51
|
Forma E, Krzeslak A, Bernaciak M, Romanowicz-Makowska H, Brys M. Expression of TopBP1 in hereditary breast cancer. Mol Biol Rep 2012; 39:7795-804. [PMID: 22544570 PMCID: PMC3358587 DOI: 10.1007/s11033-012-1622-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 04/16/2012] [Indexed: 01/27/2023]
Abstract
TopBP1 protein displays structural as well as functional similarities to BRCA1 and is involved in DNA replication, DNA damage checkpoint response and transcriptional regulation. Aberrant expression of TopBP1 may lead to genomic instability and can have pathological consequences. In this study we aimed to investigate expression of TopBP1 gene at mRNA and protein level in hereditary breast cancer. Real-time quantitative PCR was performed in 127 breast cancer samples. Expression of TopBP1 mRNA in lobular carcinoma was significantly lower compared with ductal carcinoma (p < 0.05). The level of TopBP1 mRNA appeared to be lower in poorly differentiated (III grade) hereditary breast cancer in comparison with moderately (II grade) and well-differentiated cancer (I grade) (p < 0.05 and p < 0.001 respectively). We analyzed TopBP1 protein expression using immunohistochemistry and Western blot techniques. Expression of TopBP1 protein was found to be significantly increased in poorly differentiated breast cancer (III grade) (p < 0.05). The percentage of samples with cytoplasmic apart from nuclear staining increased with increasing histological grade. There was no significant association between level and intracellular localization of TopBP1 protein in hereditary breast cancer and other clinicopathological parameters such as estrogen and progesterone receptors status, appearance of metastasis in the axillary lymph nodes and type of cancer. Our data suggest that decreased level of TopBP1 mRNA and increased level of TopBP1 protein might be associated with progression of hereditary breast cancer.
Collapse
Affiliation(s)
- Ewa Forma
- Department of Cytobiochemistry, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | | | | | | |
Collapse
|
52
|
Budhavarapu VN, White ED, Mahanic CS, Chen L, Lin FT, Lin WC. Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation. Cell Cycle 2012; 11:2030-8. [PMID: 22580462 DOI: 10.4161/cc.20643] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
E2F1 is a eukaryotic transcription factor that is known to regulate various cellular pathways such as cell cycle progression, DNA replication, DNA damage responses and induction of apoptosis. Given its versatile roles, a precise and tight regulation of E2F1 is very critical to maintain genomic stability. E2F1 is regulated both at transcriptional and posttranslational levels during cell cycle and upon DNA damage. After S phase, E2F1 is targeted for degradation and is kept at low levels or in an inactive state until the next G 1/S phase transition. Our studies show that APC/C ubiquitin ligase in conjunction with its co-activator Cdh1 (APC/C (Cdh1) ) can downregulate E2F1. We also identify an APC/C subunit APC5 that binds to E2F1 and is essential for E2F1 ubiquitination. We confirm an interaction between E2F1 and Cdh1 as well as an interaction between E2F1 and APC5 both in vivo and in vitro. In vitro GST pull-down assays have mapped the C-terminal 79 a.a. of E2F1 as Cdh1 interacting residues. Ectopically expressed Cdh1 downregulates the expression of E2F1-4. Our studies have also shown for the first time that E2F1 can be modified by K11-linkage specific ubiquitin chain formation (Ub-K11). The formation of Ub-K11 chains on E2F1 is increased in the presence of Cdh1 and accumulated in the presence of proteasome inhibitor, suggesting that APC/C (Cdh1) targets E2F1 for degradation by forming Ub-K11 chains. We also show that the effect of Cdh1 on E2F1 degradation is blocked upon DNA damage. Interestingly, Ub-K11-linked E2F1 accumulates after treatment of DNA damaging agents. The data suggest that DNA damage signaling processes do not inhibit APC/C (Cdh1) to ubiquitinate E2F1. Instead, they block the proteasomal degradation of Ub-K11-linked E2F1, and therefore lead to its accumulation.
Collapse
Affiliation(s)
- Varija N Budhavarapu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
53
|
Lang J, Smetana O, Sanchez-Calderon L, Lincker F, Genestier J, Schmit AC, Houlné G, Chabouté ME. Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. THE NEW PHYTOLOGIST 2012; 194:353-363. [PMID: 22339405 DOI: 10.1111/j.1469-8137.2012.04062.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular responses to DNA double-strand breaks (DSBs) are linked in mammals and yeasts to the phosphorylated histones H2AX (γH2AX) repair foci which are multiproteic nuclear complexes responsible for DSB sensing and signalling. However, neither the components of these foci nor their role are yet known in plants. In this paper, we describe the effects of γH2AX deficiency in Arabidopsis thaliana plants challenged with DSBs in terms of genotoxic sensitivity and E2F-mediated transcriptional responses. We further establish the existence, restrictive to the G1/S transition, of specific DSB-induced foci containing tobacco E2F transcription factors, in both A. thaliana roots and BY-2 tobacco cells. These E2F foci partially colocalize with γH2AX foci while their formation is ataxia telangiectasia mutated (ATM)-dependent, requires the E2F transactivation domain with its retinoblastoma-binding site and is optimal in the presence of functional H2AXs. Overall, our results unveil a new interplay between plant H2AX and E2F transcriptional activators during the DSB response.
Collapse
Affiliation(s)
- Julien Lang
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Ondrej Smetana
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Lenin Sanchez-Calderon
- Laboratorio de Biología Molecular de Plantas Unidad Académica de Biología Experimental Universidad Autónoma de Zacatecas, Av. Revolución S/N Col. Tierra y Libertad CP, 98615 Guadalupe, Zacatecas, México
| | - Frédéric Lincker
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Julie Genestier
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Guy Houlné
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
54
|
Carnevale J, Palander O, Seifried LA, Dick FA. DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Mol Cell Biol 2012; 32:900-12. [PMID: 22184068 PMCID: PMC3295199 DOI: 10.1128/mcb.06286-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/12/2011] [Indexed: 01/28/2023] Open
Abstract
E2F transcription can lead to cell proliferation or apoptosis, indicating that E2Fs control opposing functions. In a similar manner, DNA double-strand breaks can signal to induce cell cycle arrest or apoptosis. Specifically, pRB is activated following DNA damage, allowing it to bind to E2Fs and block transcription at cell cycle promoters; however, E2F1 is simultaneously activated, leading to transcription at proapoptotic promoters. We examined this paradoxical control of E2F transcription by studying how E2F1's interaction with pRB is regulated following DNA damage. Our work reveals that DNA damage signals create multiple forms of E2F1 that contain mutually exclusive posttranslational modifications. Specifically, E2F1 phospho-serine 364 is found only in complex with pRB, while E2F1 phosphorylation at serine 31 and acetylation function to create a pRB-free form of E2F1. Both pRB-bound and pRB-free modifications on E2F1 are essential for the activation of TA-p73 and the maximal induction of apoptosis. Chromatin immunoprecipitation demonstrated that E2F1 phosphorylated on serine 364 is also present at proapoptotic gene promoters during the induction of apoptosis. This indicates that distinct populations of E2F1 are organized in response to DNA damage signaling. Surprisingly, these complexes act in parallel to activate transcription of proapoptotic genes. Our data suggest that DNA damage signals alter pRB and E2F1 to engage them in functions leading to apoptotic induction that are distinct from pRB-E2F regulation in cell cycle control.
