51
|
Zelenkova I, Zotkin S, Korneev P, Koprov S, Grushin A. Comprehensive overview of hemoglobin mass and blood volume in elite athletes across a wide range of different sporting disciplines. J Sports Med Phys Fitness 2018; 59:179-186. [PMID: 29308847 DOI: 10.23736/s0022-4707.18.08018-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of the study was to compare total hemoglobin mass (tHb-mass) and blood volume (BV) across elite athletes with different sporting specializations. METHODS The study enrolled 222 members of Russian national teams from 12 different sporting disciplines and non-Olympic sports. The athletes were tested in the middle of a competitive season for tHb-mass, BV, plasma volume (PV), hemoglobin concentration (Hb), and hematocrit level (Hct) determination. tHb-mass measurements were performed using CO- rebreathing technique, alongside Hb and Hct (capillary blood). RESULTS In elite endurance athletes both male and female values for tHb-mass, BV and PV, were significantly higher compared to anaerobic, technical sports and untrained subjects. The highest values of relative tHb-mass across all 15 groups were found in cross-country skiers (15.1±0.1 g/kg) and cyclists (15.0±0.5 g/kg). In the anaerobic group the highest value of tHb-mass was within the short-track group - i.e. 12.9±0.5 g/kg which was significantly lower than in cycling. In all aerobic groups, anaerobic and breath-hold divers we found significant difference in relative tHb-mass compared to untrained subjects. The difference between relative tHb-mass in the cycling group and untrained subjects was 31.3%, 17% for short track, 30.1% for handball and 33.5% for motor sport. For the largest group (biathlon) we performed correlation analysis for males and females with competitive performance and found relationship in both groups (P<0.05). CONCLUSIONS The study clearly demonstrates the difference between endurance and non-endurance athletes in tHb-mass for elite males and females athletes and its importance in competitive aerobic performance.
Collapse
Affiliation(s)
- Irina Zelenkova
- Russian Olympic Committee Innovation Center, Moscow, Russia -
| | - Sergey Zotkin
- Russian Olympic Committee Innovation Center, Moscow, Russia
| | - Pavel Korneev
- Russian Olympic Committee Innovation Center, Moscow, Russia
| | - Sergey Koprov
- Russian Olympic Committee Innovation Center, Moscow, Russia
| | | |
Collapse
|
52
|
Ohmura H, Mukai K, Takahashi Y, Takahashi T, Jones JH. Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia. J Equine Sci 2017; 28:41-45. [PMID: 28721122 PMCID: PMC5506448 DOI: 10.1294/jes.28.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
Abstract
Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O2max) more than normoxic training in untrained horses. However, the effects of hypoxic training on
well-trained horses are unclear. We measured the effects of hypoxic training on V̇O2max of 5 well-trained horses in which V̇O2max had not increased over 3 consecutive weeks of supramaximal treadmill training
in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O2) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of
hypoxic training. Mass-specific V̇O2max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O2 (STPD)/(kg × min), P<0.05) even though all-out training in normoxia had not increased
V̇O2max. Absolute V̇O2max also increased after hypoxic training (86.6 ± 6.2 vs. 93.6 ± 6.6 l O2 (STPD)/min, P<0.05). Total running distance after hypoxic training increased 12% compared to
that before hypoxic training; however, the difference was not significant. There were no significant differences between pre- and post-hypoxic training for end-run plasma lactate concentrations or packed cell volumes. Hypoxic
training may increase V̇O2max even though it is not increased by normoxic training in well-trained horses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the
potential to enhance normoxic performance of Thoroughbred horses.
