51
|
Kuo WL, Vilander LR, Huang M, Peterson DO. A transcriptionally defective long terminal repeat within an endogenous copy of mouse mammary tumor virus proviral DNA. J Virol 1988; 62:2394-402. [PMID: 2836622 PMCID: PMC253397 DOI: 10.1128/jvi.62.7.2394-2402.1988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mouse mammary tumor virus proviral DNA is endogenous to most inbred strains of mice but in many strains is not transcriptionally active. This inactivity may be due to defects in the proviruses themselves or to position effects mediated by DNA sequences flanking the proviral units. The transcriptional competence of long terminal repeats (LTRs) derived from endogenous proviral DNA at genetic loci Mtv-8, Mtv-9, and Mtv-17 of the C57BL/6 mouse strain was examined with a transient transfection assay in which gene expression was monitored by expression of chloramphenicol acetyltransferase. LTRs from Mtv-8 and Mtv-9 were able to direct glucocorticoid-induced chloramphenicol acetyltransferase expression in this assay, while the LTR from Mtv-17 was only about 5% as effective. Analysis of chimeric LTRs indicated that the glucocorticoid-inducible transcriptional enhancer element within the Mtv-17 LTR is active when linked to a functional promoter from Mtv-8, whereas the promoter from Mtv-17 is defective in directing hormone-induced gene expression, even when linked to the Mtv-8 glucocorticoid-responsive enhancer. The DNA sequence of transcriptional control regions of the LTRs of all three endogenous proviral units was determined; this analysis revealed that the source of the defect in Mtv-17 is a single G-to-A transition at position-75 with respect to the site of transcription initiation that resides within the previously defined binding site for the transcription factor nuclear factor 1. Competition experiments with a gel electrophoresis mobility shift assay indicated that the affinity of nuclear factor 1 for DNA derived from Mtv-17 is significantly less than for comparable sequences derived from Mtv-8.
Collapse
Affiliation(s)
- W L Kuo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station 77843-2128
| | | | | | | |
Collapse
|
52
|
Meisterernst M, Gander I, Rogge L, Winnacker EL. A quantitative analysis of nuclear factor I/DNA interactions. Nucleic Acids Res 1988; 16:4419-35. [PMID: 3380685 PMCID: PMC336639 DOI: 10.1093/nar/16.10.4419] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor I (NFI) was purified to homogeneity from porcine liver by DNA-affinity chromatography and displays a single band with a molecular weight of 36 kDa in SDS-polyacrylamide gels. The purified protein was used to determine absolute equilibrium binding constants by gel retardation techniques for a variety of DNA fragments with genuine or mutated NFI binding sites and a number of DNA fragments derived from various eukaryotic promoters carrying the CCAAT-box as a half-site for NFI binding. We present a model which allows prediction of the functional significance of mutated NFI binding-sites from sequence data. The data suggest that the single molecular species of NFI from porcine liver may not be able to recognize and activate the -CCAAT- promoter element in vivo without additional interactions, e.g. with other proteins.
Collapse
|
53
|
Kulesh DA, Oshima RG. Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells. Mol Cell Biol 1988; 8:1540-50. [PMID: 2454392 PMCID: PMC363314 DOI: 10.1128/mcb.8.4.1540-1550.1988] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human keratin 18 (K18) and the homologous mouse protein, Endo B, are intermediate filament subunits of the type I keratin class. Both are expressed in many simple epithelial cell types including trophoblasts, the first differentiated cell type to appear during mouse embryogenesis. The K18 gene was identified and cloned from among the 15 to 20 similar sequences identified within the human genome. The identity of the cloned gene was confirmed by comparing the sequence of the first two exons to the K18 cDNA sequence and transfecting the gene into various murine cell lines and verifying the encoded protein as K18 by immunoprecipitation and partial peptide mapping. The transfected K18 gene was expressed in mouse HR9 parietal endodermal cells and mouse fibroblasts even though the fibroblasts fail to express endogenous Endo B. S1 nuclease protection analysis indicated that mRNA synthesized from the transfected K18 gene is initiated at the same position as authentic K18 mRNA found in both BeWo trophoblastoma cells and HeLa cells. Pulse-chase experiments indicated that the human K18 protein is stable in murine parietal endodermal cells (HR9) which express EndoA, a complementary mouse type II keratin. Surprisingly, however, K18 was degraded when synthesized in cells which lack a type II keratin. This turnover of K18 may be an important mechanism by which epithelial cells maintain equal molar amounts of both type I and II keratins. In addition, the levels of the endogenous type I Endo B in parietal endodermal cells were compensatingly down regulated in the presence of the K18 protein, while the levels of the endogenous type II Endo A were not affected in any of the transfected cell lines.
