, Badis G, Fairhead C, Talla E, Hantraye F, Fabre E, Fischer G, Hennequin C, Koszul R, Lafontaine I, Ozier-Kalogeropoulos O, Ricchetti M, Richard GF, Thierry A, Dujon B. Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae. Genome Biol 2004; 5:R72. [PMID: 15345056 PMCID: PMC522879 DOI: 10.1186/gb-2004-5-9-r72] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Revised: 07/13/2004] [Accepted: 07/26/2004] [Indexed: 03/24/2023] Open
Abstract
We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame fragments corresponding to 454 distinct genes (of which 91 are of unknown function), and 162 out-of-frame, antisense and intergenic genomic fragments, representing the largest collection of toxic inserts published so far in yeast.
Collapse
Affiliation(s)
- Jeanne Boyer
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Gwenaël Badis
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- Unité de Génétique des Interactions Macromoléculaires (URA2171 CNRS), Department of Structure and Dynamics of Genomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris-Cedex 15, France
| | - Cécile Fairhead
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Emmanuel Talla
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- CNRS-Laboratoire de Chimie Bactérienne, 31 Chemin Joseph Aiguier, 13402 Marseille-Cedex 20, France
| | - Florence Hantraye
- Unité de Génétique des Interactions Macromoléculaires (URA2171 CNRS), Department of Structure and Dynamics of Genomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris-Cedex 15, France
| | - Emmanuelle Fabre
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Gilles Fischer
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Christophe Hennequin
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- Laboratoire de Parasitologie, Faculté de Médecine St-Antoine, 27 rue de Chaligny, 75012 Paris, France
| | - Romain Koszul
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Ingrid Lafontaine
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | | | - Miria Ricchetti
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- Unité de Génétique et Biochimie du Développement, Institut Pasteur, 25 rue du Dr Roux 75724 Paris-Cedex 15, France
| | - Guy-Franck Richard
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Agnès Thierry
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Bernard Dujon
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| |
Collapse
|
71
|
Onda M, Ota K, Chiba T, Sakaki Y, Ito T. Analysis of gene network regulating yeast multidrug resistance by artificial activation of transcription factors: involvement of Pdr3 in salt tolerance. Gene 2004; 332:51-9. [PMID: 15145054 DOI: 10.1016/j.gene.2004.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/29/2004] [Accepted: 02/04/2004] [Indexed: 11/23/2022]
Abstract
We established a strategy to constitutively activate Zn(2)Cys(6)-type protein by fusing its DNA-binding domain with the VP16 trans-activation domain. To explore gene network regulating yeast multidrug resistance, the strategy was applied to Pdr1, Pdr3 and Yrr1, known to regulate multidrug resistance, as well as three uncharacterized Yrr1-related transcription factors. DNA microarray analysis revealed that all of the six mutants induce typical drug transporter genes including SNQ2 and YOR1, suggesting redundancy in regulation. On the other hand, each displays a unique spectrum of targets, which is coincident with the phylogenetic tree of the transcription factors and presumably reflects their functional specification. Indeed, careful analysis of target genes specific to each transcription factor led us to reveal an unexpected role for Pdr3 in salt tolerance. The strategy would thus contribute not only to identify target genes but to reveal redundancy and specificity in complex gene regulatory networks.
Collapse
Affiliation(s)
- Miyuki Onda
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
72
|
Akache B, MacPherson S, Sylvain MA, Turcotte B. Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. J Biol Chem 2004; 279:27855-60. [PMID: 15123673 DOI: 10.1074/jbc.m403487200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gal4p family of yeast zinc cluster proteins comprises regulators of multidrug resistance genes. For example, Pdr1p and Pdr3p bind as homo- or heterodimers to pleiotropic drug response elements (PDREs) found in promoters of target genes. Other zinc cluster activators of multidrug resistance genes include Stb5p and Yrr1p. To better understand the interplay among these activators, we have performed native co-immunoprecipitation experiments using strains expressing tagged zinc cluster proteins from their natural chromosomal locations. Interestingly, Stb5p is found predominantly as a Pdr1p heterodimer and shows little homodimerization. No interactions of Stb5p with Pdr3p or Yrr1p could be detected in our assays. In contrast to Stb5p, Yrr1p is only detected as a homodimer. Similar results were obtained using glutathione S-transferase pull-down assays. Importantly, the purified DNA binding domains of Stb5p and Pdr1p bound to a PDRE as heterodimers in vitro. These results suggest that the DNA binding domains of Pdr1p and Stb5p are sufficient for heterodimerization. Our data demonstrate a complex interplay among these activators and suggest that Pdr1p is a master drug regulator involved in recruiting other zinc cluster proteins to fine tune the regulation of multidrug resistance genes.