Collapse
Affiliation(s)
- Hajime Ohmura
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Kazutaka Mukai
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Yuji Takahashi
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Toshiyuki Takahashi
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - James H Jones
- School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
53
|
De Smet S, van Herpt P, D'Hulst G, Van Thienen R, Van Leemputte M, Hespel P. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High. Front Physiol 2017; 8:347. [PMID: 28620311 PMCID: PMC5449743 DOI: 10.3389/fphys.2017.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
In the setting of “living high,” it is unclear whether high-intensity interval training (HIIT) should be performed “low” or “high” to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week “live high-train low or high” program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~15.5 h per day), TR was exposed to normobaric hypoxia simulating progressively increasing altitude of ~2,000–3,250 m. Three times per week, TR performed HIIT, administered as unilateral knee-extension training, with one leg in normobaric hypoxia (~4,300 m; TRHYP) and with the other leg in normoxia (TRNOR). “Living high” elicited a consistent elevation in serum erythropoietin concentrations which adequately predicted the increase in hemoglobin mass (r = 0.78, P < 0.05; TR: +2.6%, P < 0.05; CON: −0.7%, P > 0.05). Muscle oxygenation during training was lower in TRHYP vs. TRNOR (P < 0.05). Muscle homogenate buffering capacity and pH-regulating protein abundance were similar between pretest and posttest. Oscillations in muscle blood volume during repeated sprints, as estimated by oscillations in NIRS-derived tHb, increased from pretest to posttest in TRHYP (~80%, P < 0.01) but not in TRNOR (~50%, P = 0.08). Muscle capillarity (~15%) as well as repeated-sprint ability (~8%) and 3-min maximal performance (~10–15%) increased similarly in both legs (P < 0.05). Maximal isometric strength increased in TRHYP (~8%, P < 0.05) but not in TRNOR (~4%, P > 0.05). In conclusion, muscular and performance adaptations were largely similar following normoxic vs. hypoxic HIIT. However, hypoxic HIIT stimulated adaptations in isometric strength and muscle perfusion during intermittent sprinting.
Collapse
Affiliation(s)
- Stefan De Smet
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Paul van Herpt
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Ruud Van Thienen
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Marc Van Leemputte
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Peter Hespel
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium.,Athletic Performance Center, Bakala Academy, KU LeuvenLeuven, Belgium
| |
Collapse
|
54
|
Hauser A, Schmitt L, Troesch S, Saugy JJ, Cejuela-Anta R, Faiss R, Robinson N, Wehrlin JP, Millet GP. Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes. Med Sci Sports Exerc 2016; 48:734-41. [PMID: 26540262 DOI: 10.1249/mss.0000000000000808] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To compare hemoglobin mass (Hb(mass)) changes during an 18-d live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH). METHODS Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control [CON]: n = 7) and participated in an 18-d LHTL camp. NH and HH slept at 2250 m, whereas CON slept, and all groups trained at altitudes <1200 m. Hb(mass) was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre-), immediately after (post-) (hypoxic dose: 316 vs 238 h for HH and NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-d NH). Running (3-km run) and cycling (incremental cycling test) performances were measured pre and post. RESULTS Hb(mass) increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 at day 18) and NH (+4.1%, P < 0.001) compared with CON (+1.9%, P = 0.08). There was a wide variability in individual Hb(mass) responses in HH (-0.1% to +10.6%) and NH (-1.4% to +7.7%). Postrunning time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), and CON (-2.1%, P = 0.03), whereas cycling performance changed nonsignificantly in HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89). CONCLUSION HH and NH evoked similar Hb(mass) increases for the same hypoxic dose and after 18-d LHTL. The wide variability in individual Hb(mass) responses in HH and NH emphasizes the importance of individual Hb(mass) evaluation of altitude training.
Collapse
Affiliation(s)
- Anna Hauser
- 1Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, SWITZERLAND; 2Department of Physiology, Faculty of Biology and Medicine, ISSUL, Institute of Sport Sciences, University of Lausanne, SWITZERLAND; 3National School of Mountain Sports/National Ski-Nordic Centre, Prémanon, FRANCE; 4Departmental Section of Physical Education and Sports, University of Alicante, SPAIN; and 5Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Geneva & Lausanne, Center Hospitalier Universitaire Vaudois & University of Lausanne, SWITZERLAND
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bădău D, Bacârea A, Ungur RN, Bădău A, Martoma AM. Biochemical and functional modifications in biathlon athletes at medium altitude training / Modificările biochimice și funcționale ale atleților biatloniști după antrenament la altitudine medie. REV ROMANA MED LAB 2016. [DOI: 10.1515/rrlm-2016-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objective: The aim of our research was to identify physiological and biochemical changes induced by training at medium altitude.
Methods: Ten biathlon athletes underwent 28-day training camp at medium altitude in order to improve their aerobic effort, following the living high-base train high-interval train low (Hi-Hi-Lo) protocol. There were investigated three categories of functional and biochemical parameters, targeting the hematological changes (RBC, HCT, HGB), the oxidative (lipoperoxid, free malondialdehyde and total malondialdehyde) and antioxidative balance (the hydrogen donor capacity, ceruloplasmin and uric acid) and the capacity of effort (the maximum aerobic power, the cardiovascular economy in effort, the maximum O2 consumption).
