51
|
Müller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H, Oren M, Koch A, Tannapfel A, Stremmel W, Melino G, Krammer PH. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 2005; 12:1564-77. [PMID: 16195739 DOI: 10.1038/sj.cdd.4401774] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the mechanisms by which TAp73 beta and dominant-negative p73 (Delta Np73) regulate apoptosis. TAp73 beta transactivated the CD95 gene via the p53-binding site in the first intron. In addition, TAp73 beta induced expression of proapoptotic Bcl-2 family members and led to apoptosis via the mitochondrial pathway. Endogenous TAp73 was upregulated in response to DNA damage by chemotherapeutic drugs. On the contrary, DeltaNp73 conferred resistance to chemotherapy. Inhibition of CD95 gene transactivation was one mechanism by which DeltaNp73 functionally inactivated the tumor suppressor action of p53 and TAp73 beta. Concomitantly, DeltaNp73 inhibited apoptosis emanating from mitochondria. Thus, DeltaNp73 expression in tumors selects against both the death receptor and the mitochondrial apoptosis activity of TAp73 beta. The importance of these data is evidenced by our finding that upregulation of DeltaNp73 in hepatocellular carcinoma patients correlates with reduced survival. Our data indicate that Delta Np73 is an important gene in hepatocarcinogenesis and a relevant prognostic factor.
Collapse
Affiliation(s)
- M Müller
- Department of Internal Medicine IV, Hepatology and Gastroenterology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Tang V, Dhirapong A, Yabes AP, Weiss RH. TNF-α-mediated apoptosis in vascular smooth muscle cells requires p73. Am J Physiol Cell Physiol 2005; 289:C199-206. [PMID: 15716325 DOI: 10.1152/ajpcell.00477.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis, now considered an inflammatory process, is the leading cause of death in the Western world and is manifested by a variety of diseases in multiple organ systems. Because of its prevalence and associated morbidity, novel therapies directed at arresting this progressive process are urgently needed. The inflammatory mediator TNF-α, which is known to contribute to apoptosis in vascular smooth muscle cells, has been shown to be intimately involved in the atherosclerotic process, being present at elevated levels in human atheroma as well as possibly being responsible for plaque rupture, a clinically devastating event. In light of our earlier finding that p73 is a proapoptotic protein in vascular smooth muscle cells, which are involved in plaque progression as well as rupture, we asked whether TNF-α mediates apoptosis in these cells through p73. We now show that p73 is present in spindle-shaped cells within human atheroma, and p73β, an isoform that is pivotal in both apoptosis and growth suppression, is induced in vascular smooth muscle cells in vitro by serum but not by PDGF-BB. In addition, TNF-α, when added to these cells in the presence of serum-containing media, increases p73β expression and causes apoptosis in both rat and human vascular smooth muscle cells. Inhibition of p73 activity with a dominant inhibitory NH2-terminally deleted p73 plasmid results in markedly decreased TNF-α-induced apoptosis. Thus p73β is likely a mediator of the apoptotic effect of TNF-α in the vasculature, such that future targeting of the p73 isoforms may ultimately prove useful in novel atherosclerosis therapies.
Collapse
Affiliation(s)
- Vincent Tang
- Division of Nephrology, GBSF, Rm. 6312, Department of Internal Medicine, University of California, One Shields Ave., Davis, California 95616, USA
| | | | | | | |
Collapse
|
53
|
Wang JY. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res 2005; 15:43-8. [PMID: 15686626 DOI: 10.1038/sj.cr.7290263] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genotoxic agents or inflammatory cytokines activate cellular stress responses and trigger programmed cell death. We have identified a signal transduction module, including three nuclear proteins that participate in the regulation of cell death induced by chemotherapeutic agents and tumor necrosis factor (TNF). In this nuclear signaling module, retinoblastoma protein (Rb) functions as an inhibitor of apoptotic signal transduction. Inactivation of Rb by phosphorylation or caspase-dependent cleavage/degradation is required for cell death to occur. Rb inhibits the Abl tyrosine kinase. Thus, Rb inactivation is a pre-requisite for Abl activation by DNA damage or TNF. Activation of nuclear Abl and its downstream effector p73 induces mitochondriadependent cell death. The involvement of these nuclear signal transducers in TNF induced apoptosis, which does not require new gene expression, indicates that nuclear events other than transcription can contribute to extrinsic apoptotic signal transduction.
