51
|
Ribeiro-Oliveira R, Martins ZE, Sousa JB, Ferreira IM, Diniz C. The health-promoting potential of peptides from brewing by-products: An up-to-date review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
52
|
The Potential of Traditional Norwegian KVEIK Yeast for Brewing Novel Beer on the Example of Foreign Extra Stout. Biomolecules 2021; 11:biom11121778. [PMID: 34944422 PMCID: PMC8698465 DOI: 10.3390/biom11121778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
The development of craft brewing has spurred huge interest in unusual and traditional technologies and ingredients allowing the production of beers that would fulfil consumers' growing demands. In this study, we evaluated the brewing performance of traditional Norwegian KVEIK yeast during the production of Foreign Extra Stout beer. The content of alcohol of the KVEIK-fermented beer was 5.11-5.58% v/v, the extract content was 5.05-6.66% w/w, and the pH value was 4.53-4.83. The KVEIK yeast was able to completely consume maltose and maltotriose. The mean concentration of glycerol in KVEIK-fermented beers was higher than in the control sample (1.51 g/L vs. 1.12 g/L, respectively). The use of KVEIK-type yeast can offer a viable method for increasing the concentration of phenolic compounds in beer and for boosting its antioxidative potential. The beers produced with KVEIK-type yeast had a total phenol content of 446.9-598.7 mg GAE/L, exhibited antioxidative potential of 0.63-1.08 mM TE/L in the DPPH• assay and 3.85-5.16 mM TE/L in the ABTS•+ assay, and showed a ferric ion reducing capacity (FRAP) of 3.54-4.14 mM TE/L. The KVEIK-fermented bears contained various levels of volatile compounds (lower or higher depending on the yeast strain) and especially of higher alcohols, such as 3-metylobutanol, 2-metylobutanol, and 1-propanol, or ethyl esters, such as ethyl acetate or decanoate, compared to the control beers. In addition, they featured a richer fruity aroma (apricot, dried fruit, apples) than the control beers fermented with a commercial US-05 strain.
Collapse
|
53
|
Almeida C, Neves MC, Freire MG. Towards the Use of Adsorption Methods for the Removal of Purines from Beer. Molecules 2021; 26:molecules26216460. [PMID: 34770869 PMCID: PMC8587081 DOI: 10.3390/molecules26216460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Beer corresponds to a fermented alcoholic beverage composed of several components, including purine compounds. These molecules, when ingested by humans, can be catabolized into uric acid, contributing to uric acid’s level increase in serum, which may lead to hyperuricemia and gout. To assure a proper management of this disease, physicians recommend restrictive dietary measures, particularly by avoiding the consumption of beer. Therefore, it is of relevance to develop efficient methods to remove purine compounds from alcoholic beverages such as beer. In this review, we provide an introduction on fermented alcoholic beverages, with emphasis on beer, as well as its purine compounds and their role in uric acid metabolism in the human body in relation to hyperuricemia and gout development. The several reported enzymatic, biological and adsorption methods envisaging purine compounds’ removal are then reviewed. Some enzymatic and biological methods present drawbacks, which can be overcome by adsorption methods. Within adsorption methods, adsorbent materials, such as activated carbon or charcoal, have been reported and applied to beer or wort samples, showing an excellent capacity for adsorbing and removing purine compounds. Although the main topic of this review is on the removal of purine compounds from beer, other studies involving other matrices rather than beer or wort that are rich in purines are included, since they provide relevant clues on designing efficient removal processes. By ensuring the selective removal of purine compounds from this beverage, beer can be taken by hyperuricemic and gouty patients, avoiding restrictive dietary measures, while decreasing the related healthcare economic burden.
Collapse
|
54
|
Cui DY, Ge JL, Song YM, Feng PP, Lin LC, Guo LY, Zhang CY. Regulating the ratio of higher alcohols to esters by simultaneously overexpressing ATF1 and deleting BAT2 in brewer's yeast Saccharomyces pastorianus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
55
|
Potential for Lager Beer Production from Saccharomyces cerevisiae Strains Isolated from the Vineyard Environment. Processes (Basel) 2021. [DOI: 10.3390/pr9091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces pastorianus, genetic hybrids of Saccharomyces cerevisiae and the Saccharomyces eubayanus, is one of the most widely used lager yeasts in the brewing industry. In recent years, new strategies have been adopted and new lines of research have been outlined to create and expand the pool of lager brewing starters. The vineyard microbiome has received significant attention in the past few years due to many opportunities in terms of biotechnological applications in the winemaking processes. However, the characterization of S. cerevisiae strains isolated from winery environments as an approach to selecting starters for beer production has not been fully investigated, and little is currently available. Four wild cryotolerant S. cerevisiae strains isolated from vineyard environments were evaluated as potential starters for lager beer production at laboratory scale using a model beer wort (MBW). In all tests, the industrial lager brewing S. pastorianus Weihenstephan 34/70 was used as a reference strain. The results obtained, although preliminary, showed some good properties of these strains, such as antioxidant activity, flocculation capacity, efficient fermentation at 15 °C and low diacetyl production. Further studies will be carried out using these S. cerevisiae strains as starters for lager beer production on a pilot scale in order to verify the chemical and sensory characteristics of the beers produced.
Collapse
|
56
|
Yokota K, Takeo A, Abe H, Kurokawa Y, Hashimoto M, Kajimoto K, Tanaka M, Murayama S, Nakajima Y, Taniguchi M, Kataoka M. Application of Micropore Device for Accurate, Easy, and Rapid Discrimination of Saccharomyces pastorianus from Dekkera spp. BIOSENSORS-BASEL 2021; 11:bios11080272. [PMID: 34436074 PMCID: PMC8393547 DOI: 10.3390/bios11080272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
Traceability analysis, such as identification and discrimination of yeasts used for fermentation, is important for ensuring manufacturing efficiency and product safety during brewing. However, conventional methods based on morphological and physiological properties have disadvantages such as time consumption and low sensitivity. In this study, the resistive pulse method (RPM) was employed to discriminate between Saccharomyces pastorianus and Dekkera anomala and S. pastorianus and D. bruxellensis by measuring the ionic current response of cells flowing through a microsized pore. The height and shape of the pulse signal were used for the simultaneous measurement of the size, shape, and surface charge of individual cells. Accurate discrimination of S. pastorianus from Dekkera spp. was observed with a recall rate of 96.3 ± 0.8%. Furthermore, budding S. pastorianus was quantitatively detected by evaluating the shape of the waveform of the current ionic blockade. We showed a proof-of-concept demonstration of RPM for the detection of contamination of Dekkera spp. in S. pastorianus and for monitoring the fermentation of S. pastorianus through the quantitative detection of budding cells.