Collapse
Affiliation(s)
- D A Kulesh
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| | | |
Collapse
|
54
|
Gronostajski RM, Knox J, Berry D, Miyamoto NG. Stimulation of transcription in vitro by binding sites for nuclear factor I. Nucleic Acids Res 1988; 16:2087-98. [PMID: 3357767 PMCID: PMC338201 DOI: 10.1093/nar/16.5.2087] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor I (NFI) is a site-specific DNA binding protein required for the replication of adenovirus DNA in vitro and in vivo. We have examined the effect of natural and synthetic binding sites for NFI (FIB sites) on RNA synthesis in HeLa whole cell extracts. The natural binding site used is the 26bp FIB-2 site previously isolated from the human genome. When present upstream of the TATA box of the adenovirus major late promoter, the FIB-2 site stimulates RNA synthesis 3 to 5-fold. This stimulation occurs with either orientation of the FIB-2 site. A point mutation in FIB-2 that decreases NFI binding at least 100-fold reduces, but does not completely abolish, the stimulation of transcription. A number of synthetic binding sites for NFI were tested for the ability to increase RNA synthesis. The strongest binding sites stimulated transcription the most, while the weakest sites had the least effect. These studies strongly suggest a role for NFI and cellular FIB sites in the control of RNA synthesis.
Collapse
|
55
|
Gronostajski RM. Site-specific DNA binding of nuclear factor I: effect of the spacer region. Nucleic Acids Res 1987; 15:5545-59. [PMID: 3039460 PMCID: PMC306006 DOI: 10.1093/nar/15.14.5545] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nuclear factor I (NFI) is a site-specific DNA binding protein required for the replication of adenovirus type 2 DNA in vitro and in vivo. To study sequence requirements for the interaction of NFI with DNA, we have measured the binding of the protein to a variety of synthetic sites. Binding sites for NFI (FIB sites) were previously shown to contain a consensus sequence composed of 2 motifs, TGG (Motif 1), and GCCAA (Motif 2), separated by a 6 or 7bp spacer region. To assess conserved sequences in the spacer region and flanking sequences which affect NFI binding, we have isolated clones from oligonucleotide libraries that contain the two motifs flanked by 3 degenerate nucleotides and separated by degenerate spacer regions of 6 or 7 nucleotides. With a 6bp spacer region, a strong bias exists for a C or A residue in the first position of the spacer. Sites with a 7bp spacer region contain a G and C or A residue at the first and second positions, respectively, of the spacer, but also possess conserved residues at other positions of the site.
Collapse
|
56
|
Jeang KT, Rawlins DR, Rosenfeld PJ, Shero JH, Kelly TJ, Hayward GS. Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalovirus. J Virol 1987; 61:1559-70. [PMID: 3033283 PMCID: PMC254136 DOI: 10.1128/jvi.61.5.1559-1570.1987] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We show that the large DNA genomes of human and simian cytomegaloviruses (HCMV and SCMV, respectively) each contain multiple binding sites for purified cellular nuclear factor 1 (NF1) protein. Examination of the major immediate-early (IE) gene region in the HindIII H fragment of SCMV (Colburn) by filter binding assays showed that it competed 45-fold better than the single adenovirus type 2 binding site for NF1 protein and that it contained at least two distinct binding loci. Direct DNase I footprinting analyses of the 5' upstream locus detected at least 20 adjacent NF1-binding sites located between positions -600 and -1300 relative to the IE94 mRNA start site. DNA sequence analysis of the region revealed a conserved consensus NF1 recognition element (T)TGG(C/A)N5GCCAA embedded within each of 23 highly diverged 30-base-pair tandem repeats, together with a second downstream cluster of five consensus NF1-binding sites between positions +470 and +570 in the large first intron. Two separate NF1-binding loci were also found in the equivalent IE68 gene of HCMV(Towne) DNA, but in this case the DNA sequence and competition filter binding experiments indicated a maximum of only four to five consensus binding sites encompassing the promoter-enhancer region. In transient expression assays, neither the isolated upstream IE94 tandem repeats nor a synthetic single-copy consensus NF1-binding site acted as transcriptional cis activators or enhancers when placed adjacent to the simian virus 40 minimal early region promoter. We conclude that the large and complex 5' upstream promoter-regulatory region for the SCMV IE94 gene comprises two distinct domains. The previously described four sets of 13- to 18-base-pair interspersed repeat elements between -55 and -580 provide most of the high basal transcriptional strength, whereas the arrangement of further upstream tandemly repeated NF1-binding sites may contribute significantly to the expanded biological host range for expression of SCMV IE94 compared with HCMV IE68.