Collapse
Affiliation(s)
- Jean Yj Wang
- Division of Biological Sciences and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
54
|
Lieman JH, Worley LA, Harbour JW. Loss of Rb-E2F Repression Results in Caspase-8-mediated Apoptosis through Inactivation of Focal Adhesion Kinase. J Biol Chem 2005; 280:10484-90. [PMID: 15640164 DOI: 10.1074/jbc.m409371200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Molecular hardwiring of the cell cycle to the apoptotic machinery is a critical tumor suppressor mechanism for eliminating hyperproliferative cells. Deregulation of the Rb-E2F repressor complex by genetic deletion or functional inhibition of Rb triggers apoptosis through both the intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) death pathways. Induction of the intrinsic pathway has been studied extensively and involves release of free E2F and direct transcriptional activation of E2F-responsive apoptotic genes such as ARF, APAF1, and CASP9. In contrast, the mechanisms leading to activation of the extrinsic pathway are less well understood. There is growing evidence that Rb-E2F perturbation induces the extrinsic pathway, at least in part, through derepression (as opposed to transactivation) of apoptotic genes. Here, we explore this possibility using cells in which Rb-E2F complexes are displaced from promoters without stimulating E2F transactivation. This derepression of Rb-E2F-regulated genes leads to apoptosis through inactivation of focal adhesion kinase and activation of caspase-8. These findings reveal a new mechanistic link between Rb-E2F and the extrinsic (caspase 8-mediated) apoptotic pathway.
Collapse
Affiliation(s)
- Jonathan H Lieman
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
55
|
Woodring PJ, Hunter T, Wang JYJ. Mitotic phosphorylation rescues Abl from F-actin-mediated inhibition. J Biol Chem 2005; 280:10318-25. [PMID: 15632178 DOI: 10.1074/jbc.m410658200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously shown that F-actin exerts a negative effect on Abl tyrosine kinase activity. This inhibition results from a direct association of F-actin with the C terminus of Abl and accounts, in part, for the loss of Abl activity in detached fibroblasts. We report here that Abl from mitotic cells or cells treated with the protein phosphatase inhibitor okadaic acid remains active when detached from the extracellular matrix. Aspartic acid substitution of Thr(566), which is phosphorylated in mitotic or okadaic acid-treated cells, is sufficient to abolish F-actin-mediated inhibition and to maintain Abl activity despite cell detachment. A recent crystal structure of the Abl N-terminal region has revealed autoinhibitory interactions among the Src homology 3 (SH3), SH2, and kinase domains. We found that deletion of the SH2 domain also abolished the negative effect of F-actin on kinase activity. Immediately following the kinase domain in Abl is a proline-rich linker (PRL) that binds to several SH3 adaptor proteins. Interestingly, binding of the Crk N-terminal SH3 domain to the PRL also disrupted F-actin-mediated inhibition of Abl kinase. These results suggest that F-actin may reinforce the autoinhibitory interactions to regulate Abl kinase and that inhibition can be relieved through phosphorylation and/or protein interactions with the Abl PRL region.
Collapse
Affiliation(s)
- Pamela J Woodring
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037-1099, USA
| | | | | |
Collapse
|
56
|
Zielinski B, Gratias S, Toedt G, Mendrzyk F, Stange DE, Radlwimmer B, Lohmann DR, Lichter P. Detection of chromosomal imbalances in retinoblastoma by matrix-based comparative genomic hybridization. Genes Chromosomes Cancer 2005; 43:294-301. [PMID: 15834944 DOI: 10.1002/gcc.20186] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The genetic hallmark of retinoblastoma is mutation or deletion of the RB1 gene, whereas other genetic alterations that are also required are largely unknown. To screen for genomic imbalances on a genomewide level, we studied a series of 17 primary retinoblastomas by matrix-based comparative genomic hybridization (matrix-CGH). The matrix-CGH chip contained 6,000 immobilized genomic DNA fragments covering the human genome, with an average resolution of about 500 kb. The most frequent imbalances detected were gains on chromosome arms 1q (12 of 17), 6p (10 of 17), 2p (5 of 17), and 19q (4 of 17) and loss on 16q (7 of 17). Candidate regions could be narrowed to small intervals by the identified minimally overlapping regions on 1q22, 1q32.1q32.2, 2p24.1, and 6p21.33-p21.31. Furthermore, two as-yet-unknown high-level amplifications were detected, each in a single patient, on chromosome bands 1p34.2 and 1p33. Thus, this study identified new chromosomal regions and therefore potential candidate genes that may play a role in retinoblastoma.