Collapse
Affiliation(s)
- Jasmyne Carnevale
- London Regional Cancer Program
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Oliva Palander
- London Regional Cancer Program
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Laurie A. Seifried
- London Regional Cancer Program
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Frederick A. Dick
- London Regional Cancer Program
- Children's Health Research Institute
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
55
|
Van Den Broeck A, Nissou D, Brambilla E, Eymin B, Gazzeri S. Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis 2012; 33:320-325. [DOI: 10.1093/carcin/bgr292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
56
|
Munro S, Carr SM, La Thangue NB. Diversity within the pRb pathway: is there a code of conduct? Oncogene 2012; 31:4343-52. [PMID: 22249267 DOI: 10.1038/onc.2011.603] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The failure of cell proliferation to be properly regulated is a hallmark of tumourigenesis. The retinoblastoma protein (pRb) pathway represents a key component in the regulation of the cell cycle and tumour suppression. Recent findings have revealed new levels of complexity reflecting a repertoire of post-translational modifications that occur on pRb together with its key effector E2F-1. Here we provide an overview of the modifications and consider the possibility of a 'code' that endows pRb with the ability to function in diverse physiological settings.
Collapse
Affiliation(s)
- S Munro
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
57
|
Abstract
E2F is a family of transcription factors that regulate the expression of genes involved in a wide range of cellular processes, including cell-cycle progression, DNA replication, DNA repair, differentiation, and apoptosis. E2F1, the founding member of the family, undergoes posttranslational modifications in response to DNA damage, resulting in E2F1 stabilization. In some cases, E2F1 is important for DNA damage-induced apoptosis through the transcriptional activation of p73 and perhaps other proapoptotic target genes. However, in other contexts, E2F1 can stimulate DNA repair and promote survival in response to DNA damage. The E2F1 protein accumulates at sites of both DNA double-strand breaks and UV radiation-induced damage, indicating that E2F1 has a nontranscriptional function at sites of damage. This review summarizes recent progress made in understanding the role of E2F1 in the DNA damage response, including transcription-independent activities that facilitate DNA repair in the context of chromatin.
Collapse
Affiliation(s)
- Anup K Biswas
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | | |
Collapse
|
58
|
Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N. The role of the E2F transcription factor family in UV-induced apoptosis. Int J Mol Sci 2011; 12:8947-60. [PMID: 22272113 PMCID: PMC3257110 DOI: 10.3390/ijms12128947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a) are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8) appear to antagonize E2F-induced cell death. In this review we will discuss (i) the potential role of E2Fs in UV-induced cell death and (ii) the implications of this to the development of UV-induced cutaneous malignancies.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Liliana Endo-Munoz
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Orla Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Nicholas Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3176-5894; Fax: +61-7-3176-5946
| |
Collapse
|
59
|
Permenter MG, Lewis JA, Jackson DA. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line. PLoS One 2011; 6:e27730. [PMID: 22110744 PMCID: PMC3218028 DOI: 10.1371/journal.pone.0027730] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/22/2011] [Indexed: 12/28/2022] Open
Abstract
Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells.
Collapse
|
60
|
Abstract
Nearly half of human cancers harbor p53 mutations, which can promote cancerous growth, metastasis, and resistance to therapy. The gain of function of mutant p53 is partly mediated by its ability to form a complex with NF-Y or p63/p73. Here, we demonstrate that TopBP1 mediates these activities in cancer, and we provide both in vitro and in vivo evidence to support its role. We show that TopBP1 interacts with p53 hot spot mutants and NF-YA and promotes mutant p53 and p300 recruitment to NF-Y target gene promoters. TopBP1 also facilitates mutant p53 interaction with and inhibition of the transcriptional activities of p63/p73. Depletion of TopBP1 in mutant p53 cancer cells leads to downregulation of NF-Y target genes cyclin A and Cdk1 and upregulation of p63/p73 target genes such as Bax and Noxa. Mutant p53-mediated resistance to chemotherapeutic agents depends on TopBP1. The growth-promoting activity of mutant p53 in a xenograft model also requires TopBP1. Thus, TopBP1 mediates mutant p53 gain of function in cancer. Since TopBP1 is often overexpressed in cancer cells and is recruited to cooperate with mutant p53 for tumor progression, TopBP1/mutant p53 interaction may be a new therapeutic target in cancer.
Collapse
|
61
|
Chen J, Zhu F, Weaks RL, Biswas AK, Guo R, Li Y, Johnson DG. E2F1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks. Cell Cycle 2011; 10:1287-94. [PMID: 21512314 DOI: 10.4161/cc.10.8.15341] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The E2F1 transcription factor is post-translationally modified and stabilized in response to various forms of DNA damage to regulate the expression of cell cycle and pro-apoptotic genes. E2F1 also forms foci at DNA double-strand breaks (DSBs) but the function of E2F1 at sites of damage is unknown. Here we demonstrate that the absence of E2F1 leads to spontaneous DNA breaks and impaired recovery following exposure to ionizing radiation. E2F1 deficiency results in defective NBS1 phosphorylation and foci formation in response to DSBs but does not affect NBS1 expression levels. Moreover, an increased association between NBS1 and E2F1 is observed in response to DNA damage, suggesting that E2F1 may promote NBS1 foci formation through a direct or indirect interaction at sites of DNA breaks. E2F1 deficiency also impairs RPA and Rad51 foci formation indicating that E2F1 is important for DNA end resection and the formation of single-stranded DNA at DSBs. These findings establish new roles for E2F1 in the DNA damage response, which may directly contribute to DNA repair and genome maintenance.
Collapse
Affiliation(s)
- Jie Chen
- The University of Texas M.D. Anderson Cancer Center; Smithville, TX, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.
Collapse
|
63
|
Yang M, Wu S, Jia J, May WS. JAZ mediates G1 cell cycle arrest by interacting with and inhibiting E2F1. Cell Cycle 2011; 10:2390-9. [PMID: 21715977 PMCID: PMC3322471 DOI: 10.4161/cc.10.14.16587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/23/2011] [Indexed: 12/26/2022] Open
Abstract
We discovered and reported JAZ as a unique dsRNA binding zinc finger protein that functions as a direct, positive regulator of p53 transcriptional activity to mediate G1 cell cycle arrest in a mechanism involving upregulation of the p53 target gene, p21. We now find that JAZ can also negatively regulate the cell cycle in a novel, p53-independent mechanism resulting from the direct interaction with E2F1, a key intermediate in regulating cell proliferation and tumor suppression. JAZ associates with E2F1's central DNA binding/dimerization region and its C-terminal transactivation domain. Functionally, JAZ represses E2F1 transcriptional activity in association with repression of cyclin A expression and inhibition of G1/S transition. This mechanism involves JAZ-mediated inhibition of E2F1's specific DNA binding activity. JAZ directly binds E2F1 in vitro in a dsRNA-independent manner, and JAZ's dsRNA binding ZF domains, which are necessary for localizing JAZ to the nucleus, are required for repression of transcriptional activity in vivo. Importantly for specificity, siRNA-mediated "knockdown" of endogenous JAZ increases E2F transcriptional activity and releases cells from G1 arrest, indicating a necessary role for JAZ in this transition. Although JAZ can directly inhibit E2F1 activity independently of p53, if functional p53 is expressed, JAZ may exert a more potent inhibition of cell cycle following growth factor withdrawal. Therefore, JAZ plays a dual role in cell cycle regulation by both repressing E2F1 transcriptional activity and activating p53 to facilitate efficient growth arrest in response to cellular stress, which may potentially be exploited therapeutically for tumor growth inhibition.