Results: All the biochemical and functional evaluated parameters showed significant increases between the pre-training testing and post-training testing (5.13 ± 0.11 vs. 6.50 ± 0.09, p < 0.0001 for RBC; 44.80 ± 1.22 vs. 51.31 ± 2.31, p < 0.0001 for HCT; 15.06 ± 0.33 vs. 17.14 ± 0.25, p < 0.0001 for HGB; 1.32 ± 0.04 vs.1.62 ± 0.01, p < 0.0001 for LPx; 1.61 ± 0.01 vs. 1.73 ± 0.01, p < 0.0001 for free MDA; 2.98 ± 0.08 vs. 3.37 ± 0.03, p < 0.0001 for total MDA; 45.92 ± 0.13 vs. 57.98 ± 0.12, p < 0.0001 for HD; 25.95 ± 0.13 vs. 31.04 ± 0.06, p < 0.0001 for Crp; 3.47 ± 0.03 vs.7.69 ± 0.02, p < 0.0001 for UA; 63.91 ± 1.00 vs. 81.53 ± 1.97, p < 0.0001 for MAP; 33.13 ± 0.57 vs. 57.41 ± 0.63, p < 0.0001 for CVEE; 4190 ± 50.45 vs. 5945 ± 46.48, p < 0.0001 for VO2max).
Conclusions: Aerobic effort capacity of biathlon athletes has increased in the post-training period, using Hi-Hi-Lo protocol.
Collapse
Affiliation(s)
- Dana Bădău
- Department of Human Movement Sciences, University of Medicine and Pharmacy Tîrgu Mures, Romania
| | - Anca Bacârea
- Department of Pathophysiology, Univeristy of Medicine and Pharmacy Tîrgu Mureș, Str. Gh. Marinescu, Nr. 5, Tîrgu Mureș, Romania
| | - Ramona Natalia Ungur
- Department of Physical Education, University of Medicine and Pharmacy Tîrgu Mures, Romania
| | - Adela Bădău
- Department of Physical Education, University of Medicine and Pharmacy Tîrgu Mures, Romania
| | - Alina Mirela Martoma
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, Romania
| |
Collapse
|
56
|
Rohm I, Aderhold N, Ratka J, Goebel B, Franz M, Pistulli R, Gecks T, Figulla HR, Yilmaz A, Jung C. Hypobaric hypoxia in 3000 m altitude leads to a significant decrease in circulating plasmacytoid dendritic cells in humans. Clin Hemorheol Microcirc 2016; 63:257-65. [DOI: 10.3233/ch-152035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
57
|
García-Ramos A, Padial P, de la Fuente B, Argüelles-Cienfuegos J, Bonitch-Góngora J, Feriche B. Relationship Between Vertical Jump Height and Swimming Start Performance Before and After an Altitude Training Camp. J Strength Cond Res 2016; 30:1638-45. [DOI: 10.1519/jsc.0000000000001242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
58
|
Plumb JOM, Otto JM, Grocott MPW. 'Blood doping' from Armstrong to prehabilitation: manipulation of blood to improve performance in athletes and physiological reserve in patients. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:5. [PMID: 26929820 PMCID: PMC4770708 DOI: 10.1186/s13728-016-0046-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023]
Abstract
Haemoglobin is the blood’s oxygen carrying pigment and is encapsulated in red blood corpuscles. The concentration of haemoglobin in blood is dependent on both its total mass in the circulation (tHb-mass) and the total plasma volume in which it is suspended. Aerobic capacity is defined as the maximum amount of oxygen that can be consumed by the body per unit time and is one measure of physical fitness. Observations in athletes who have undergone blood doping or manipulation have revealed a closer relationship between physical fitness (aerobic capacity) and total haemoglobin mass (tHb-mass) than with haemoglobin concentration ([Hb]). Anaemia is defined by the World Health Organisation (WHO) as a haemoglobin concentration of <130 g/L for men and <120 g/L for women. Perioperative anaemia is a common problem and is associated with increased mortality and morbidity following surgery. Aerobic capacity is also associated with outcome following major surgery, with less fit patients having a higher incidence of mortality and morbidity after surgery. Taken together, these observations suggest that targeted preoperative elevation of tHb-mass may raise aerobic capacity both directly and indirectly (by augmenting preoperative exercise initiatives- ‘prehabilitation’) and thus improve postoperative outcome. This notion in turn raises a number of questions. Which measure ([Hb] or tHb-mass) has the most value for the description of oxygen carrying capacity? Which measure has the most utility for targeting therapies to manipulate haemoglobin levels? Do the newer agents being used for blood manipulation (to increase tHb-mass) in elite sport have utility in the clinical environment? This review explores the literature relating to blood manipulation in elite sport as well as the relationship between perioperative anaemia, physical fitness and outcome following surgery, and suggests some avenues for exploring this area further.
