51
|
Herold F, Müller P, Gronwald T, Müller NG. Dose-Response Matters! - A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 2019; 10:2338. [PMID: 31736815 PMCID: PMC6839278 DOI: 10.3389/fpsyg.2019.02338] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
In general, it is well recognized that both acute physical exercises and regular physical training influence brain plasticity and cognitive functions positively. However, growing evidence shows that the same physical exercises induce very heterogeneous outcomes across individuals. In an attempt to better understand this interindividual heterogeneity in response to acute and regular physical exercising, most research, so far, has focused on non-modifiable factors such as sex and different genotypes, while relatively little attention has been paid to exercise prescription as a modifiable factor. With an adapted exercise prescription, dosage can be made comparable across individuals, a procedure that is necessary to better understand the dose-response relationship in exercise-cognition research. This improved understanding of dose-response relationships could help to design more efficient physical training approaches against, for instance, cognitive decline.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Patrick Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Gronwald
- Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
52
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 832] [Impact Index Per Article: 138.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
53
|
Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act 2019; 16:10. [PMID: 31333805 PMCID: PMC6617693 DOI: 10.1186/s11556-019-0217-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/26/2019] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND During the aging process, physical capabilities (e.g., muscular strength) and cognitive functions (e.g., memory) gradually decrease. Regarding cognitive functions, substantial functional (e.g., compensatory brain activity) and structural changes (e.g., shrinking of the hippocampus) in the brain cause this decline. Notably, growing evidence points towards a relationship between cognition and measures of muscular strength and muscle mass. Based on this emerging evidence, resistance exercises and/or resistance training, which contributes to the preservation and augmentation of muscular strength and muscle mass, may trigger beneficial neurobiological processes and could be crucial for healthy aging that includes preservation of the brain and cognition. Compared with the multitude of studies that have investigated the influence of endurance exercises and/or endurance training on cognitive performance and brain structure, considerably less work has focused on the effects of resistance exercises and/or resistance training. While the available evidence regarding resistance exercise-induced changes in cognitive functions is pooled, the underlying neurobiological processes, such as functional and structural brain changes, have yet to be summarized. Hence, the purpose of this systematic review is to provide an overview of resistance exercise-induced functional and/or structural brain changes that are related to cognitive functions. METHODS AND RESULTS A systematic literature search was conducted by two independent researchers across six electronic databases; 5957 records were returned, of which 18 were considered relevant and were analyzed. SHORT CONCLUSION Based on our analyses, resistance exercises and resistance training evoked substantial functional brain changes, especially in the frontal lobe, which were accompanied by improvements in executive functions. Furthermore, resistance training led to lower white matter atrophy and smaller white matter lesion volumes. However, based on the relatively small number of studies available, the findings should be interpreted cautiously. Hence, future studies are required to investigate the underlying neurobiological mechanisms and to verify whether the positive findings can be confirmed and transferred to other needy cohorts, such as older adults with dementia, sarcopenia and/or dynapenia.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alexander Törpel
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
54
|
Physical Exercise and Neuroinflammation in Major Depressive Disorder. Mol Neurobiol 2019; 56:8323-8335. [DOI: 10.1007/s12035-019-01670-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
|
55
|
Müllers P, Taubert M, Müller NG. Physical Exercise as Personalized Medicine for Dementia Prevention? Front Physiol 2019; 10:672. [PMID: 31244669 PMCID: PMC6563896 DOI: 10.3389/fphys.2019.00672] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence mainly from observational studies supports the notion that lifestyle factors such as regular physical activity can modulate potential risk factors of dementia. Regarding a potential mechanism for this interaction, results from intervention studies show that exercising can induce neuroplastic changes in the human brain. However, a detailed look at the study results reveals a wide interindividual variability in the observed effects. This heterogeneity may originate from the fact that there are “responders” and “non-responders” with respect to the impact of physical exercise on physiological outcome parameters (i.e., VO2 peak) and the brain. From this, it follows that recommendations for physical exercise programs should not follow a “one size fits all” approach. Instead, we propose that the exercises should be tailored to an individual in order to maximize the potential neuroplastic and preventive effects of regular exercise. These adaptations should take the individual performance levels into account and impact both the quality (i.e., type) and the quantity of exercises (i.e., intensity, duration, and volume).