Collapse
Affiliation(s)
- Mingli Yang
- Department of Medicine, Division of Hematology/Oncology, Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
64
|
van Heemst D. Variation in DNA damage response pathway activity: focus on intermediate phenotype instead of genetic polymorphisms. Cell Cycle 2011; 10:1714. [PMID: 21537112 DOI: 10.4161/cc.10.11.15592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
65
|
|
66
|
|
67
|
Abstract
The EDD (E3 identified by differential display) gene, first identified as a progestin-induced gene in T-47D breast cancer cells, encodes an E3 ubiquitin ligase with a HECT domain. It was reported that EDD is involved in the G(2)/M progression through ubiquitination of phospho-katanin p60. Previous study has also shown that EDD can act as a transcription cofactor independently of its E3 ligase activity. In this study, we uncover a new role for EDD during cell cycle progression in an E3 ligase-independent manner. We demonstrate that EDD can physically interact with p53 and that this interaction blocks the phosphorylation of p53 by ataxia telangiectasia mutated (ATM). Silencing of EDD induces phosphorylation of p53 at Ser(15) and activates p53 target genes in fibroblasts and some transformed cells without activation of DNA damage response. The G(1)/S arrest induced by EDD depletion depends on p53. On the other hand, overexpression of EDD inhibits p53-Ser(15) phosphorylation and suppresses the induction of p53 target genes during DNA damage, and this effect does not require its E3 ligase activity. Thus, through binding to p53, EDD actively inhibits p53 phosphorylation by ATM and plays a role in ensuring smooth G(1)/S progression.
Collapse
Affiliation(s)
- Shiyun Ling
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
68
|
Bang SW, Ko MJ, Kang S, Kim GS, Kang D, Lee J, Hwang DS. Human TopBP1 localization to the mitotic centrosome mediates mitotic progression. Exp Cell Res 2011; 317:994-1004. [PMID: 21291884 DOI: 10.1016/j.yexcr.2011.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/27/2010] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
Abstract
TopBP1 contains repeats of the BRCA1 C-terminal (BRCT) domain and plays important roles in DNA damage response, DNA replication, and other cellular regulatory functions during the interphase. In prometaphase, metaphase, and anaphase, TopBP1 localizes to the mitotic centrosomes, which function as spindle-poles for the bipolar separation of sister chromatids. The localization of TopBP1 to the mitotic centrosomes is mediated by amino acid residues 1259 to 1420 in the TopBP1 C-terminal region (TbpCtr). GST and DsRed2 tags fused to TbpCtr were localized in the mitotic centrosomes, thereby suggesting that TbpCtr functions as a mitosis-specific centrosome localization signal (CLS). Mutations of Ser 1273 and/or Lys 1317, which were predicted to interact with a putative phosphoprotein, inhibited CLS function. Ectopic expression of TbpCtr specifically eliminated endogenous TopBP1 from the mitotic centrosomes, whereas mutant TbpCtr derivatives, containing substitutions at Ser 1273 and/or Lys 1317, did not. The specific elimination of TopBP1 from the mitotic centrosomes prolonged the durations of prometaphase and metaphase and shortened the inter-kinetochore distances of metaphase sister chromatids while maintaining the spindle assembly checkpoint. These results suggest that the localization of TopBP1 to the mitotic centrosomes is necessary for proper mitotic progression.
Collapse
Affiliation(s)
- Sung Woong Bang
- Department of Biological Sciences, and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
69
|
Udayakumar T, Shareef MM, Diaz DA, Ahmed MM, Pollack A. The E2F1/Rb and p53/MDM2 pathways in DNA repair and apoptosis: understanding the crosstalk to develop novel strategies for prostate cancer radiotherapy. Semin Radiat Oncol 2011; 20:258-66. [PMID: 20832018 DOI: 10.1016/j.semradonc.2010.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Both the p53- and E2F1-signaling pathways are defective in almost all types of tumors, suggesting very important roles for their signaling networks in regulating the process of tumorigenesis and therapy response. Studies on Radiation Therapy Oncology Group tissue samples have identified aberrant expression of p53, MDM2 (an E3 ubiquitin ligase that targets p53 for proteosomal degradation), and p16 (an upstream regulator of retinoblastoma and hence E2F1 in prostate cancer); abnormal expression of these biomarkers has been associated with clinical outcome after radiotherapy ± androgen deprivation therapy. Although the proapoptotic properties of p53 are well documented, a relatively new aspect of p53 function as an active mediator of prosurvival signaling pathways is now emerging. E2F1 is a transcription factor that possesses both proapoptotic and prosurvival properties. Thus, the role of E2F1 in the process of tumorigenesis versus apoptosis is a contested issue that needs to be resolved. Furthermore, the role of E2F1 in DNA repair is being increasingly recognized. Thus, novel approaches to curb the prosurvival and DNA repair capability of E2F1 while promoting apoptotic function are of interest. In this review, we discuss the challenges involved in targeting the p53/E2F1 pathways and the crosstalk networks, and further propose potential therapeutic strategies for prostate cancer management.
Collapse
Affiliation(s)
- Thirupandiyur Udayakumar
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
70
|
Jeon Y, Ko E, Lee KY, Ko MJ, Park SY, Kang J, Jeon CH, Lee H, Hwang DS. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem 2010; 286:5414-22. [PMID: 21149450 DOI: 10.1074/jbc.m110.189704] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.
Collapse
Affiliation(s)
- Yoon Jeon
- Cancer Experimental Resources Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Guo R, Chen J, Mitchell DL, Johnson DG. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res 2010; 39:1390-7. [PMID: 20972224 PMCID: PMC3045616 DOI: 10.1093/nar/gkq983] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin structure is known to be a barrier to DNA repair and a large number of studies have now identified various factors that modify histones and remodel nucleosomes to facilitate repair. In response to ultraviolet (UV) radiation several histones are acetylated and this enhances the repair of DNA photoproducts by the nucleotide excision repair (NER) pathway. However, the molecular mechanism by which UV radiation induces histone acetylation to allow for efficient NER is not completely understood. We recently discovered that the E2F1 transcription factor accumulates at sites of UV-induced DNA damage and directly stimulates NER through a non-transcriptional mechanism. Here we demonstrate that E2F1 associates with the GCN5 acetyltransferase in response to UV radiation and recruits GCN5 to sites of damage. UV radiation induces the acetylation of histone H3 lysine 9 (H3K9) and this requires both GCN5 and E2F1. Moreover, as previously observed for E2F1, knock down of GCN5 results in impaired recruitment of NER factors to sites of damage and inefficient DNA repair. These findings demonstrate a direct role for GCN5 and E2F1 in NER involving H3K9 acetylation and increased accessibility to the NER machinery.
Collapse
Affiliation(s)
- Ruifeng Guo
- Department of Molecular Carcinogenesis, UT MD Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1C, PO Box 389, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
72
|
Wang B, Ling S, Lin WC. 14-3-3Tau regulates Beclin 1 and is required for autophagy. PLoS One 2010; 5:e10409. [PMID: 20454448 PMCID: PMC2861590 DOI: 10.1371/journal.pone.0010409] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/08/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Beclin 1 plays an essential role in autophagy; however, the regulation of Beclin 1 expression remains largely unexplored. An earlier ChIP-on-chip study suggested Beclin 1 could be an E2F target. Previously, we also reported that 14-3-3tau regulates E2F1 stability, and is required for the expression of several E2F1 target genes. 14-3-3 proteins mediate many cellular signaling processes, but its role in autophagy has not been investigated. We hypothesize that 14-3-3tau could regulate Beclin 1 expression through E2F1 and thus regulate autophagy. METHODS AND FINDINGS Using the RNAi technique we demonstrate a novel role for one of 14-3-3 isoforms, 14-3-3tau, in the regulation of Beclin 1 expression and autophagy. Depletion of 14-3-3tau inhibits the expression of Beclin 1 in many different cell lines; whereas, upregulation of 14-3-3tau induces Beclin 1. The regulation is physiologically relevant as an extracellular matrix protein tenascin-C, a known 14-3-3tau inducer, can induce Beclin 1 through 14-3-3tau. Moreover, rapamycin-induced, serum free-induced and amino acid starvation-induced autophagy depends on 14-3-3tau. We also show the expression of Beclin 1 depends on E2F, and E2F can transactivate the Beclin 1 promoter in a promoter reporter assay. Upregulation of Beclin 1 by 14-3-3tau requires E2F1. Depletion of E2F1, like 14-3-3tau, also inhibits autophagy. CONCLUSION Taken together, this study uncovers a role for 14-3-3tau in Beclin 1 and autophagy regulation probably through regulation of E2F1.