Collapse
Affiliation(s)
- Kazumichi Yokota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Asae Takeo
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company, Limited. 1-17-1, Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan; (A.T.); (Y.K.)
| | - Hiroko Abe
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Yuji Kurokawa
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company, Limited. 1-17-1, Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan; (A.T.); (Y.K.)
| | - Muneaki Hashimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Kazuaki Kajimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masato Tanaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Sanae Murayama
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.)
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.)
| | - Masatoshi Kataoka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
- Correspondence: ; Tel.: +81-87-869-3576
| |
Collapse
|
57
|
Felšöciová S, Kowalczewski PŁ, Krajčovič T, Dráb Š, Kačániová M. Effect of Long-Term Storage on Mycobiota of Barley Grain and Malt. PLANTS 2021; 10:plants10081655. [PMID: 34451699 PMCID: PMC8401099 DOI: 10.3390/plants10081655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022]
Abstract
Contamination of malting barley grain and malt with micromycetes sampled at various periods post-harvest (3rd, 6th, and 9th month of storage) and types of storage (storage silo and floor warehouse) was investigated. Each of these barley grain samples was malted. This article reports on the changes in the fungal microbiome composition and their overall count in barley grain and malt. From the surface-disinfected barley grain samples collected immediately after harvest, there were eight genera isolated, with a predominance of Alternaria. A small increase of isolated microfungi was detected in barley stored in silo for 3 and 6 months (from 142 isolates to 149) and decreased below the number of isolates in barley before storage (133 isolates). Fungal count during storage gradually decreased up to 9 month in barley stored in floor warehouse (from 142 isolates to 84). The initial total count of microscopic fungi in malt before storage was the highest (112 isolates) with 7 genera detected, compared to malts prepared from barley stored for longer time (54 isolates, 7 genera, 9th month of storage). Alternaria was the most abundant and frequent genus. Quantitative representation of the filamentous microscopic fungi was lower compared to yeasts especially in barley and malt prepared from barley stored at third month of storage in both type of storage. Yeasts were identified from all grain samples and malt samples with mass spectrometry. Most attention was given to the widely distributed fungus Penicillium, 79% of strains produced at least one mycotoxin detected under in vitro assays using the TLC method (97% of them produced griseofulvin, 94% CPA, 79% patulin, 14% roquefortin C, and penitrem A was produced by two screening strains under laboratory conditions). It is therefore important to monitor the microflora throughout the production cycle of “barley to beer”.
Collapse
Affiliation(s)
- Soňa Felšöciová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949-76 Nitra, Slovakia;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
- Correspondence: (P.Ł.K.); (M.K.); Tel.: +48-61-848-7297 (P.Ł.K.); +421-37-641-715 (M.K.)
| | - Tomáš Krajčovič
- Heineken Slovakia Sladovne, a.s., Novozámocká 232/2, 947-01 Hurbanovo, Slovakia; (T.K.); (Š.D.)
| | - Štefan Dráb
- Heineken Slovakia Sladovne, a.s., Novozámocká 232/2, 947-01 Hurbanovo, Slovakia; (T.K.); (Š.D.)
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94-976 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
- Correspondence: (P.Ł.K.); (M.K.); Tel.: +48-61-848-7297 (P.Ł.K.); +421-37-641-715 (M.K.)
| |
Collapse
|
58
|
Torres-Guardado R, Esteve-Zarzoso B, Reguant C, Bordons A. Microbial interactions in alcoholic beverages. Int Microbiol 2021; 25:1-15. [PMID: 34347199 DOI: 10.1007/s10123-021-00200-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits. Besides S. cerevisiae, all alcoholic beverages can contain other microorganisms and especially in spontaneous fermentation when starter cultures are not used. These other microbes are mostly lactic acid bacteria and other yeasts-the non-Saccharomyces yeasts. The interactions between all these microorganisms are very diverse and complex, as in any natural occurring ecosystem, including food fermentations. To describe them, we have followed a simplified ecological classification of the interactions. The negative ones are amensalism, by which a metabolic product of one species has a negative effect on others, and antagonism, by which one microbe competes directly with others. The positive interactions are commensalism, by which one species has benefits but no apparent effect on others, and synergism, by which there are benefits for all the microbes and also for the final product. The main interactions in alcoholic beverages are between S. cerevisiae and non-Saccharomyces and between yeasts and lactic acid bacteria. These interactions can be related to metabolites produced by fermentation such as ethanol, or to secondary metabolites such as proteinaceous toxins, or are feed-related, either by competition for nutrients or by benefit from released compounds during yeast autolysis. The positive or negative effects of these interactions on the organoleptic qualities of the final product are also revised. Focusing mainly on the alcoholic beverages produced by spontaneous fermentations, this paper reviews the interactions between the different yeasts and lactic acid bacteria in wine, cider, beer, and in spirits such as tequila, mezcal and cachaça.
Collapse
Affiliation(s)
- Rafael Torres-Guardado
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Braulio Esteve-Zarzoso
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
59
|
Narzary D, Boro N, Borah A, Okubo T, Takami H. Community structure and metabolic potentials of the traditional rice beer starter 'emao'. Sci Rep 2021; 11:14628. [PMID: 34272462 PMCID: PMC8285430 DOI: 10.1038/s41598-021-94059-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
The emao, a traditional beer starter used in the North-East regions of India produces a high quality of beer from rice substrates; however, its microbial community structure and functional metabolic modules remain unknown. To address this gap, we have used shot-gun whole-metagenome sequencing technology; accordingly, we have detected several enzymes that are known to catalyze saccharification, lignocellulose degradation, and biofuel production indicating the presence of metabolic functionome in the emao. The abundance of eukaryotic microorganisms, specifically the members of Mucoromycota and Ascomycota, dominated over the prokaryotes in the emao compared to previous metagenomic studies on such traditional starters where the relative abundance of prokaryotes occurred higher than the eukaryotes. The family Rhizopodaceae (64.5%) and its genus Rhizopus (64%) were the most dominant ones, followed by Phaffomycetaceae (11.14%) and its genus Wickerhamomyces (10.03%). The family Leuconostocaceae (6.09%) represented by two genera (Leuconostoc and Weissella) was dominant over the other bacteria, and it was the third-highest in overall relative abundance in the emao. The comprehensive microbial species diversity, community structure, and metabolic modules found in the emao are of practical value in the formulation of mixed-microbial cultures for biofuel production from plant-based feedstocks.
Collapse
Affiliation(s)
- Diganta Narzary
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India.