Collapse
Affiliation(s)
- Boris Zielinski
- German Cancer Research Center, Division of Molecular Genetics, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Li CY, Zhu J, Wang JYJ. Ectopic Expression of p73α, but Not p73β, Suppresses Myogenic Differentiation. J Biol Chem 2005; 280:2159-64. [PMID: 15545283 DOI: 10.1074/jbc.m411194200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRP73 gene, a member of the p53 family, encodes several variants through differential splicing and use of alternative promoters. At the N terminus, two different promoters generate the full-length and the DeltaN isoforms, with or without the transactivating domain. At the C terminus, seven isoforms generated through alternative splicing have been cloned. Previous studies have demonstrated that DeltaN-p73 interferes with p73-induced apoptosis. However, there has been no evidence for functional diversity of the C-terminal p73 variants. In this study, we found that p73alpha and p73beta exerted differential effect on the differentiation of C2C12 myoblasts. Although p73beta lacked any detectable effect on differentiation, p73alpha caused a substantial delay in the expression of muscle-specific genes. In co-transfection experiments p73alpha, but not p73beta, attenuated the transcriptional activity of MyoD. Microarray-based gene profiling confirmed the protraction of MyoD-dependent gene expression in C2C12 cells stably expressing p73alpha. Notwithstanding the differential effect on differentiation, p73alpha and p73beta showed similar activity in sensitizing C2C12 myoblasts to cisplatin-induced cell death. These results demonstrated a functional diversity between the two C-terminal variants of p73 and suggested that p73alpha can regulate cellular differentiation in addition to its role in stimulating cell death.
Collapse
Affiliation(s)
- Chun-Ying Li
- Division of Biological Sciences and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | |
Collapse
|
58
|
Li G, Wang LE, Chamberlain RM, Amos CI, Spitz MR, Wei Q. p73 G4C14-to-A4T14 polymorphism and risk of lung cancer. Cancer Res 2004; 64:6863-6. [PMID: 15466174 DOI: 10.1158/0008-5472.can-04-1804] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic variants in genes controlling cellular processes such as cell cycle, DNA repair, and apoptosis may modulate lung cancer risk. p73 has some p53-like activity and plays an important role in modulating these processes. The noncoding region of exon 2 of the p73 gene has two polymorphisms that are in complete linkage disequilibrium with one another, which may alter translation efficiency of the p73 protein. To test the hypothesis that this p73 polymorphism plays a role in the etiology of lung cancer, we conducted a hospital-based case-control study of 1054 patients newly diagnosed with lung cancer and 1139 cancer-free controls and evaluated the association between the p73 variant AT allele and risk of lung cancer. Cancer-free controls were frequency matched to the cases by age (+/-5 years), sex, and smoking status, and all subjects were non-Hispanic whites. The variant AT allele and genotypes were more common among the cases than among the controls (P = 0.0007 and P < 0.001, respectively). Compared with the GC/GC genotype, the variant GC/AT and AT/AT genotypes were associated with a statistically significantly increased risk for lung cancer [adjusted odds ratio (OR) = 1.32, 95% confidence interval (CI), 1.10-1.59 and OR = 1.54, 95% CI, 1.05-2.26, respectively] in an allele dose-effect relationship (trend test: P < 0.001). The risk associated with the AT allele (GC/AT+AT/AT) was more pronounced in younger (</=50 years) individuals (OR = 1.53, 95% CI, 1.00-2.37), men (OR = 1.61, 95% CI, 1.26-2.06), light smokers (OR = 1.58, 95% CI, 1.17-2.14), and squamous cell lung carcinoma (OR = 1.79, 95% CI, 1.32-2.42). These results suggest that this p73 polymorphism may be a marker for susceptibility to lung cancer.
Collapse
Affiliation(s)
- Guojun Li
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
59
|
Wang JYJ, Cho SK. Coordination of Repair, Checkpoint, and Cell Death Responses to DNA Damage. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:101-35. [PMID: 15588841 DOI: 10.1016/s0065-3233(04)69004-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jean Y J Wang
- Division of Biological Sciences and the Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093 USA
| | | |
Collapse
|
60
|
Affiliation(s)
- Jiangyu Zhu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|