Collapse
Affiliation(s)
- Bing Wang
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shiyun Ling
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Weei-Chin Lin
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,* E-mail:
| |
Collapse
|
73
|
Guo R, Chen J, Zhu F, Biswas AK, Berton TR, Mitchell DL, Johnson DG. E2F1 localizes to sites of UV-induced DNA damage to enhance nucleotide excision repair. J Biol Chem 2010; 285:19308-15. [PMID: 20413589 DOI: 10.1074/jbc.m110.121939] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2F1 transcription factor is a well known regulator of cell proliferation and apoptosis, but its role in the DNA damage response is less clear. Using a local UV irradiation technique and immunofluorescence staining, E2F1 is shown to accumulate at sites of DNA damage. Localization of E2F1 to UV-damaged DNA requires the ATM and Rad3-related (ATR) kinase and serine 31 of E2F1 but not an intact DNA binding domain. E2F1 deficiency does not appear to affect the expression of nucleotide excision repair (NER) factors, such as XPC and XPA. However, E2F1 depletion does impair the recruitment of NER factors to sites of damage and reduces the efficiency of DNA repair. E2F1 mutants unable to bind DNA or activate transcription retain the ability to stimulate NER. These findings demonstrate that E2F1 has a direct, non-transcriptional role in DNA repair involving increased recruitment of NER factors to sites of damage.
Collapse
Affiliation(s)
- Ruifeng Guo
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Leung CCY, Kellogg E, Kuhnert A, Hänel F, Baker D, Glover JNM. Insights from the crystal structure of the sixth BRCT domain of topoisomerase IIbeta binding protein 1. Protein Sci 2010; 19:162-7. [PMID: 19937654 DOI: 10.1002/pro.290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Topoisomerase IIbeta binding protein 1 (TopBP1) is a major player in the DNA damage response and interacts with a number of protein partners via its eight BRCA1 carboxy-terminal (BRCT) domains. In particular, the sixth BRCT domain of TopBP1 has been implicated in binding to the phosphorylated transcription factor, E2F1, and poly(ADP-ribose) polymerase 1 (PARP-1), where the latter interaction is responsible for the poly(ADP-ribosyl)ation of TopBP1. To gain a better understanding of the nature of TopBP1 BRCT6 interactions, we solved the crystal structure of BRCT6 to 1.34 A. The crystal structure reveals a degenerate phospho-peptide binding pocket and lacks conserved hydrophobic residues involved in packing of tandem BRCT repeats, which, together with results from phospho-peptide binding studies, strongly suggest that TopBP1 BRCT6 independently does not function as a phospho-peptide binding domain. We further provide insight into poly(ADP-ribose) binding and sites of potential modification by PARP-1.
Collapse
|
75
|
Abstract
Human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and its orthologues in other organisms are proteins consisting of multiple BRCT modules that have acquired several functions during evolution. These proteins execute their tasks by interacting with a great variety of proteins involved in nuclear processes. TopBP1 is an essential protein that has numerous roles in the maintenance of the genomic integrity. In particular, it is required for the activation of ATM and Rad3-related (ATR), a vital regulator of DNA replication and replication stress response. The orthologues from yeast to human are involved in DNA replication and DNA damage response, while only proteins from higher eukaryotes are also involved in complex regulation of transcription, which is related to cell proliferation, damage response and apoptosis. We review here the recent progress in research aimed at elucidating the multiple cellular functions of TopBP1, focusing on metazoan systems.
Collapse
|
76
|
Paik JC, Wang B, Liu K, Lue JK, Lin WC. Regulation of E2F1-induced apoptosis by the nucleolar protein RRP1B. J Biol Chem 2009; 285:6348-63. [PMID: 20040599 DOI: 10.1074/jbc.m109.072074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulation of the E2F family of transcription factors is important in control of cellular proliferation; dysregulation of the E2Fs is a hallmark of many cancers. One member of the E2F family, E2F1, also has the paradoxical ability to induce apoptosis; however, the mechanisms underlying this selectivity are not fully understood. We now identify a nucleolar protein, RRP1B, as an E2F1-specific transcriptional target. We characterize the RRP1B promoter and demonstrate its selective response to E2F1. Consistent with the activation of E2F1 activity upon DNA damage, RRP1B is induced by several DNA-damaging agents. Importantly, RRP1B is required for the expression of certain E2F1 proapoptotic target genes and the induction of apoptosis by DNA-damaging agents. This activity is mediated in part by complex formation between RRP1B and E2F1 on selective E2F1 target gene promoters. Interaction between RRP1B and E2F1 can be found inside the nucleolus and diffuse nucleoplasmic punctates. Thus, E2F1 makes use of its transcriptional target RRP1B to activate other genes directly involved in apoptosis. Our data also suggest an underappreciated role for nucleolar proteins in transcriptional regulation.
Collapse
Affiliation(s)
- Jason C Paik
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
77
|
Lin PS, McPherson LA, Chen AY, Sage J, Ford JM. The role of the retinoblastoma/E2F1 tumor suppressor pathway in the lesion recognition step of nucleotide excision repair. DNA Repair (Amst) 2009; 8:795-802. [PMID: 19376752 PMCID: PMC2700215 DOI: 10.1016/j.dnarep.2009.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 01/27/2023]
Abstract
The retinoblastoma Rb/E2F tumor suppressor pathway plays a major role in the regulation of mammalian cell cycle progression. The pRb protein, along with closely related proteins p107 and p130, exerts its anti-proliferative effects by binding to the E2F family of transcription factors known to regulate essential genes throughout the cell cycle. We sought to investigate the role of the Rb/E2F1 pathway in the lesion recognition step of nucleotide excision repair (NER) in mouse embryonic fibroblasts (MEFs). Rb-/-, p107-/-, p130-/- MEFs repaired both cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) at higher efficiency than did wildtype cells following UV-C irradiation. The expression of damaged DNA binding gene DDB2 involved in the DNA lesion recognition step was elevated in the Rb family-deficient MEFs. To determine if the enhanced DNA repair in the absence of the Rb gene family is due to the derepression of E2F1, we assayed the ability of E2F1-deficient cells to repair damaged DNA and demonstrated that E2F1-/- MEFs are impaired for the removal of both CPDs and 6-4PPs. Furthermore, wildtype cells induced a higher expression of DDB2 and xeroderma pigmentosum gene XPC transcript levels than did E2F1-/- cells following UV-C irradiation. Using an E2F SiteScan algorithm, we uncovered a putative E2F-responsive element in the XPC promoter upstream of the transcription start site. We showed with chromatin immunoprecipitation assays the binding of E2F1 to the XPC promoter in a UV-dependent manner, suggesting that E2F1 is a transcriptional regulator of XPC. Our study identifies a novel E2F1 gene target and further supports the growing body of evidence that the Rb/E2F1 tumor suppressor pathway is involved in the regulation of the DNA lesion recognition step of nucleotide excision repair.