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan.
| | - Nitesh Boro
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Ashis Borah
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Takashi Okubo
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan
- Macrogen Japan Corp., 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hideto Takami
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
60
|
A cell-factory model of Saccharomyces cerevisiae based on bacterial cellulose without GMO for consolidated bioprocessing of starch. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
62
|
Gerhards S, Talaverano MI, Andrés AI, Sánchez-Vicente C, Lozano J, García-Latorre C, Petrón MJ, Rodrigo S. Different dry hopping and fermentation methods: influence on beer nutritional quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2828-2835. [PMID: 33135178 DOI: 10.1002/jsfa.10912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/03/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nowadays, the craft beer market is booming and the consumer trend for trying something new is increasing. Here, nine different treatments of a craft beer were realized in a pilot plant, studying fermentation and dry-hopping types. Quality parameters of the beer such as polyphenols, antioxidants, bitterness, colour and alcohol were analysed. In addition, an electronic nose was used to distinguish beer types. RESULTS Results showed that dry hopping in maturation with warm temperature increased the bitterness from 33 to 40 IBUs. The treatment using two yeasts and two fermentation temperatures resulted in the highest antioxidant capacity of the beer (around 92%). Antioxidant activity was increased by late dry hopping using ale yeasts for fermenting. Principal component analysis performed with electronic nose data explained up to 97% of the total variability of the compounds in the study. CONCLUSIONS Combined use of ale and lager yeasts seems to increase the antioxidant capacity and total polyphenol content of beer. Antioxidant activity is increased by late dry hopping. An electronic nose is a suitable device for discriminating the volatile profile complexity in beer. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Ana Isabel Andrés
- Agricultural Engineering School, University of Extremadura, Badajoz, Spain
| | - Carlos Sánchez-Vicente
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
- Up Devices and Technologies, Madrid, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | | | - María Jesús Petrón
- Agricultural Engineering School, University of Extremadura, Badajoz, Spain
| | - Sara Rodrigo
- Agricultural Engineering School, University of Extremadura, Badajoz, Spain
| |
Collapse
|
63
|
Dugulin CA, De Rouck G, Cook DJ. Green Malt for a Green Future – Feasibility and Challenges of Brewing Using Freshly Germinated (Unkilned) Malt: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1902710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Celina A. Dugulin
- International Centre for Brewing Science, School of Biosciences, Division of Microbiology, Brewing & Biotechnology, University of Nottingham, Leicestershire, UK
| | - Gert De Rouck
- KU Leuven, Faculty of Engineering Technology, Department of Food and Microbial Technology (CLMT), Laboratory of Enzyme, Fermentation and Brewing Technology, Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - David J. Cook
- International Centre for Brewing Science, School of Biosciences, Division of Microbiology, Brewing & Biotechnology, University of Nottingham, Leicestershire, UK
| |
Collapse
|
64
|
Rodríguez Madrera R, Pando Bedriñana R, Suárez Valles B. Evaluation of indigenous non-Saccharomyces cider yeasts for use in brewing. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03665-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
65
|
Mardones W, Villarroel CA, Abarca V, Urbina K, Peña TA, Molinet J, Nespolo RF, Cubillos FA. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microb Biotechnol 2021; 15:967-984. [PMID: 33755311 PMCID: PMC8913853 DOI: 10.1111/1751-7915.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/02/2023] Open
Abstract
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time‐course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off‐flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in ‘fast motion’ in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Carlos A Villarroel
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Valentina Abarca
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Kamila Urbina
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Tomás A Peña
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Jennifer Molinet
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Roberto F Nespolo
- Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile.,Institute of Environmental and Evolutionary Science, Universidad Austral de Chile, Valdivia, 5110566, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| |
Collapse
|
66
|
Takase T, Toyoda T, Kobayashi N, Inoue T, Ishijima T, Abe K, Kinoshita H, Tsuchiya Y, Okada S. Dietary iso-α-acids prevent acetaldehyde-induced liver injury through Nrf2-mediated gene expression. PLoS One 2021; 16:e0246327. [PMID: 33544749 PMCID: PMC7864453 DOI: 10.1371/journal.pone.0246327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
Acetaldehyde is the major toxic metabolite of alcohol (ethanol) and enhances fibrosis of the liver through hepatic stellate cells. Additionally, alcohol administration causes the accumulation of reactive oxygen species (ROS), which induce hepatocyte injury-mediated lipid peroxidation. Iso-α-acids, called isohumulones, are bitter acids in beer. The purpose of this study was to investigate the protective effects of iso-α-acids against alcoholic liver injury in hepatocytes in mice. C57BL/6N mice were fed diets containing isomerized hop extract, which mainly consists of iso-α-acids. After 7 days of feeding, acetaldehyde was administered by a single intraperitoneal injection. The acetaldehyde-induced increases in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were suppressed by iso-α-acids intake. Hepatic gene expression analyses showed the upregulation of detoxifying enzyme genes, glutathione-S-transferase (GST) and aldehyde dehydrogenase (ALDH). In vitro, iso-α-acids upregulated the enzymatic activities of GST and ALDH and induced the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nfe2l2; Nrf2), a master regulator of antioxidant and detoxifying systems. These results suggest that iso-α-acid intake prevents acetaldehyde-induced liver injury by reducing oxidative stress via Nrf2-mediated gene expression.
Collapse
Affiliation(s)
- Takahito Takase
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
- Fundamental Laboratory, POKKA SAPPORO FOOD & BEVERAGE LTD., Yokohama, Kanagawa, Japan
| | - Tsudoi Toyoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoyuki Kobayashi
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
| | - Takashi Inoue
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
- Fundamental Laboratory, POKKA SAPPORO FOOD & BEVERAGE LTD., Yokohama, Kanagawa, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Miki, Kita, Kagawa, Japan
| | - Youichi Tsuchiya
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
67
|
Utilization of over-ripened fruit (waste fruit) for the eco-friendly production of ethanol. ACTA ACUST UNITED AC 2021; 34:270-276. [PMID: 33564216 PMCID: PMC7862972 DOI: 10.1007/s42535-020-00185-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
Abstract
This research was carried out to produce ethanol for use as a sanitizer in today’s COVID-19 pandemic situation, via cost-effective and eco-friendly techniques. The waste of seasonal fruit, i.e. apple, grape and Indian blueberry, was used in the study. Saccharomyces cerevisiae (baker’s yeast) was used with KMnO4 (5%), sucrose (47 g) and urea (1.5 g) for the fermentation process. All the selected overripe fruits were analyzed for variations in parameters including specific gravity, pH, temperature and concentration during complete fermentation for ethanol production. After complete fermentation, it was clear that the use of Indian blueberry at a temperature of 33 °C, specific gravity of 0.875 and pH value of 5.2 yielded the highest ethanol concentration of 6.5%. The concentration of ethanol obtained from grape samples was 5.23% at 30 °C with specific gravity of 0.839 and pH 4.3. Lastly, the ethanol concentration obtained from apple waste was about 4.52% at 32 °C with specific gravity of 0.880 and pH of 4.7 pH. The FTIR curve of each sample shows an absorbance peak in a wave number range of 3000 cm−1 to 3500 cm−1, which indicates the absence of alcohol in the samples after fermentation.