Collapse
|
57
|
Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 1987. [PMID: 3821731 DOI: 10.1128/mcb.7.2.875] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.
Collapse
|
58
|
Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 1987. [PMID: 3821730 DOI: 10.1128/mcb.7.2.864] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.
Collapse
|
59
|
Wides RJ, Challberg MD, Rawlins DR, Kelly TJ. Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 1987; 7:864-74. [PMID: 3821730 PMCID: PMC365145 DOI: 10.1128/mcb.7.2.864-874.1987] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.
Collapse
|
60
|
Rosenfeld PJ, O'Neill EA, Wides RJ, Kelly TJ. Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 1987; 7:875-86. [PMID: 3821731 PMCID: PMC365146 DOI: 10.1128/mcb.7.2.875-886.1987] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.
Collapse
|
61
|
Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay. Mol Cell Biol 1987. [PMID: 3785168 DOI: 10.1128/mcb.6.5.1363] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.
Collapse
|
62
|
Piette J, Yaniv M. Molecular analysis of the interaction between an enhancer binding factor and its DNA target. Nucleic Acids Res 1986; 14:9595-611. [PMID: 3027657 PMCID: PMC341323 DOI: 10.1093/nar/14.24.9595] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The fine contacts of a mouse nuclear factor, called PEB1, with the B enhancer of polyoma virus were analyzed. It protects against DNaseI attack a region of about 50 base pairs that can be divided in two domains. The first contains a GC-rich palindrome and the homology to the SV40 enhancer. The second is homologous to a sequence in the immunoglobulin (Ig) heavy chain gene enhancer. Methylation interference and protection experiments reveal strong specific contacts only with a purine rich track on the late coding strand of the early proximal part of the palindrome. Deletion analysis show that the minimal sequences necessary for binding include only the first domain. The Ig homology contributes only weakly to the binding. The minimal core is similar to the core of the B enhancer defined in vivo. The interactions we observe here are reminiscent of those of TFIIIA positive transcription factor and the 5SRNA gene of Xenopus.
Collapse
|
63
|
Gronostajski RM. Analysis of nuclear factor I binding to DNA using degenerate oligonucleotides. Nucleic Acids Res 1986; 14:9117-32. [PMID: 3786147 PMCID: PMC311933 DOI: 10.1093/nar/14.22.9117] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear factor I (NFI) binds tightly to DNA containing the consensus sequence TGG(N)6-7GCCAA. To study the role of the spacing between the TGG and GCCAA motifs, oligonucleotides homologous to the NFI binding site FIB-2 were synthesized and used for binding assays in vitro. The wild-type site (FIB-2.6) has a 6bp spacer region and binds tightly to NFI. When the size of this spacer was altered by +/- 1 or 2bp the binding to NFI was abolished. To further assess the role of the spacer and bases flanking the motifs, two oligonucleotide libraries were synthesized. Each member of these libraries had intact TGG and GCCAA motifs, but the sequence of the spacer and the 3bp next to each motif was degenerate. The library with a 6bp spacer bound to NFI to 40-50% the level of FIB-2.6. The library with a 7bp spacer bound to NFI to only 4% the level of FIB-2.6 and some of this binding was weaker than that of FIB-2.6 DNA. This novel use of degenerate DNA libraries has shown that: 1) the structural requirements for FIB sites with a 7bp spacer are more stringent than for sites with a 6bp spacer and 2) a limited number of DNA structural features can prevent the binding of NFI to sites with intact motifs and a 6bp spacer region.