Collapse
Affiliation(s)
- Patrick S. Lin
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Lisa A. McPherson
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Aubrey Y. Chen
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford CA 94305
- Department of Genetics, Division of Oncology, Stanford University School of Medicine, Stanford CA 94305
| | - James M. Ford
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
- Department of Pediatrics, Stanford University School of Medicine, Stanford CA 94305
- Department of Genetics, Division of Oncology, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
78
|
Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer. Mol Cell Biol 2009; 29:2673-93. [PMID: 19289498 DOI: 10.1128/mcb.01140-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper control of the G(1)/S checkpoint is essential for normal proliferation. The activity of p53 must be kept at a very low level under unstressed conditions to allow growth. Here we provide evidence supporting a crucial role for TopBP1 in actively repressing p53. Depletion of TopBP1 upregulates p53 target genes involved in cell cycle arrest and apoptosis and enhances DNA damage-induced apoptosis. The regulation is mediated by an interaction between the seventh and eighth BRCT domains of TopBP1 and the DNA-binding domain of p53, leading to inhibition of p53 promoter binding activity. Importantly, TopBP1 overexpression is found in 46 of 79 primary breast cancer tissues and is associated with high tumor grade and shorter patient survival time. Overexpression of TopBP1 to a level comparable to that seen in breast tumors leads to inhibition of p53 target gene expression and DNA damage-induced apoptosis and G(1) arrest. Thus, a physiological level of TopBP1 is essential for normal G(1)/S transition, but a pathological level of TopBP1 in cancer may perturb p53 function and contribute to an aggressive tumor behavior.
Collapse
|
79
|
Singh SK, Choudhury SR, Roy S, Sengupta DN. Sequential, Structural, and Phylogenetic Study of BRCT Module in Plants. J Biomol Struct Dyn 2008; 26:235-45. [DOI: 10.1080/07391102.2008.10507239] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
80
|
An allelic series uncovers novel roles of the BRCT domain-containing protein PTIP in mouse embryonic vascular development. Mol Cell Biol 2008; 28:6439-51. [PMID: 18710940 DOI: 10.1128/mcb.00727-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pax transactivation domain-interacting protein (PTIP, or PAXIP1) is required for mouse development and has been implicated in DNA damage responses and histone modification. However, the physiological roles of PTIP during embryogenesis remain unclear due to early embryonic lethality of null mutants. We describe two N-ethyl N-nitrosourea-induced hypomorphic missense alleles of Ptip, each of which alters one of the six encoded BRCT domains. Phenotypic characterization of these mutants revealed important functions of PTIP in vasculogenesis and chorioplacental development that appear unrelated to activities in DNA repair or global histone modification. The results of gene expression profiling and in vitro angiogenesis assays indicated that PTIP modulates a transcriptional program, centered around Vegfa, that drives the migration of endothelial cells to properly form the embryonic vasculature. These and other data suggest that PTIP has multiple functions, one of which is to promote the formation of transcriptional complexes that provide specificity of developmental gene expression.
Collapse
|
81
|
MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 2008; 9:907-15. [PMID: 18660752 DOI: 10.1038/embor.2008.128] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/16/2008] [Accepted: 06/10/2008] [Indexed: 11/09/2022] Open
Abstract
Microcephalin (MCPH1) has a crucial role in the DNA damage response by promoting the expression of Checkpoint kinase 1 (CHK1) and Breast cancer susceptibility gene 1 (BRCA1); however, the mechanism of this regulation remains unclear. Here, we show that MCPH1 regulates CHK1 and BRCA1 through the interaction with E2F1 on the promoters of both genes. MCPH1 also regulates other E2F target genes involved in DNA repair and apoptosis such as RAD51, DDB2, TOPBP1, p73 and caspases. MCPH1 interacts with E2F1 on the p73 promoter, and regulates p73 induction and E2F1-induced apoptosis as a result of DNA damage. MCPH1 forms oligomers through the second and third BRCT domains. An MCPH1 mutant containing only its oligomerization domain has a dominant-negative role by blocking MCPH1 binding to E2F1. It also inhibits p73 induction in DNA damage and E2F1-dependent apoptosis. Taken together, MCPH1 cooperates with E2F1 to regulate genes involved in DNA repair, checkpoint and apoptosis, and might participate in the maintenance of genomic integrity.
Collapse
|
82
|
Palacios G, Talos F, Nemajerova A, Moll UM, Petrenko O. E2F1 plays a direct role in Rb stabilization and p53-independent tumor suppression. Cell Cycle 2008; 7:1776-81. [PMID: 18583939 PMCID: PMC4012429 DOI: 10.4161/cc.7.12.6030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To better understand the role of E2F1 in tumor formation, we analyzed spontaneous tumorigenesis in p53(-/-)E2F1(+/+) and p53(-/-)E2F1(-/-) mice. We show that the combined loss of p53 and E2F1 leads to an increased incidence of sarcomas and carcinomas compared to the loss of p53 alone. E2F1-deficient tumors show wide chromosomal variation, indicative of genomic instability. Consistent with this, p53(-/-)E2F1(-/-) primary fibroblasts have a reduced capacity to maintain genomic stability when exposed to S-phase inhibitors or genotoxic drugs. A major mechanism of E2F1's contribution to genomic integrity lies in mediating stabilization and engagement of the Rb protein.
Collapse
Affiliation(s)
- Gustavo Palacios
- Department of Pathology; State University of New York at Stony Brook; Stony Brook, New York USA
| | - Flaminia Talos
- Department of Pathology; State University of New York at Stony Brook; Stony Brook, New York USA
| | - Alice Nemajerova
- Department of Pathology; State University of New York at Stony Brook; Stony Brook, New York USA
| | - Ute M. Moll
- Department of Pathology; State University of New York at Stony Brook; Stony Brook, New York USA
- Department of Molecular Oncology; University of Göttingen; Germany
| | - Oleksi Petrenko
- Department of Pathology; State University of New York at Stony Brook; Stony Brook, New York USA
| |
Collapse
|
83
|
Chen D, Yu Z, Zhu Z, Lopez CD. E2F1 regulates the base excision repair gene XRCC1 and promotes DNA repair. J Biol Chem 2008; 283:15381-9. [PMID: 18348985 PMCID: PMC2397471 DOI: 10.1074/jbc.m710296200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/12/2008] [Indexed: 11/06/2022] Open
Abstract
The E2F1 transcription factor activates S-phase-promoting genes, mediates apoptosis, and stimulates DNA repair through incompletely understood mechanisms. XRCC1 (x-ray repair cross-complementing group 1) protein is important for efficient single strand break/base excision repair. Although both damage and proliferative signals increase XRCC1 levels, the mechanisms regulating XRCC1 transcription remain unclear. To study these upstream mechanisms, the XRCC1 promoter was cloned into a luciferase reporter. Ectopic expression of wild-type E2F1, but not an inactive mutant E2F1(132E), activated the XRCC1 promoter-luciferase reporter, and deletion of predicted E2F1 binding sites in the promoter attenuated E2F1-induced activation. Endogenous XRCC1 expression increased in cells conditionally expressing wild-type, but not mutant E2F1, and methyl methanesulfonate-induced DNA damage stimulated XRCC1 expression in E2F1(+/+) but not E2F1(-/-) mouse embryo fibroblasts (MEFs). Additionally, E2F1(-/-) MEFs displayed attenuated DNA repair after methyl methanesulfonate-induced damage compared with E2F1(+/+) MEFs. Moreover, Chinese hamster ovary cells with mutant XRCC1 (EM9) were more sensitive to E2F1-induced apoptosis compared with Chinese hamster ovary cells with wild-type XRCC1 (AA8). These results provide new mechanistic insight into the role of the E2F pathway in maintaining genomic stability.