Collapse
|
68
|
Kim DY, Kim J, Kim JH, Kim WJ. Malt and wort bio-acidification by Pediococcus acidilactici HW01 as starter culture. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Tan M, Caro Y, Shum-Cheong-Sing A, Robert L, François JM, Petit T. Evaluation of mixed-fermentation of Saccharomyces cerevisiae with Saprochaete suaveolens to produce natural fruity beer from industrial wort. Food Chem 2021; 346:128804. [PMID: 33418411 DOI: 10.1016/j.foodchem.2020.128804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Fruity beers can be promoted through production of flavoring compounds during fermentation by partial replacement of brewing yeast by non-conventional-yeasts with high aroma production abilities. We evaluated here the use of a wild Saprochaete suaveolens strain, producing atypical aroma compounds, to produce new natural fruity beer, while keeping classical production conditions used in brewing industry. S. suaveolens was inoculated as starter of culture during beer fermentation and the fermentation performance was evaluated through measurement of several physicochemical parameters. The aroma profile of the engineered beers was monitored using HS-SPME GC/MS. The results showed that high fruity aroma and low-ethanol content beers were obtained through single-fermentation using S. suaveolens. We also demonstrated that during mixed-fermentation, S. suaveolens maintained high metabolic activity and allowed production of beer enriched with fruity aroma. Production of high or low ethanol content fruity beer could be achieved by varying the composition of the starter of culture.
Collapse
Affiliation(s)
- Melissa Tan
- Université de la Réunion, Laboratoire de Chimie et Biotechnologies des Produits Naturels (ChemBioPro), Réunion, France; IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| | - Yanis Caro
- Université de la Réunion, Laboratoire de Chimie et Biotechnologies des Produits Naturels (ChemBioPro), Réunion, France; IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| | - Alain Shum-Cheong-Sing
- IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| | - Laurent Robert
- Société Réunionnaise de brasserie (SOREBRA), Saint-Louis, Réunion, France.
| | | | - Thomas Petit
- Université de la Réunion, Laboratoire de Chimie et Biotechnologies des Produits Naturels (ChemBioPro), Réunion, France; IUT de la Réunion, Département Hygiène, Sécurité et Environnement (HSE), Réunion, France.
| |
Collapse
|
70
|
|
71
|
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020; 10:E69. [PMID: 33396397 PMCID: PMC7823516 DOI: 10.3390/foods10010069] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented foods identify cultures and civilizations. History, climate and the particulars of local production of raw materials have urged humanity to exploit various pathways of fermentation to produce a wide variety of traditional edible products which represent adaptations to specific conditions. Nowadays, industrial-scale production has flooded the markets with ferments. According to recent estimates, the current size of the global market of fermented foods is in the vicinity of USD 30 billion, with increasing trends. Modern challenges include tailor-made fermented foods for people with special dietary needs, such as patients suffering from Crohn's disease or other ailments. Another major challenge concerns the safety of artisan fermented products, an issue that could be tackled with the aid of molecular biology and concerns not only the presence of pathogens but also the foodborne microbial resistance. The basis of all these is, of course, the microbiome, an aggregation of different species of bacteria and yeasts that thrives on the carbohydrates of the raw materials. In this review, the microbiology of fermented foods is discussed with a special reference to groups of products and to specific products indicative of the diversity that a fermentation process can take. Their impact is also discussed with emphasis on health and oral health status. From Hippocrates until modern approaches to disease therapy, diet was thought to be of the most important factors for health stability of the human natural microbiome. After all, to quote Pasteur, "Gentlemen, the microbes will have the last word for human health." In that sense, it is the microbiomes of fermented foods that will acquire a leading role in future nutrition and therapeutics.
Collapse
Affiliation(s)
- Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Maria Antoniadou
- School of Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Georgios Rozos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Areti Lagiou
- Department of Public and Community Health, University of West Attika, 11521 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
72
|
Low-Cost Methods to Assess Beer Quality Using Artificial Intelligence Involving Robotics, an Electronic Nose, and Machine Learning. FERMENTATION 2020. [DOI: 10.3390/fermentation6040104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Beer quality is a difficult concept to describe and assess by physicochemical and sensory analysis due to the complexity of beer appreciation and acceptability by consumers, which can be dynamic and related to changes in climate affecting raw materials, consumer preference, and rising quality requirements. Artificial intelligence (AI) may offer unique capabilities based on the integration of sensor technology, robotics, and data analysis using machine learning (ML) to identify specific quality traits and process modifications to produce quality beers. This research presented the integration and implementation of AI technology based on low-cost sensor networks in the form of an electronic nose (e-nose), robotics, and ML. Results of ML showed high accuracy (97%) in the identification of fermentation type (Model 1) based on e-nose data; prediction of consumer acceptability from near-infrared (Model 2; R = 0.90) and e-nose data (Model 3; R = 0.95), and physicochemical and colorimetry of beers from e-nose data. The use of the RoboBEER coupled with the e-nose and AI could be used by brewers to assess the fermentation process, quality of beers, detection of faults, traceability, and authentication purposes in an affordable, user-friendly, and accurate manner.
Collapse
|
73
|
Salanță LC, Coldea TE, Ignat MV, Pop CR, Tofană M, Mudura E, Borșa A, Pasqualone A, Zhao H. Non-Alcoholic and Craft Beer Production and Challenges. Processes (Basel) 2020; 8:1382. [DOI: 10.3390/pr8111382] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Beer is the most consumed alcoholic beverage in the world and the third most popular beverage after water and tea. Emerging health-oriented lifestyle trends, demographics, stricter legislation, religious prohibitions, and consumers’ preferences have led to a strong and steady growth of interest for non-alcoholic beers (NABs), low-alcohol beers (LABs), as well for craft beers (CBs). Conventional beer, as the worlds most consumed alcoholic beverage, recently gained more recognition also due to its potential functionality associated with the high content of phenolic antioxidants and low ethanol content. The increasing attention of consumers to health-issues linked to alcohol abuse urges breweries to expand the assortment of conventional beers through novel drinks concepts. The production of these beers employs several techniques that vary in performance, efficiency, and usability. Involved production technologies have been reviewed and evaluated in this paper in terms of efficiency and production costs, given the possibility that craft brewers might want to adapt them and finally introduce novel non-alcoholic drinks in the market.