Collapse
Affiliation(s)
- Bassel Akache
- Department of Medicine, Royal Victoria Hospital, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | |
Collapse
|
73
|
Gaur NA, Puri N, Karnani N, Mukhopadhyay G, Goswami SK, Prasad R. Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans. FEMS Yeast Res 2004; 4:389-99. [PMID: 14734019 DOI: 10.1016/s1567-1356(03)00204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have earlier shown that transcriptional activation of the Candida drug resistance gene, CDR1, is linked to various stresses wherein a proximal promoter (-345 bp from the transcription start point (TSP)) was found to be predominantly more responsive. In this study we have examined basal expression of the CDR1 proximal promoter by employing a Renilla luciferase reporter system. We observed that upon sequential deletion of the proximal promoter, there was modulation in basal reporter activity. The reporter activity was highest (2.3-fold) in NGY261 (-261 bp from TSP), and was reduced upon subsequent deletions. DNase I footprinting revealed four protected regions (W1, W2, W3 and W4) in the proximal promoter which could represent possible trans-acting factor binding sites and thus might be involved in CDR1 expression. Site-directed mutational analysis of three of these protected regions did not significantly affect the basal reporter activity, however, the mutation of W1 led to a considerable enhancement in reporter activity (approximately 4-fold) and was designated a negative regulatory element (NRE). Mutation as well as deletion of the W1 sequence in the native promoter (-1147 bp from TSP) and sequential deletion of the 5'-flanking region-harboring W1 (NRE) also resulted in enhanced promoter reporter activity. When the reporter activity of native (NPY1147) and NRE-mutated (NGYM1147) promoter integrants was monitored throughout the growth phase of Candida albicans, there was modulation in reporter activity in both integrants, but interestingly the level of basal reporter activity of the NRE-mutated promoter was always approximately 3-fold higher than that of the native promoter. UV cross-linking and affinity purification confirmed that a purified approximately 55-kDa nuclear protein specifically interacts with the NRE. Taken together, we have identified a NRE and purified its interactive protein, which may be involved in controlling basal expression of CDR1.
Collapse
Affiliation(s)
- Naseem Akhtar Gaur
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110-067, India
| | | | | | | | | | | |
Collapse
|
74
|
Moye-Rowley WS. Transcriptional control of multidrug resistance in the yeast Saccharomyces. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:251-79. [PMID: 12882520 DOI: 10.1016/s0079-6603(03)01008-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major problem in chemotherapeutic treatment of many pathological conditions including cancer and fungal infections is the development of a multidrug-resistant state in the target cell. Saccharomyces cerevisiae cells can be isolated that have single genetic alterations that cause the resulting mutant strains to become tolerant of a wide range of compounds that would otherwise be toxic. These mutant cells are referred to as having a pleiotropic drug-resistant (Pdr) phenotype. Studies of these Pdr cells have demonstrated that mutations either within genes encoding transcriptional regulators or in their regulatory inputs lead to overexpression of downstream transporter proteins with associated multidrug resistance. This review is aimed at providing a framework for understanding the networks modulating expression of PDR genes in S. cerevisiae.
Collapse
Affiliation(s)
- W Scott Moye-Rowley
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
75
|
Wolfger H, Mamnun YM, Kuchler K. The yeast Pdr15p ATP-binding cassette (ABC) protein is a general stress response factor implicated in cellular detoxification. J Biol Chem 2003; 279:11593-9. [PMID: 14699125 DOI: 10.1074/jbc.m311282200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play important roles in drug efflux, but some may also function in cellular detoxification. The Pdr15p ABC protein is the closest homologue of the multidrug efflux transporter Pdr5p, which mediates pleiotropic drug resistance to hundreds of unrelated compounds. In this study, we show that the plasma membrane protein Pdr15p displays limited drug transport capacity, mediating chloramphenicol and detergent tolerance. Interestingly, Pdr15p becomes most abundant when cells exit the exponential growth phase, whereas its closest homologue, Pdr5p, disappears after exponential growth. Furthermore, in contrast to Pdr5p, Pdr15p is strongly induced by various stress conditions including heat shock, low pH, weak acids, or high osmolarity. PDR15 induction bypasses the Pdr1p/Pdr3p regulators but requires the general stress regulator Msn2p, which directly decorates the stress response elements in the PDR15 promoter. Remarkably, however, Pdr15p induction bypasses upstream components of the high osmolarity glycerol (HOG) pathway including the Hog1p and Pbs2p kinases as well as the dedicated HOG cell surface sensors. Our data provide evidence for a novel upstream branch of the general stress response pathway activating Msn2p. In addition, the results demonstrate a cross-talk between stress response and the pleiotropic drug resistance network.