Collapse
Affiliation(s)
| | | | | | - Charles D. Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
84
|
A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 2008; 4:173. [PMID: 18319725 PMCID: PMC2290939 DOI: 10.1038/msb.2008.7] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 01/23/2008] [Indexed: 12/16/2022] Open
Abstract
We present, here, a detailed and curated map of molecular interactions taking place in the regulation of the cell cycle by the retinoblastoma protein (RB/RB1). Deregulations and/or mutations in this pathway are observed in most human cancers. The map was created using Systems Biology Graphical Notation language with the help of CellDesigner 3.5 software and converted into BioPAX 2.0 pathway description format. In the current state the map contains 78 proteins, 176 genes, 99 protein complexes, 208 distinct chemical species and 165 chemical reactions. Overall, the map recapitulates biological facts from approximately 350 publications annotated in the diagram. The network contains more details about RB/E2F interaction network than existing large-scale pathway databases. Structural analysis of the interaction network revealed a modular organization of the network, which was used to elaborate a more summarized, higher-level representation of RB/E2F network. The simplification of complex networks opens the road for creating realistic computational models of this regulatory pathway.
Collapse
|
85
|
Schmidt U, Wollmann Y, Franke C, Grosse F, Saluz HP, Hänel F. Characterization of the interaction between the human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and the cell division cycle 45 (Cdc45) protein. Biochem J 2008; 409:169-77. [PMID: 17887956 DOI: 10.1042/bj20070872] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TopBP1 (topoisomerase IIbeta-binding protein 1) is a BRCT [BRCA1 (breast-cancer susceptibility gene 1) C-terminal]-domain-rich protein that is structurally and functionally conserved throughout eukaryotic organisms. It is required for the initiation of DNA replication and for DNA repair and DNA damage signalling. Experiments with fission yeast and Xenopus revealed that the TopBP1 homologues of these organisms are required for chromatin loading of the replication protein Cdc45 (cell division cycle 45). To improve our understanding of the physiological functions of human TopBP1, we investigated the interplay between human TopBP1 and Cdc45 proteins in synchronized HeLa-S3 cells. Using GST (glutathione transferase) pull-down and co-immunoprecipitation techniques, we showed a direct interaction between TopBP1 and Cdc45 in vitro and in vivo. The use of deletion mutants in GST pull-down assays identified the first and second as well as the sixth BRCT domains of TopBP1 to be responsible for the functional interaction with Cdc45. Moreover, the interaction between Cdc45 and the first and second BRCT domains of TopBP1 inhibited their transcriptional activation both in yeast and mammalian one-hybrid systems. Both proteins interacted exclusively at the G(1)/S boundary of cell cycle; only weak interaction could be found at the G(2)/M boundary. The overexpression of the sixth BRCT domain led to diminished loading of Cdc45 on to chromatin. These results suggest that human TopBP1 is involved in the formation of the initiation complex of replication in human cells and is required for the recruitment of Cdc45 to origins of DNA replication.
Collapse
Affiliation(s)
- Uta Schmidt
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
86
|
Iaquinta PJ, Lees JA. Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 2007; 19:649-57. [PMID: 18032011 PMCID: PMC2268988 DOI: 10.1016/j.ceb.2007.10.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/06/2007] [Indexed: 11/28/2022]
Abstract
The E2F transcription factors are critical regulators of genes required for appropriate progression through the cell cycle, and in special circumstances they can also promote the expression of another class of genes that function in the apoptotic program. Since E2Fs can initiate both cell proliferation and cell death, it is not surprising that the pro-apoptotic capacity of these proteins is subject to complex regulation. Recent study has expanded our knowledge of the factors influencing E2F-induced apoptosis as well as downstream targets of E2F in this process.
Collapse
Affiliation(s)
- Phillip J Iaquinta
- Center for Cancer Research, Massachusetts Institute of Technology, E17-517B, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
87
|
DeRose EF, Clarkson MW, Gilmore SA, Galban CJ, Tripathy A, Havener JM, Mueller GA, Ramsden DA, London RE, Lee AL. Solution structure of polymerase mu's BRCT Domain reveals an element essential for its role in nonhomologous end joining. Biochemistry 2007; 46:12100-10. [PMID: 17915942 PMCID: PMC2653216 DOI: 10.1021/bi7007728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The solution structure and dynamics of the BRCT domain from human DNA polymerase mu, implicated in repair of chromosome breaks by nonhomologous end joining (NHEJ), has been determined using NMR methods. BRCT domains are typically involved in protein-protein interactions between factors required for the cellular response to DNA damage. The pol mu BRCT domain is atypical in that, unlike other reported BRCT structures, the pol mu BRCT is neither part of a tandem grouping, nor does it appear to form stable homodimers. Although the sequence of the pol mu BRCT domain has some unique characteristics, particularly the presence of >10% proline residues, it forms the characteristic alphabetaalpha sandwich, in which three alpha helices are arrayed around a central four-stranded beta-sheet. The structure of helix alpha1 is characterized by two solvent-exposed hydrophobic residues, F46 and L50, suggesting that this element may play a role in mediating interactions of pol mu with other proteins. Consistent with this argument, mutation of these residues, as well as the proximal, conserved residue R43, specifically blocked the ability of pol mu to efficiently work together with NHEJ factors Ku and XRCC4-ligase IV to join noncomplementary ends together in vitro. The structural, dynamic, and biochemical evidence reported here identifies a functional surface in the pol mu BRCT domain critical for promoting assembly and activity of the NHEJ machinery. Further, the similarity between the interaction regions of the BRCT domains of pol mu and TdT support the conclusion that they participate in NHEJ as alternate polymerases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrew L. Lee
- * Address correspondence to Dr. Andrew L. Lee, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, Beard Hall - CB#7360, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; tel: (919) 966-7821; fax: (919) 843-5150; e-mail:
| |
Collapse
|
88
|
Sjøttem E, Rekdal C, Svineng G, Johnsen SS, Klenow H, Uglehus RD, Johansen T. The ePHD protein SPBP interacts with TopBP1 and together they co-operate to stimulate Ets1-mediated transcription. Nucleic Acids Res 2007; 35:6648-62. [PMID: 17913746 PMCID: PMC2095823 DOI: 10.1093/nar/gkm739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SPBP (Stromelysin-1 PDGF responsive element binding protein) is a ubiquitously expressed 220 kDa nuclear protein shown to enhance or repress the transcriptional activity of various transcription factors. A yeast two-hybrid screen, with the extended plant homeodomain (ePHD) of SPBP as bait, identified TopBP1 (topoisomerase II β-binding protein 1) as a candidate interaction partner of SPBP. TopBP1 has eight BRCA1 carboxy-terminal (BRCT) domains and is involved in DNA replication, DNA damage responses and in the regulation of gene expression. The interaction between SPBP and TopBP1 was confirmed in vitro and in vivo, and was found to be mediated by the ePHD domain of SPBP and the BRCT6 domain of TopBP1. Both SPBP and TopBP1 enhanced the transcriptional activity of Ets1 on the c-myc P1P2- and matrix metalloproteinase-3 (MMP3) promoters. Together they displayed a more than additive effect. Both proteins were associated with these promoters. The involvement of TopBP1 was dependent on the serine 1159 phosphorylation site, known to be important for transcriptional activation. Depletion of endogenous SPBP by siRNA treatment reduced MMP3 secretion by 50% in phorbol ester-stimulated human fibroblasts. Taken together, our results show that TopBP1 and SPBP interact physically and functionally to co-operate as co-activators of Ets1.