Collapse
|
64
|
Plumb MA, Lobanenkov VV, Nicolas RH, Wright CA, Zavou S, Goodwin GH. Characterisation of chicken erythroid nuclear proteins which bind to the nuclease hypersensitive regions upstream of the beta A- and beta H-globin genes. Nucleic Acids Res 1986; 14:7675-93. [PMID: 3774543 PMCID: PMC311788 DOI: 10.1093/nar/14.19.7675] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chicken erythrocyte sequence-specific nuclear DNA-binding proteins, which bind to the 5'-flanking DNAseI hypersensitive sites of the erythrocyte chromosomal beta A- and beta H-globin genes, have been fractionated by HPLC gel filtration. Three beta A-globin gene DNA binding activities (to sites A, B and B' (10-12)) were separated. The erythroid precursor cell line HD3 has beta A-globin gene sites B and B' binding activities, but binding to site A is detected only after the HD3 cells are induced to differentiate. The fractionated protein binds to a redefined site B', which contains at its center the globin CACCC consensus sequence. The chromosomal beta H-globin gene has two 5'-flanking DNAseI hypersensitive sites which bracket two sequences (H and H') bound by erythrocyte and HD3 nuclear protein in vitro. The beta H- and beta A-globin gene binding sites (H and B) contain variants of the sequences bound by Nuclear Factor 1 and the TGGCA-binding protein, and their protein binding activity(ies) co-purify after HPLC gel filtration.
Collapse
|
65
|
Shaul Y, Ben-Levy R, De-Medina T. High affinity binding site for nuclear factor I next to the hepatitis B virus S gene promoter. EMBO J 1986; 5:1967-71. [PMID: 3463507 PMCID: PMC1167065 DOI: 10.1002/j.1460-2075.1986.tb04451.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The hepatitis B virus (HBV) surface antigen (HBsAG) is encoded by the S gene under the regulation of a promoter in the pre-S1 region. The S gene promoter does not contain a 'TATA' box-like sequence, but there is a sequence resembling, in part, the late promoter of Simian virus 40 (SV40). In an attempt to study the regulation of the S gene promoter we looked for cellular proteins which bind to this region. We report here that a nuclear protein is tightly bound to the HBV genome at a position approximately 190 bases upstream from the S gene promoter. Evidence is provided to show that (a) this nuclear protein is the nuclear factor I (NF-I) that was previously found to be bound to the inverted terminal repeat of the adenovirus (Ad) DNA and to enhance Ad DNA replication in vitro and (b) this NF-I binding site is required for optimal activity of the S gene promoter.
Collapse
|
66
|
Diffley JF, Stillman B. Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay. Mol Cell Biol 1986; 6:1363-73. [PMID: 3785168 PMCID: PMC367659 DOI: 10.1128/mcb.6.5.1363-1373.1986] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.
Collapse
|
67
|
Schneider R, Gander I, Müller U, Mertz R, Winnacker EL. A sensitive and rapid gel retention assay for nuclear factor I and other DNA-binding proteins in crude nuclear extracts. Nucleic Acids Res 1986; 14:1303-17. [PMID: 3513122 PMCID: PMC339505 DOI: 10.1093/nar/14.3.1303] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The paper describes a rapid and sensitive assay for DNA binding proteins which interact with specific and defined binding sites. It exploits the observation that complexes of proteins and small synthetic DNA fragments (40 bp) containing the protein/DNA binding site can enter native polyacrylamide gels and remain stably associated during electrophoresis under non-denaturing conditions. The assay was applied to nuclear factor I, to its identification and purification from porcine liver, to an analysis of its binding site on adenovirus type 5 DNA and to an exploration of other potential binding sites for DNA binding proteins within the inverted terminal repetition of adenovirus DNA. The extreme sensitivity of the assay which surpasses that of conventional footprint assays by at least two orders of magnitude permitted the identification of nuclear factor I-like activities in Saccharomyces cerevisiae.
Collapse
|