Collapse
Affiliation(s)
- Patrick Müllers
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Notger G Müller
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Clinic for Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
56
|
Macpherson H, Brownell S, Duckham RL, Meyer B, Mirzaee S, Daly RM. Multifaceted intervention to enhance cognition in older people at risk of cognitive decline: study protocol for the Protein Omega-3 and Vitamin D Exercise Research (PONDER) study. BMJ Open 2019; 9:e024145. [PMID: 31072850 PMCID: PMC6527972 DOI: 10.1136/bmjopen-2018-024145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION An increasing number of people are living with cognitive impairment and dementia. Current pharmacological therapies at best reduce Alzheimer's disease symptomatology but do not delay dementia onset in those at high risk. Structured exercise interventions can enhance cognition in older people; however, to produce long lasting, clinically relevant cognitive benefits, it is proposed that a multifaceted approach incorporating exercise with dietary supplements will address a wider range of mechanisms involved in cognitive decline. The Protein Omega-3 aNd vitamin D Exercise Research (PONDER) study aims to investigate the cognitive effects of a multimodal exercise programme combined with nutritional supplementation in older adults with subjective memory impairment (SMI). METHODS AND ANALYSIS The PONDER study is a single-centre, 12-month, community-based, parallel group, randomised, double-blind, placebo controlled trial involving a 6-month multifaceted intervention with a further 6-month follow-up. Participants will be 148 people from Melbourne, Australia, aged 60-85 years with SMI who will be randomised (1:1 ratio) to either a 6-month supervised multimodal exercise programme combined with omega-3 fatty acid, vitamin D and protein supplementation or a stretching/flexibility exercise programme combined with placebo supplements. The primary outcome is the change in cognition after 6 months as assessed by the Trail Making Test and global cognitive function assessed from the Cogstate Computerised battery. Secondary outcomes will include memory, working memory/learning and attention/psychomotor function, the Montreal Cognitive Assessment, mood, quality of life, muscle strength, physical function, body composition, cardiovascular health and sleep quality. Cognition at 12 months will represent a secondary outcome. ETHICS AND DISSEMINATION This study has been approved by the Deakin University Human Research Ethics Committee (project 2016-260). Informed consent will be obtained from all participants. The authors intend to submit the findings of the study to peer-reviewed journals or academic conferences to be published. TRIAL REGISTRATION NUMBER ACTRN12616001549415; Pre-results.
Collapse
Affiliation(s)
- Helen Macpherson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sarah Brownell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Rachel L Duckham
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, UK
| | - Barbara Meyer
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Sam Mirzaee
- Monash Cardiovascular Research Centre, Monash HEART, Monash University, Melbourne, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
57
|
Grégoire CA, Berryman N, St-Onge F, Vu TTM, Bosquet L, Arbour N, Bherer L. Gross Motor Skills Training Leads to Increased Brain-Derived Neurotrophic Factor Levels in Healthy Older Adults: A Pilot Study. Front Physiol 2019; 10:410. [PMID: 31031639 PMCID: PMC6473056 DOI: 10.3389/fphys.2019.00410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Exercise is recognized as a promising approach to counteract aging-associated declines in cognitive functions. However, the exact molecular pathways involved remain unclear. Aerobic training interventions and improvements in peak oxygen uptake (VO2peak) have been associated with increases in the peripheral concentration of brain-derived neurotrophic factor (BDNF) and better cognitive performances. However, other training interventions such as resistance training and gross motor skills programs were also linked with improvements in cognitive functions. Thus far, few studies have compared different types of physical exercise training protocols and their impact on BDNF concentrations, especially in participants over 60 years old. The main objective of this study was to compare the effects of three exercise protocols on plasma BDNF concentrations at rest in healthy older adults. Thirty-four older adults were randomized into three interventions: (1) lower body strength and aerobic training (LBS-A), (2) upper body strength and aerobic training (UBS-A), or (3) gross motor activities (GMA). All interventions were composed of 3 weekly sessions over a period of 8 weeks. Physical, biochemical, and cognitive assessments were performed pre and post-intervention. All interventions resulted in improved cognitive functions but the GMA intervention induced a larger increase in plasma BDNF concentrations than LBS-A. No correlation was observed between changes in BDNF concentrations and cognitive performances. These findings suggest that a program of GMA could lead to enhancements in plasma BDNF concentrations. Moreover, cognition improvement could occur without concomitant detectable changes in BDNF, which highlights the multifactorial nature of the exercise-cognition relationship in older adults.