Collapse
Affiliation(s)
- James O M Plumb
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK ; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Road, Southampton, UK ; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Southampton, UK ; Faculty of Medicine University of Southampton, Southampton General Hospital Mailpoint 801 South Academic Block, Tremona Road Southampton, Southampton, SO16 6YD UK
| | - James M Otto
- Division of Surgery and Interventional Science c/o, Institute of Sport, Exercise and Health (ISEH), 170 Tottenham Court Road, London, UK
| | - Michael P W Grocott
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK ; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Road, Southampton, UK ; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Southampton, UK ; Faculty of Medicine University of Southampton, Southampton General Hospital Mailpoint 801 South Academic Block, Tremona Road Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
59
|
Carr AJ, Saunders PU, Vallance BS, Garvican-Lewis LA, Gore CJ. Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia. J Sports Sci Med 2015; 14:776-782. [PMID: 26664274 PMCID: PMC4657420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night(-1) at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02). In comparison to baseline, Hbmass increased by 1.2% (±1.4%) in the lowHH group, 2.6% (±1.8%) in lowHH+NHnight, and there was a decrease of 0.9% (±4.9%) in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03) and a ~8% pre to post-intervention difference (p = 0.006) after lowHH only. We recommend low altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass. Key pointsIn some countries, it may not be possible to perform classical altitude training effectively, due to the low elevation at altitude training venues. An additional hypoxic stimulus can be provided by simulating higher altitudes overnight, using altitude tents.Three weeks of combined (living and training at 1380 m) and simulated altitude exposure (at 3000 m) can improve haemoglobin mass by over 3% in comparison to control values, and can also improve time to exhaustion by ~9% in comparison to baseline.We recommend that, in the context of an altitude training camp at low altitudes (~1400 m) the addition of a relatively short exposure to simulated altitudes of 3000 m can elicit physiological and performance benefits, without compromise to training intensity or competition preparation. However, the benefits will not be greater than conducting a traditional altitude training camp at low altitudes.
Collapse
Affiliation(s)
- Amelia J Carr
- School of Exercise and Nutrition Sciences, Deakin University , Melbourne, Victoria, Australia
| | - Philo U Saunders
- Department of Physiology, Australian Institute of Sport , Canberra, Australian Capital Territory, Australia ; Track and Field, Australian Institute of Sport , Canberra, Australian Capital Territory, Australia
| | | | - Laura A Garvican-Lewis
- Department of Physiology, Australian Institute of Sport , Canberra, Australian Capital Territory, Australia ; Research Institute for Sport and Exercise, University of Canberra , Canberra, Australian Capital Territory, Australia
| | - Christopher J Gore
- Department of Physiology, Australian Institute of Sport , Canberra, Australian Capital Territory, Australia ; Exercise Physiology Laboratory, Flinders University , Adelaide, South Australia
| |
Collapse
|
60
|
Garvican-Lewis LA, Halliday I, Abbiss CR, Saunders PU, Gore CJ. Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners. J Sports Sci Med 2015; 14:413-417. [PMID: 25983592 PMCID: PMC4424472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The influence of low natural altitudes (< 2000 m) on erythropoietic adaptation is currently unclear, with current recommendations indicating that such low altitudes may be insufficient to stimulate significant increases in haemoglobin mass (Hbmass). As such, the purpose of this study was to determine the influence of 3 weeks of live high, train high exposure (LHTH) at low natural altitude (i.e. 1800 m) on Hbmass, red blood cell count and iron profile. A total of 16 elite or well-trained runners were assigned into either a LHTH (n = 8) or CONTROL (n = 8) group. Venous blood samples were drawn prior to, at 2 weeks and at 3 weeks following exposure. Hbmass was measured in duplicate prior to exposure and at 2 weeks and at 3 weeks following exposure via carbon monoxide rebreathing. The percentage change in Hbmass from baseline was significantly greater in LHTH, when compared with the CONTROL group at 2 (3.1% vs 0.4%; p = 0.01;) and 3 weeks (3.0% vs -1.1%; p < 0.02, respectively) following exposure. Haematocrit was greater in LHTH than CONTROL at 2 (p = 0.01) and 3 weeks (p = 0.04) following exposure. No significant interaction effect was observed for haemoglobin concentration (p = 0.06), serum ferritin (p = 0.43), transferrin (p = 0.52) or reticulocyte percentage (p = 0.16). The results of this study indicate that three week of natural classic (i.e. LHTH) low altitude exposure (1800 m) results in a significant increase in Hbmass of elite distance runners, which is likely due to the continuous exposure to hypoxia. Key pointsTwo and three weeks of LHTH altitude exposure (1800 m) results in a significant increase in HbmassLHTH altitude exposure increased Hbmass by 3.1% after 2 weeks, and 3.0% after 3 weeks of exposureLHTH altitude exposure may be a practical method to increase Hbmass in well-trained athletes.