Collapse
Affiliation(s)
- Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Valentina Ignat
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Tofană
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Andrei Borșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
74
|
Einfalt D. Barley-sorghum craft beer production with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe use of different yeast strains contributes to obtain insights into beer products with diverse sensory characteristics. In this study, three yeast species of different genera were selected to evaluate their fermentation performance and sensory profile for barley-sorghum beer production. Baley-sorghum wort was produced with 12.5°P and fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Differences were observed in terms of fermentation time and ability to ferment maltose. S. cerevisiae attenuated initial maltose concentration within 72 h, while M. pulcherrima and T. delbrueckii performed fermentation within 120 and 192 h, respectively. Both yeast strains simultaneously produced 11% and 23% lower ethanol concentrations, compared to S. cerevisiae with 37.9 g/L. Wort fermented with T. delbrueckii showed residual maltose concentration of 19.7 ± 4.1 g/L, resulting in significantly enhanced beer sweetness. S. cerevisiae produced significantly increased levels of higher alcohols, and obtained the highest scores for the sensory attribute body perception. Beer produced with T. delbrueckii contained significantly lower fermentative 2,3-butanediol and 2-methyl-1-butanol volatiles; this beer also showed reduced body perception. Beer conditioned with T. delbrueckii was significantly preferred over M. pulcherrima. Besides S. cerevisiae with high fermentative power, T. delbrueckii and M. pulcherrima were found to have reduced maltose fermenting abilities and provide significantly different sensory attributes to barley-sorghum beers.
Collapse
|
75
|
Influence of malt composition on the quality of a top fermented beer. Journal of Food Science and Technology 2020; 58:2295-2303. [PMID: 33967326 DOI: 10.1007/s13197-020-04740-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
The beer is a widely consumed drink, appreciated for its sensory characteristics, and it also contains beneficial compounds for health derived from its raw materials. In this work, the influence of coloured malt on the main quality parameters of a top-fermenting beer was evaluated. The beers were produced increasing the percentage of coloured malt (0, 5, 15% Caraamber®) respect to the pale ale base malt. The beers had an alcohol content ranging from 6.2 to 6.8 vol%; the results highlighted a deeper colour, increased bitterness and turbidity in beer with the highest amount of Caraamber malt. This latter showed the highest polyphenols (453.8 mg GAE/L) and antioxidant activity (840.1 µmol TE/L) and, on the other hand, the lowest foam stability. The volatiles profile showed a higher amount of aldehydes and ketones in beer with the highest percentage of caramel malt but the lowest in higher alcohols and esters. No differences were found in the fruity-esters, alcoholic and caramel sensory notes; while the beer made with 15% of coloured malt was perceived sweeter and with less fruity citrus notes than other beer samples.
Collapse
|
76
|
Shayevitz A, Harrison K, Curtin CD. Barrel-Induced Variation in the Microbiome and Mycobiome of Aged Sour Ale and Imperial Porter Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1795607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Avi Shayevitz
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, U.S.A
| | - Keisha Harrison
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, U.S.A
| | - Chris D. Curtin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, U.S.A
| |
Collapse
|
77
|
Xu Z, Xu R, Soteyome T, Deng Y, Chen L, Liang Y, Bai C, Huang T, Liu J, Harro JM, Kjellerup BV. Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. Microb Pathog 2020; 145:104186. [PMID: 32272213 DOI: 10.1016/j.micpath.2020.104186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G + C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA; Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38103, USA; Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ruirui Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong, 525427, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, 510010, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
78
|
Suzuki K. Emergence of New Spoilage Microorganisms in the Brewing Industry and Development of Microbiological Quality Control Methods to Cope with This Phenomenon: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1782101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| |
Collapse
|
79
|
Abstract
Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods. These include poor process control, lack of consistency in product quality, and lengthy fermentation times. This review summarizes the methods for traditional sour beer production with a focus on the use of lactobacilli to generate this beverage. In addition, the review describes the use of selected pure cultures of microorganisms with desirable properties in conjunction with careful application of processing steps. Together, this facilitates the production of sour beer with a higher level of process control and more rapid fermentation compared to traditional methods.
Collapse
|
80
|
Munford ARG, Chaves RD, Sant'Ana AS. Inactivation kinetics of beer spoilage bacteria (Lactobacillus brevis, Lactobacillus casei, and Pediococcus damnosus) during acid washing of brewing yeast. Food Microbiol 2020; 91:103513. [PMID: 32539960 DOI: 10.1016/j.fm.2020.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/25/2022]
Abstract
This work aimed to estimate the inactivation kinetic parameters of four potential beer spoilage bacteria (Lactobacillus brevis DSM 6235, Lactobacillus casei ATCC 334, Pediococcus damnosus DSM 20289 and Pediococcus damnosus ATCC 29358) inoculated in brewing yeast submitted to acid washing with purposes of yeast recycle. The experiments were conducted at 4 °C in solutions with pH 1.5, pH 2, and pH 3 adjusted employing 85% phosphoric acid. The acid washing treatment of brewing yeasts in the most common pH used (pH 2.0) demanded almost 50 min for the first decimal reduction (δ) of L. brevis DSM 6235. Sensible strains to acid washing such as P. damnosus DSM 20289 demanded almost 70 min for 4 log reductions to be achieved. On the other hand, pH reduction of the acid washing from 2.0 to 1.5 allowed 4 log reduction of L. brevis DSM 6235) to be obtained in less than 50 min, without ruining brewer's yeast viability. Acid washing in pH 1.5 is a viable method for the inactivation of bacterial contaminants of brewing yeasts. Recycling of brewing yeasts through this approach may contribute to a more sustainable and environmental-friendly industry.
Collapse
Affiliation(s)
- Allan R G Munford
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rafael D Chaves
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
81
|
Feyereisen M, Mahony J, O'Sullivan T, Boer V, van Sinderen D. Beer spoilage and low pH tolerance is linked to manganese homeostasis in selected Lactobacillus brevis strains. J Appl Microbiol 2020; 129:1309-1320. [PMID: 32478894 DOI: 10.1111/jam.14730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
AIMS Beer is a harsh medium for bacteria to survive, however, lactic acid bacteria including Lactobacillus brevis have evolved the ability to grow in beer. Here, the influence of environmental factors such as low pH, ethanol or hop content was assessed. METHODS AND RESULTS A transcriptomic analysis of two Lact. brevis beer-spoiling strains was performed comparing growth in nutritive media with or without the imposition of a stressor related to the beer environment. This allowed the identification of a manganese transporter encoding gene that contributes to low pH tolerance. CONCLUSIONS We report on the importance of a manganese transporter associated with pH tolerance and beer spoilage in Lact. brevis. The importance of manganese for Lact. brevis growth in a low pH environment was highlighted. SIGNIFICANCE AND IMPACT OF THE STUDY Bacterial spoilage of beer may result in product withdrawal with concomitant economic losses for the brewing industry. A limited number of genes involved in beer spoilage have been identified but none of them are universal. It is clear that other molecular players are involved in beer spoilage. The study highlights the complexity of the genetic requirements to facilitate beer spoilage and the role of multiple key players in this process.