Collapse
Affiliation(s)
- Eva Sjøttem
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Cecilie Rekdal
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Gunbjørg Svineng
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Sylvia Sagen Johnsen
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Helle Klenow
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Rebecca Dale Uglehus
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Terje Johansen
- Biochemistry Department and Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
- *To whom correspondence should be addressed. +47 776 44720+47 776 45350
| |
Collapse
|
89
|
Wang C, Rauscher FJ, Cress WD, Chen J. Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem 2007; 282:29902-9. [PMID: 17704056 DOI: 10.1074/jbc.m704757200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
KAP1 is a nuclear corepressor with conserved domains for RING finger, B boxes, leucine zipper alpha helical coiled-coil region, plant homeo domain finger, and bromo domain. The plant homeo domain finger and bromo domain of KAP1 cooperatively function as a transcription repression domain by recruiting the histone deacetylase complex NuRD and histone H3 lysine 9-specific methyltransferase SETDB1. Here we report that KAP1 binds the E2F1 transcription factor in a retinoblastoma protein (pRb)-independent fashion and inhibits E2F1 activity. KAP1 stimulates formation of E2F1-HDAC1 complex and inhibits E2F1 acetylation. Ectopic expression of KAP1 represses E2F1 transcription and apoptosis functions independent of pRb. Depletion of endogenous KAP1 in pRb-deficient Saos2 cells by RNA interference increases E2F1 acetylation level, stimulates E2F1 transcriptional activity, and sensitizes apoptosis response to DNA damage. Therefore, KAP1 contributes to the negative regulation of E2F1 and may serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of pRb.
Collapse
Affiliation(s)
- Chuangui Wang
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
90
|
Yu F, Megyesi J, Safirstein RL, Price PM. Involvement of the CDK2-E2F1 pathway in cisplatin cytotoxicity in vitro and in vivo. Am J Physiol Renal Physiol 2007; 293:F52-9. [PMID: 17459956 DOI: 10.1152/ajprenal.00119.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
E2F1 is a key regulator that links cell cycle progression and cell death. E2F1 activity is controlled by Cdk2-cyclin complexes via several mechanisms, such as phosphorylation of retinoblastoma protein (pRb) to release E2F1, direct phosphorylation, and stable physical interaction. We have demonstrated that cisplatin cytotoxicity depends on Cdk2 activity, and Cdk2 inhibition protects kidney cells from cisplatin-induced cell death in vitro and in vivo. Now we show that E2F1 is an important downstream effector of Cdk2 that accumulates in mouse kidneys and in cultured mouse proximal tubular cells (TKPTS) after cisplatin exposure by a Cdk2-dependent mechanism. Direct inhibition of E2F1 by transduction with adenoviruses expressing an E2F1-binding protein (TopBP1) protected TKPTS cells from cisplatin-induced apoptosis, whereas overexpression of E2F1 caused cell death. Moreover, E2F1 knockout mice were markedly protected against cisplatin nephrotoxicity by both functional and histological criteria. Collectively, cisplatin-induced cell death is dependent on Cdk2 activity, which is at least partly through the Cdk2-E2F1 pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Fang Yu
- Dept. of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | |
Collapse
|
91
|
Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006; 2:e196. [PMID: 17112319 PMCID: PMC1636698 DOI: 10.1371/journal.pgen.0020196] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022] Open
Abstract
Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation. The retinoblastoma protein (pRB) was the first human tumor suppressor to be described, and it works by limiting the activity of the E2F transcription factor. The pRB pathway is inactivated in most forms of cancer, and, accordingly, most tumor cells have deregulated E2F. Uncontrolled E2F drives cell proliferation, but it also sensitizes cells to die (apoptosis). E2F-induced apoptosis is not well understood, but it affects the development of cancer and, potentially, could be exploited for cancer treatment. To date, however, there have been very few studies of E2F-induced apoptosis in animal models. The authors describe a series of genetic tools that allow systematic studies of E2F-induced apoptosis in Drosophila. As validation, this approach identified some known regulators of E2F-dependent apoptosis and also identified Api5, a little-studied gene that had not previously been linked to E2F, as a potent suppressor of E2F-induced cell death. The effects of Api5 on E2F occur in several different tissues and are conserved from flies to humans. This last point is significant since Api5 is upregulated in cancer cells. The discovery of the E2F–Api5 interaction demonstrates that important modulators of E2F-induced apoptosis are waiting to be discovered and that they can be found using Drosophila.
Collapse
Affiliation(s)
- Erick J Morris
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A Michaud
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Jun-Yuan Ji
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nam-Sung Moon
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - James W Rocco
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
92
|
Usskilat C, Skerka C, Saluz HP, Hänel F. The transcription factor Egr-1 is a regulator of the human TopBP1 gene. Gene 2006; 380:144-50. [PMID: 16831524 DOI: 10.1016/j.gene.2006.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
The human topoisomerase IIbeta binding protein 1 (TopBP1) has been reported to be involved in DNA replication, in DNA damage checkpoints and in apoptosis. Detailed analysis of the TopBP1 promoter revealed that the early growth response protein-1 (Egr-1) induces this promoter. Binding of Egr-1 to the TopBP1 promoter was determined to region -50 to -18 using EMSA and ChIP technology. Furthermore, deletion of the E2F transcription factor binding sites or mutation of the Egr-1 transcription factor binding sites lead to reduced stimulation of the TopBP1 promoter by Egr-1. These data indicate a cooperative regulation of the TopBP1 promoter by Egr-1 and E2F.
Collapse
Affiliation(s)
- Christian Usskilat
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
93
|
Liu K, Paik JC, Wang B, Lin FT, Lin WC. Regulation of TopBP1 oligomerization by Akt/PKB for cell survival. EMBO J 2006; 25:4795-807. [PMID: 17006541 PMCID: PMC1618094 DOI: 10.1038/sj.emboj.7601355] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/28/2006] [Indexed: 12/18/2022] Open
Abstract
Regulation of E2F1-mediated apoptosis is essential for proper cellular growth. This control requires TopBP1, a BRCT (BRCA1 carboxyl-terminal) domain-containing protein, which interacts with E2F1 but not other E2Fs and represses its proapoptotic activity. We now show that the regulation of E2F1 by TopBP1 involves the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway, and is independent of pocket proteins. Akt phosphorylates TopBP1 in vitro and in vivo. Phosphorylation by Akt induces oligomerization of TopBP1 through its seventh and eighth BRCT domains. The Akt-dependent oligomerization is crucial for TopBP1 to interact with and repress E2F1. Akt phosphorylation is also required for interaction between TopBP1 and Miz1 or HPV16 E2, and repression of Miz1 transcriptional activity, suggesting a general role for TopBP1 oligomerization in the control of transcription factors. Together, this study defines a novel pathway involving PI3K-Akt-TopBP1 for specific control of E2F1 apoptosis, in parallel with cyclin-Cdk-Rb for general control of E2F activities.