Collapse
Affiliation(s)
- Laura A Garvican-Lewis
- Research Institute for Sport and Exercise, University of Canberra , Canberra, Australia ; Department of Physiology, Australian Institute of Sport , Canberra, Australia
| | - Iona Halliday
- Department of Physiology, Australian Institute of Sport , Canberra, Australia ; Centre for Exercise and Sports Science Research, School of Exercise and Health Science, Edith Cowan University , Joondalup, Western Australia
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Exercise and Health Science, Edith Cowan University , Joondalup, Western Australia
| | - Philo U Saunders
- Department of Physiology, Australian Institute of Sport , Canberra, Australia
| | - Christopher J Gore
- Department of Physiology, Australian Institute of Sport , Canberra, Australia ; Exercise Physiology Laboratory, Flinders University , South Australia
| |
Collapse
|
61
|
Gore CJ. The challenge of assessing athlete performance after altitude training. J Appl Physiol (1985) 2014; 116:593-4. [PMID: 24436300 DOI: 10.1152/japplphysiol.00029.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Christopher J Gore
- Department of Physiology, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| |
Collapse
|
62
|
Girard O, Pluim BM. Improving team-sport player's physical performance with altitude training: from beliefs to scientific evidence. Br J Sports Med 2013; 47 Suppl 1:i2-3. [PMID: 24282201 PMCID: PMC3903311 DOI: 10.1136/bjsports-2013-093119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, , Doha, Qatar
| | | |
Collapse
|
63
|
Girard O, Amann M, Aughey R, Billaut F, Bishop DJ, Bourdon P, Buchheit M, Chapman R, D'Hooghe M, Garvican-Lewis LA, Gore CJ, Millet GP, Roach GD, Sargent C, Saunders PU, Schmidt W, Schumacher YO. Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues. Br J Sports Med 2013; 47 Suppl 1:i8-16. [PMID: 24282213 PMCID: PMC3903313 DOI: 10.1136/bjsports-2013-093109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 01/09/2023]
Abstract
Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.
Collapse
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robert Aughey
- Exercise and Active Living, Institute of Sport, Victoria University, Melbourne, Australia
- Western Bulldogs Football Club, Melbourne, Australia
| | | | - David J Bishop
- Exercise and Active Living, Institute of Sport, Victoria University, Melbourne, Australia
| | | | | | - Robert Chapman
- Department of Kinesiology, Indiana University, High Performance Department, USA Track & Field, Indianapolis, Indiana, USA
| | - Michel D'Hooghe
- Fédération Internationale de Football Association (FIFA) Medical Commission and FIFA Medical Assessment and Research Centre (F-MARC), Langerei, 71, 8000 Brugge, Belgium
| | - Laura A Garvican-Lewis
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
| | - Christopher J Gore
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- Exercise Physiology Laboratory, Flinders University, Adelaide, Australia
| | - Grégoire P Millet
- Department of Physiology—Faculty of Biology and Medicine, ISSUL—Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Charli Sargent
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Philo U Saunders
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
| | - Walter Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Yorck O Schumacher
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|