Collapse
Affiliation(s)
- M Feyereisen
- School of Microbiology, University College of Cork, Cork, Ireland
| | - J Mahony
- School of Microbiology, University College of Cork, Cork, Ireland.,APC Microbiome Ireland, University College of Cork, Cork, Ireland
| | - T O'Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, The Netherlands
| | - V Boer
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, The Netherlands
| | - D van Sinderen
- School of Microbiology, University College of Cork, Cork, Ireland.,APC Microbiome Ireland, University College of Cork, Cork, Ireland
| |
Collapse
|
82
|
Volatile Compound Screening Using HS-SPME-GC/MS on Saccharomyces eubayanus Strains under Low-Temperature Pilsner Wort Fermentation. Microorganisms 2020; 8:microorganisms8050755. [PMID: 32443420 PMCID: PMC7285299 DOI: 10.3390/microorganisms8050755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
The recent isolation of the yeast Saccharomyces eubayanus has opened new avenues in the brewing industry. Recent studies characterized the production of volatile compounds in a handful set of isolates, utilizing a limited set of internal standards, representing insufficient evidence into the ability of the species to produce new and diverse aromas in beer. Using Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME-GC-MS), we characterized for the first time the production of volatile compounds in 10 wild strains under fermentative brewing conditions and compared them to a commercial lager yeast. S. eubayanus produces a higher number of volatile compounds compared to lager yeast, including acetate and ethyl esters, together with higher alcohols and phenols. Many of the compounds identified in S. eubayanus are related to fruit and floral flavors, which were absent in the commercial lager yeast ferment. Interestingly, we found a significant strain × temperature interaction, in terms of the profiles of volatile compounds, where some strains produced significantly greater levels of esters and higher alcohols. In contrast, other isolates preferentially yielded phenols, depending on the fermentation temperature. This work demonstrates the profound fermentation product differences between different S. eubayanus strains, highlighting the enormous potential of this yeast to produce new styles of lager beers.
Collapse
|
83
|
Oladiran DA, Emmambux NM. Locally Available African Complementary Foods: Nutritional Limitations and Processing Technologies to Improve Nutritional Quality—A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1762640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dolapo A. Oladiran
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, South Africa
| | - Naushad M. Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
84
|
Christofoleti-Furlan RM, Portugal CB, Varize CS, Muynarsk ESM, Alcarde AR, Basso LC. Unraveling Brazilian bioethanol yeasts as novel starters for high-gravity brewing. Food Res Int 2020; 135:109282. [PMID: 32527477 DOI: 10.1016/j.foodres.2020.109282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
High-gravity (HG) brewing has broader application to succeed on beer differentiation and production optimization. However, such process imposes a handicap to yeasts, which must be able to deal with stressful conditions in fermentation. In this work, we assessed different physiological traits of 24 Saccharomyces cerevisiae strains isolated from Brazilian bioethanol distilleries for the selection of novel starters for HG brewing. Five yeast strains were selected with ability to overcome different stressors under HG beer fermentation, showing high fermentability rates, resilience to ethanol stress, low production of foam and hydrogen sulfide, as well as similar flocculation rates to brewer's yeasts. After five fermentation recycles, most strains sustained a viability rate higher than 90% and were able to efficiently accumulate trehalose and glycogen, besides presenting no detectable petite mutants at the final stage. In the sensory analysis, the beers obtained from the five selected strains showed greater aromatic complexity, with predominance of 'spicy', 'dried' and 'fresh fruits' descriptors. In conclusion, this study sheds light on the potential of yeast strains from Brazilian bioethanol process to produce distinctive specialty beers, aside from proposing an effective selection methodology based on relevant physiological attributes for HG brewing process.
Collapse
Affiliation(s)
- R M Christofoleti-Furlan
- Dept. Ciências Biológicas, Laboratório de Bioquímica e Tecnologia de Leveduras, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| | - C B Portugal
- Dept. Agroindústria, Alimentos e Nutrição, Laboratório de Biotecnologia de Alimentos e Bebidas, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| | - C S Varize
- Dept. Ciências Biológicas, Laboratório de Bioquímica e Tecnologia de Leveduras, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| | - E S M Muynarsk
- Dept. Ciências Biológicas, Laboratório de Bioquímica e Tecnologia de Leveduras, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| | - A R Alcarde
- Dept. Agroindústria, Alimentos e Nutrição, Laboratório de Tecnologia e Qualidade de Bebidas, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| | - L C Basso
- Dept. Ciências Biológicas, Laboratório de Bioquímica e Tecnologia de Leveduras, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
85
|
Pilarski DW, Gerogiorgis DI. Progress and modelling of cold contact fermentation for alcohol-free beer production: A review. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
86
|
Alperstein L, Gardner JM, Sundstrom JF, Sumby KM, Jiranek V. Yeast bioprospecting versus synthetic biology-which is better for innovative beverage fermentation? Appl Microbiol Biotechnol 2020; 104:1939-1953. [PMID: 31953561 DOI: 10.1007/s00253-020-10364-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 01/08/2023]
Abstract
Producers often utilise some of the many available yeast species and strains in the making of fermented alcoholic beverages in order to augment flavours, aromas, acids and textural properties. But still, the demand remains for more yeasts with novel phenotypes that not only impact sensory characteristics but also offer process and engineering advantages. Two strategies for finding such yeasts are (i) bioprospecting for novel strains and species and (ii) genetic modification of known yeasts. The latter enjoys the promise of the emerging field of synthetic biology, which, in principle, would enable scientists to create yeasts with the exact phenotype desired for a given fermentation. In this mini review, we compare and contrast advances in bioprospecting and in synthetic biology as they relate to alcoholic fermentation in brewing and wine making. We explore recent advances in fermentation-relevant recombinant technologies and synthetic biology including the Yeast 2.0 Consortium, use of environmental yeasts, challenges, constraints of law and consumer acceptance.