Collapse
Affiliation(s)
- Kang Liu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason C Paik
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bing Wang
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Weei-Chin Lin
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Hematology and Oncology, Department of Medicine, 520A Wallace Tumor Institute, University of Alabama, 1530 3rd ave S, Birmingham, AL 35294-3300, USA. Tel.: +1 205 934 3979; Fax: +1 205 975 6911; E-mail:
| |
Collapse
|
94
|
Abstract
MOTIVATION Understanding the full meaning of the biology captured in molecular profiles, within the context of the entire biological system, cannot be achieved with a simple examination of the individual genes in the signature. To facilitate such an understanding, we have developed GATHER, a tool that integrates various forms of available data to elucidate biological context within molecular signatures produced from high-throughput post-genomic assays. RESULTS Analyzing the Rb/E2F tumor suppressor pathway, we show that GATHER identifies critical features of the pathway. We further show that GATHER identifies common biology in a series of otherwise unrelated gene expression signatures that each predict breast cancer outcome. We quantify the performance of GATHER and find that it successfully predicts 90% of the functions over a broad range of gene groups. We believe that GATHER provides an essential tool for extracting the full value from molecular signatures generated from genome-scale analyses. AVAILABILITY GATHER is available at http://gather.genome.duke.edu/
Collapse
Affiliation(s)
- Jeffrey T Chang
- Department of Molecular Genetics and Microbiology, Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
95
|
Hayashi R, Goto Y, Ikeda R, Yokoyama KK, Yoshida K. CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation. J Biol Chem 2006; 281:35633-48. [PMID: 16984923 DOI: 10.1074/jbc.m603800200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The TRIP-Br1/p34(SEI-1) family proteins participate in cell cycle progression by coactivating E2F1- or p53-dependent transcriptional activation. Here, we report the identification of human CDCA4 (also know as SEI-3/Hepp) as a novel target gene of transcription factor E2F and as a repressor of E2F-dependent transcriptional activation. Analysis of CDCA4 promoter constructs showed that an E2F-responsive sequence in the vicinity of the transcription initiation site is necessary for the E2F1-4-induced activation of CDCA4 gene transcription. Chromatin immunoprecipitation analysis demonstrated that E2F1 and E2F4 bound to an E2F-responsive sequence of the human CDCA4 gene. Like TRIP-Br1/p34(SEI-1) and TRIP-Br2 (SEI-2), the transactivation domain of CDCA4 was mapped within C-terminal acidic region 175-241. The transactivation function of the CDCA4 protein was inhibited by E2F1-4 and DP2, but not by E2F5-8. Inhibition of CDCA4 transactivation activity by E2F1 partially interfered with retinoblastoma protein overexpression. Conversely, CDCA4 suppressed E2F1-3-induced reporter activity. CDCA4 (but not acidic region-deleted CDCA4) suppressed E2F1-regulated gene promoter activity. These findings suggest that the CDCA4 protein functions as a suppressor at the E2F-responsive promoter. Small interfering RNA-mediated knockdown of CDCA4 expression in cancer cells resulted in up-regulation of cell growth rates and DNA synthesis. The CDCA4 protein was detected in several human cells and was induced as cells entered the G1/S phase of the cell cycle. Taken together, our results suggest that CDCA4 participates in the regulation of cell proliferation, mainly through the E2F/retinoblastoma protein pathway.
Collapse
Affiliation(s)
- Reiko Hayashi
- Laboratory of Molecular and Cellular Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | | | |
Collapse
|
96
|
Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 2006; 26:6056-64. [PMID: 16880517 PMCID: PMC1592810 DOI: 10.1128/mcb.00492-06] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TopBP1 and Claspin are adaptor proteins that facilitate phosphorylation of Chk1 by the ATR kinase in response to genotoxic stress. Despite their established requirement for Chk1 activation, the exact way in which TopBP1 and Claspin control Chk1 phosphorylation remains unclear. We show that TopBP1 tightly colocalizes with ATR in distinct nuclear subcompartments generated by DNA damage. Although depletion of TopBP1 by RNA interference (RNAi) strongly impaired phosphorylation of multiple ATR targets, including Chk1, Nbs1, Smc1, and H2AX, it did not interfere with ATR assembly at the sites of DNA damage. These findings challenge the current concept of ATR activation by recruitment to damaged DNA. In contrast, Claspin, like Chk1, remained distributed throughout the nucleus both before and after DNA damage. Consistently, the RNAi-mediated ablation of Claspin selectively abrogated ATR's ability to phosphorylate Chk1 but not other ATR targets. In addition, downregulation of Claspin mimicked Chk1 inactivation by inducing spontaneous DNA damage. Finally, we show that TopBP1 is required for the DNA damage-induced interaction between Claspin and Chk1. Together, these results suggest that while TopBP1 is a general regulator of ATR, Claspin operates downstream of TopBP1 to selectively regulate the Chk1-controlled branch of the genotoxic stress response.
Collapse
Affiliation(s)
- Shizhou Liu
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
The members of the E2F family of transcription factors are key regulators of genes involved in cell cycle progression, cell fate determination, DNA damage repair, and apoptosis. Many cell-based experiments suggest that E2F1 is a stronger inducer of apoptosis than the other E2Fs. Our previous work identified the E2F1 marked box and flanking region as critical for the specificity in E2F1 apoptosis induction. We have now used a yeast two-hybrid screen to identify proteins that bind the E2F1 marked box and flanking regions, with a potential role in E2F1 apoptosis induction. We identified Jab1 as an E2F1-specific binding protein and showed that Jab1 and E2F1 coexpression synergistically induce apoptosis, coincident with an induction of p53 protein accumulation. In contrast, Jab1 does not synergize with E2F1 to promote cell cycle entry. Cells depleted of Jab1 are deficient for both E2F1-induced apoptosis and induction of p53 accumulation. We suggest that Jab1 is an essential cofactor for the apoptotic function of E2F1.
Collapse
Affiliation(s)
- Timothy C Hallstrom
- Duke Institute for Genome Sciences and Policy Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
98
|
Mammalian DNA damage response pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:425-55. [PMID: 18727510 DOI: 10.1007/1-4020-3764-3_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
99
|
Kobayashi M, Figaroa F, Meeuwenoord N, Jansen LET, Siegal G. Characterization of the DNA binding and structural properties of the BRCT region of human replication factor C p140 subunit. J Biol Chem 2005; 281:4308-17. [PMID: 16361700 DOI: 10.1074/jbc.m511090200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BRCT domains, present in a large number of proteins that are involved in cell cycle regulation and/or DNA replication or repair, are primarily thought to be involved in protein-protein interactions. The large (p140) subunit of replication factor C contains a sequence of approximately 100 amino acids in the N-terminal region that binds DNA and is distantly related to known BRCT domains. Here we show that residues 375-480, which include 28 amino acids N-terminal to the BRCT domain, are required for 5'-phosphorylated double-stranded DNA binding. NMR chemical shift analysis indicated that the N-terminal extension includes an alpha-helix and confirmed the presence of a conserved BRCT domain. Sequence alignment of the BRCT region in the p140 subunit of replication factor C from various eukaryotes has identified very few absolutely conserved amino acid residues within the core BRCT domain, whereas none were found in sequences immediately N-terminal to the BRCT domain. However, mapping of the limited number of conserved, surface-exposed residues that were found onto a homology model of the BRCT domain, revealed a clustering on one side of the molecular surface. The cluster, as well as a number of amino acids in the N-terminal alpha-helix, were mutagenized to determine the importance for DNA binding. To ensure minimal structural changes because of the introduced mutations, proteins were checked using one-dimensional (1)H NMR and CD spectroscopy. Mutation of weakly conserved residues on one face of the N-terminal alpha-helix and of residues within the cluster disrupted DNA binding, suggesting a likely binding interface on the protein.
Collapse
|
100
|
Garcia V, Furuya K, Carr AM. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst) 2005; 4:1227-39. [PMID: 15897014 DOI: 10.1016/j.dnarep.2005.04.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 01/18/2023]
Abstract
The multiple BRCT-domain protein TopBP1 and its yeast homologs have been implicated in many aspects of DNA metabolism, but their molecular functions remain elusive. In this review, we first summarise how the yeast homologs were identified and characterised. We next review the data available from metazoan systems and finally draw parallels with the yeast models. TopBP1 plays important functions in the initiation of DNA replication in all organisms and participates in checkpoint responses both within S phase and following DNA damage. In metazoan systems there is accumulating evidence for additional roles in transcriptional regulation that have not been reported in yeast. Overall, TopBP1 appears to play a key role in integrating different aspects of DNA metabolism, but the mechanistic basis for this remains to be fully explained.
Collapse
Affiliation(s)
- Valerie Garcia
- Genome Damage and Stability Center, University of Sussex, Brighton, Sussex BN1 9RQ, UK
| | | | | |
Collapse
|