Collapse
Affiliation(s)
- Hubert Wolfger
- Department of Medical Biochemistry, Division of Molecular Genetics, Max F. Perutz Laboratories, Medical University and Biocenter of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
76
|
Abstract
Multidrug transporters have long puzzled researchers because of their ability to extrude multiple structurally dissimilar toxic chemotherapeutic agents. They appear to be essentially ubiquitous with many microorganisms possessing large arsenals of predicted multidrug efflux transporters. Recent reports on the structures of multidrug efflux transporters and their cognate regulators have suggested that the basis of multidrug recognition is the presence of large flexible hydrophobic cavities capable of accommodating different compounds that are bound via hydrogen bonding and/or electrostatic interactions. This structural data provides the context for understanding other questions about the evolution of multidrug transporters and their natural physiological roles.
Collapse
Affiliation(s)
- Ian T Paulsen
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
77
|
Lucau-Danila A, Delaveau T, Lelandais G, Devaux F, Jacq C. Competitive Promoter Occupancy by Two Yeast Paralogous Transcription Factors Controlling the Multidrug Resistance Phenomenon. J Biol Chem 2003; 278:52641-50. [PMID: 14512416 DOI: 10.1074/jbc.m309580200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly flexible gene expression programs are required to allow cell growth in the presence of a wide variety of chemicals. We used genome-wide expression analyses coupled with chromatin immunoprecipitation experiments to study the regulatory relationships between two very similar yeast transcription factors involved in the control of the multidrug resistance phenomenon. Yrm1 (Yor172w) is a new zinc finger transcription factor, the overproduction of which decreases the level of transcription of the target genes of Yrr1, a zinc finger transcription factor controlling the expression of several membrane transporter-encoding genes. Surprisingly, the absence of YRR1 releases the transcriptional activity of Yrm1, which then up-regulates 23 genes, 14 of which are also direct target genes of Yrr1. Chromatin immunoprecipitation experiments confirmed that Yrm1 binds to the promoters of the up-regulated genes only in yeast strains from which YRR1 has been deleted. This sophisticated regulatory program can be associated with drug resistance phenotypes of the cell. The program-specific distribution of paired transcription factors throughout the genome may be a general mechanism by which similar transcription factors regulate overlapping gene expression programs in response to chemical stress.
Collapse
Affiliation(s)
- Ancuta Lucau-Danila
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
78
|
Hikkel I, Lucau-Danila A, Delaveau T, Marc P, Devaux F, Jacq C. A general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast. J Biol Chem 2003; 278:11427-32. [PMID: 12529331 DOI: 10.1074/jbc.m208549200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate a genomewide approach to determine the physiological role of a putative transcription factor, Ylr266, identified through yeast genome sequencing program. We constructed activated forms of the zinc finger (Zn(2)Cys(6)) protein Ylr266, and we analyzed the corresponding transcriptomes with DNA microarrays to characterize the up-regulated genes. The direct target genes of Ylr266 were further identified by in vivo chromatin immunoprecipitation procedure. The functions of the genes directly controlled by YLR266c are in agreement with the observed drug-resistance phenotype of the cell expressing an activated form of Ylr266. These target genes code for ATP-binding cassette or major facilitator superfamily transporters such as PDR15, YOR1, or AZR1 or for other proteins such as SNG1, YJL216c, or YLL056c which are already known to be involved in the yeast pleiotropic drug resistance (PDR) phenomenon. YLR266c could thus be named PDR8. Overlaps with the other PDR networks argue in favor of a new specific role for PDR8 in connection with the well known PDR regulators PDR1/PDR3 and YRR1. This strategy to identify the regulatory properties of an anonymous transcription factor is likely to be generalized to all the Zn(2)Cys(6) transcription factors from Saccharomyces cerevisiae and related yeasts.
Collapse
Affiliation(s)
- Imrich Hikkel
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
The budding yeast Saccharomyces cerevisiae is a genetically tractable model system with which to establish the cellular target of a given agent and investigate mechanisms of drug action.
Collapse
Affiliation(s)
- Mary Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|