Collapse
Affiliation(s)
- Lucien Alperstein
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia
| | - Jennifer M Gardner
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia
| | - Joanna F Sundstrom
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia
| | - Krista M Sumby
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia. .,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia.
| |
Collapse
|
87
|
Bamforth CW. The Horace Brown Medal. Forever in focus: researches in malting and brewing sciences. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
88
|
Lodolo EJ. Sustainability through Management of Water, Process and Product Hygiene on Food and Beverage Sites. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1683707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elizabeth J. Lodolo
- Next Renewable Generation (Pty) Ltd, Rosebank, South Africa
- Department of Microbial, Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa
| |
Collapse
|
89
|
Feyereisen M, Mahony J, Neve H, Franz CMAP, Noben JP, O’Sullivan T, Boer V, van Sinderen D. Biodiversity and Classification of Phages Infecting Lactobacillus brevis. Front Microbiol 2019; 10:2396. [PMID: 31681247 PMCID: PMC6805780 DOI: 10.3389/fmicb.2019.02396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus brevis is a lactic acid bacterium that is known as a food and beverage spoilage organism, and more specifically as a beer-spoiler. Phages of L. brevis have been described, but very limited data is available regarding temperate phages of L. brevis. Temperate phages may exert benefits to the host, while they may also be employed to combat beer spoilage. The current study reports on the incidence of prophage sequences present in nineteen distinct L. brevis genomes. Prophage induction was evaluated using mitomycin C exposure followed by genome targeted-PCR, electron microscopy and structural proteome analysis. The morphological and genome sequence analyses revealed significant diversity among L. brevis prophages, which appear to be dominated by members of the Myoviridae phage family. Based on this analysis, we propose a classification of L. brevis phages into five groups.
Collapse
Affiliation(s)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, Kiel, Germany
| | - Charles M. A. P. Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, Kiel, Germany
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tadhg O’Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, Netherlands
| | - Viktor Boer
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, Netherlands
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
90
|
Twamley T, Gaffney M, Feechan A. A Microbial Fermentation Mixture Primes for Resistance Against Powdery Mildew in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1241. [PMID: 31649703 PMCID: PMC6794463 DOI: 10.3389/fpls.2019.01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
Since many fungal pathogens develop resistance to fungicides, novel and low-cost alternative methods to improve plant health and fitness need to be developed. An approach to improve productivity in crops is to stimulate the plant's own defence mechanisms via priming. Therefore, we investigated if a fermentation-based elicitor could prime plant defences against powdery mildew in wheat by inducing the expression of endogenous defence-related genes. Wheat seedlings were spray-treated with a fermentation-based elicitor 8 days prior to inoculation with powdery mildew. Disease assays showed a significantly reduced number of powdery mildew pustules were formed on wheat treated with the mixed elicitor. In vitro sensitivity assays tested the ability of powdery mildew conidia to germinate on agar amended with the fermentation-based product and concluded that fungal germination and differentiation were also inhibited. Tissue samples were taken at time points pertaining to different developmental stages of powdery mildew infection. Significantly higher expression of PR genes (PR1, PR4, PR5, and PR9) was observed in the microbial fermentation mixture-treated plants compared with untreated plants. These genes are often associated with the elicitation of plant defence responses to specific biotrophic pathogens, such as powdery mildew, suggesting an elicitor-mediated response in the wheat plants tested. The product components were assessed, and the components were found to act synergistically in the microbial fermentation mixture. Therefore, this fermentation-based elicitor provides an effective method for powdery mildew control.
Collapse
Affiliation(s)
- Tony Twamley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Mark Gaffney
- Alltech Crop Science, Alltech European Bioscience Centre, Dunboyne, Ireland
| | - Angela Feechan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
91
|
Tokpohozin SE, Fischer S, Becker T. Selection of a new Saccharomyces yeast to enhance relevant sorghum beer aroma components, higher alcohols and esters. Food Microbiol 2019; 83:181-186. [DOI: 10.1016/j.fm.2019.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022]
|
92
|
An organoleptic survey of meads made with lactic acid-producing yeasts. Food Microbiol 2019; 82:398-408. [DOI: 10.1016/j.fm.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
|
93
|
Menoncin M, Bonatto D. Molecular and biochemical aspects ofBrettanomycesin brewing. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marcelo Menoncin
- Brewing Yeast Research Group, Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Diego Bonatto
- Brewing Yeast Research Group, Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
94
|
Nassary EK, Nasolwa ER. Unravelling disposal benefits derived from underutilized brewing spent products in Tanzania. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:430-439. [PMID: 31063880 DOI: 10.1016/j.jenvman.2019.04.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The valorization of raw materials including grain barley, hops, and yeasts, consumption of natural resources like water and energy (heat and electric), use of fertilizers and/or organic substrates, and pesticides in brewing is a global concern. The disposal benefits associated with the spent grain, surplus hops, and surplus yeast is economically and environmentally unrecovered in Sub-Saharan Africa, in which Tanzania is also included. Literature synthesis showed that Tanzania is the 8th worldwide in brewing producing over 4.3 million hL or 430 million litres but depends largely on the imported raw materials such as deficit barley, yeast, and hops. Breweries import 10,500-11,500 tons of barley annually and undocumented quantities of hops and yeast. In the brewing process, every 100 L of beer produces approx. 20 kg of spent grain equivalent to 85% of all by-products hence 15% is for surplus hops and yeast. Much water and energy are consumed in brewing displaying negative impact on these natural resources. In digested surplus yeast H2S and NH3 gases are released where S and N are nutrients to plants and it has importance as an energy source through biogas. Over 4.3 × 106 hL or 4.3 × 108 L of beer produced in 2016, for example, required total thermal energy of 150,500,000 kWh but only 133,300,000 kWh would have been consumed with the use of biogas as it would have produced 17,200,000 kWh. Total of TZS 36,452,605,000/= or $ 16,129,471 was incurred only in brewing thermal energy but the inclusion of biogas would have saved TZS 4,196,012,000/= or $ 1,843,368 based on the TANESCO tariffs of TZS 242.21/= per kWh. The Government gained over TZS 345 billion as corporate, excise, and value-added taxes. These value addition to disposal options display alternatives to environmental conservation, utilization of natural resources, and overcoming carbon-pint (CO2) emission into the atmosphere. It is recommended that the significances of these by-products for food, feed, pharmaceuticals, biogas, and soil fertility are scientifically evaluated.
Collapse
Affiliation(s)
- Eliakira Kisetu Nassary
- Department of Soil and Geological Sciences, College of Agriculture, Sokoine University of Agriculture, P. O. Box 3008, Chuo-Kikuu, Morogoro, Tanzania.
| | - Emmanuel Richard Nasolwa
- Department of Soil and Geological Sciences, College of Agriculture, Sokoine University of Agriculture, P. O. Box 3008, Chuo-Kikuu, Morogoro, Tanzania.
| |
Collapse
|
95
|
The biotechnological potential of the yeast Dekkera bruxellensis. World J Microbiol Biotechnol 2019; 35:103. [PMID: 31236799 DOI: 10.1007/s11274-019-2678-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
Dekkera bruxellensis is an industrial yeast mainly regarded as a contaminant species in fermentation processes. In winemaking, it is associated with off-flavours that cause wine spoilage, while in bioethanol production this yeast is linked to a reduction of industrial productivity by competing with Saccharomyces cerevisiae for the substrate. In spite of that, this point of view is gradually changing, mostly because D. bruxellensis is also able to produce important metabolites, such as ethanol, acetate, fusel alcohols, esters and others. This dual role is likely due to the fact that this yeast presents a set of metabolic traits that might be either industrially attractive or detrimental, depending on how they are faced and explored. Therefore, a proper industrial application for D. bruxellensis depends on the correct assembly of its central metabolic puzzle. In this sense, researchers have addressed issues regarding the physiological and genetic aspects of D. bruxellensis, which have brought to light much of our current knowledge on this yeast. In this review, we shall outline what is presently understood about the main metabolic features of D. bruxellensis and how they might be managed to improve its current or future industrial applications (except for winemaking, in which it is solely regarded as a contaminant). Moreover, we will discuss the advantages and challenges that must be overcome in order to take advantage of the full biotechnological potential of this yeast.
Collapse
|
96
|
Condina MR, Dilmetz BA, Razavi Bazaz S, Meneses J, Ebrahimi Warkiani M, Hoffmann P. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. LAB ON A CHIP 2019; 19:1961-1970. [PMID: 31099359 DOI: 10.1039/c9lc00152b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), in combination with Biotyper software, is a rapid, high-throughput, and accurate method for the identification of microbes. Microbial outbreaks in a brewery present a major risk for companies as it can lead to cost-intensive recalls and damage to the brand reputation. MALDI-TOF MS has been implemented into a brewery setting for quality control practices and the identification of beer spoilage microorganisms. However, the applicability of this approach is hindered by compatibility issues associated with mixed cultures, requiring the use of time-consuming selective cultivation techniques prior to identification. We propose a novel, low-cost approach based on the combination of inertial microfluidics and secondary flows in a spiral microchannel for high-throughput and efficient separation of yeasts (Saccharomyces pastorianus and Saccharomyces cerevisiae) from beer spoilage microorganisms (Lactobacillus brevis and Pediococcus damnosus). Flow rates were optimised using S. pastorianus and L. brevis, leading to separation of more than 90% of the L. brevis cells from yeast. The microorganisms were then identified to the species level using the MALDI-TOF MS platform using standard sample preparation protocols. This study shows the high-throughput and rapid separation of spoilage microorganisms (0.3-3 μm) from background yeast (5 μm) from beer, subsequent identification using MALDI Biotyper, and the potential applicability of the approach for biological control in the brewing industry.
Collapse
Affiliation(s)
- Mark R Condina
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| | - Brooke A Dilmetz
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Australia.
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Australia. and Institute of Molecular Medicine, Sechenov University, Moscow 119991, Russia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| |
Collapse
|
97
|
Feyereisen M, Mahony J, Kelleher P, Roberts RJ, O'Sullivan T, Geertman JMA, van Sinderen D. Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics 2019; 20:416. [PMID: 31122208 PMCID: PMC6533708 DOI: 10.1186/s12864-019-5783-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
Background Lactobacillus brevis is a member of the lactic acid bacteria (LAB), and strains of L. brevis have been isolated from silage, as well as from fermented cabbage and other fermented foods. However, this bacterium is also commonly associated with bacterial spoilage of beer. Results In the current study, complete genome sequences of six isolated L. brevis strains were determined. Five of these L. brevis strains were isolated from beer (three isolates) or the brewing environment (two isolates), and were characterized as beer-spoilers or non-beer spoilers, respectively, while the sixth isolate had previously been isolated from silage. The genomic features of 19 L. brevis strains, encompassing the six L. brevis strains described in this study and thirteen L. brevis strains for which complete genome sequences were available in public databases, were analyzed with particular attention to evolutionary aspects and adaptation to beer. Conclusions Comparative genomic analysis highlighted evolution of the taxon allowing niche colonization, notably adaptation to the beer environment, with approximately 50 chromosomal genes acquired by L. brevis beer-spoiler strains representing approximately 2% of their total chromosomal genetic content. These genes primarily encode proteins that are putatively involved in oxidation-reduction reactions, transcription regulation or membrane transport, functions that may be crucial to survive the harsh conditions associated with beer. The study emphasized the role of plasmids in beer spoilage with a number of unique genes identified among L. brevis beer-spoiler strains.
Collapse
Affiliation(s)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
98
|
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Selection of nerolidol among a series of terpenic and phenolic compounds for its potent activity against Lactobacillus fermentum ATCC 9338. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
99
|
Feyereisen M, Mahony J, Lugli GA, Ventura M, Neve H, Franz CMAP, Noben JP, O'Sullivan T, Sinderen DV. Isolation and Characterization of Lactobacillus brevis Phages. Viruses 2019; 11:v11050393. [PMID: 31035495 PMCID: PMC6563214 DOI: 10.3390/v11050393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Lactobacillus brevis has been widely used in industry for fermentation purposes. However, it is also associated with the spoilage of foods and beverages, in particular, beer. There is an increasing demand for natural food preservation methods, and in this context, bacteriophages possess the potential to control such spoilage bacteria. Just a few studies on phages infecting Lactobacillus brevis have been performed to date and in the present study, we report the isolation and characterization of five virulent phages capable of infecting Lb. brevis strains. The analysis reveals a high diversity among the isolates, with members belonging to both, the Myoviridae and Siphoviridae families. One isolate, designated phage 3-521, possesses a genome of 140.8 kb, thus representing the largest Lb. brevis phage genome sequenced to date. While the isolated phages do not propagate on Lb. brevis beer-spoiling strains, phages showed activity against these strains, impairing the growth of some Lb. brevis strains. The results highlight the potential of bacteriophage-based treatments as an effective approach to prevent bacterial spoilage of beer.
Collapse
Affiliation(s)
- Marine Feyereisen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Charles M A P Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Tadhg O'Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, 2382 Zoeterwoude, The Netherlands.
| | - Douwe van Sinderen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
100
|
Callejo MJ, García Navas JJ, Alba R, Escott C, Loira I, González MC, Morata A. Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03244-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|