Collapse
Affiliation(s)
- Catherine-Alexandra Grégoire
- Montreal Heart Institute, Montreal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Berryman
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Sports Studies, Bishop's University, Sherbrooke, QC, Canada
| | - Florence St-Onge
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, CRCHUM, Montreal, QC, Canada
| | - Thien Tuong Minh Vu
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Service de Gériatrie, Montreal, QC, Canada
| | - Laurent Bosquet
- Laboratory MOVE (EA 6314), Faculty of Sport Sciences, Université de Poitiers, Poitiers, France.,Department of Kinesiology, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, CRCHUM, Montreal, QC, Canada
| | - Louis Bherer
- Montreal Heart Institute, Montreal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
58
|
Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol Aging 2019; 79:119-130. [PMID: 31051329 DOI: 10.1016/j.neurobiolaging.2019.03.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/03/2019] [Accepted: 03/16/2019] [Indexed: 01/01/2023]
Abstract
Exercise plays a key role in healthy aging by promoting both physical and cognitive function. Physical function and cognitive function appear to be interrelated and may share common mechanisms. Thus, exercise-induced improvements in physical function and cognitive function may co-occur and be associated with each other. However, no systematic review has specifically assessed and compared the effects of exercise on both physical function and cognitive function in older adults, and the association between changes in both outcomes after exercise training. Thus, we conducted a systematic review and meta-analysis (N = 48 studies) among older adults (60+ years). These data suggest exercise training has a significant benefit for both physical function (g = 0.39; p < 0.001) and cognitive function (g = 0.24; p < 0.001). At the study level, there was a positive correlation between the size of the exercise-induced effect on physical function and on cognitive function (b = 0.41; p = 0.002). Our results indicate exercise improves both physical and cognitive function, reiterating the notion that exercise is a panacea for aging well.
Collapse
Affiliation(s)
- Ryan S Falck
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Center for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jennifer C Davis
- Faculty of Management, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - John R Best
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Center for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Rachel A Crockett
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Center for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Center for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
59
|
Liu-Ambrose T, Barha C, Falck RS. Active body, healthy brain: Exercise for healthy cognitive aging. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:95-120. [PMID: 31607364 DOI: 10.1016/bs.irn.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The world's population is aging and promoting healthy cognitive aging is a public health priority and challenge. Physical activity is a modifiable lifestyle factor that has been identified as positively impacting the cognitive health of older adults with and without cognitive impairment. This chapter current evidence from epidemiological and intervention studies (i.e., randomized controlled trials) on the role of physical activity and exercise in promoting cognitive health in older adults both with and without cognitive impairment. Biological sex as a potential moderator of exercise efficacy is also discussed. We conclude with future directions for this rapidly expanding line of research.
Collapse
Affiliation(s)
- Teresa Liu-Ambrose
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Cindy Barha
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ryan S Falck
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
60
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|
61
|
Liu-Ambrose T, Barha CK, Best JR. Physical activity for brain health in older adults. Appl Physiol Nutr Metab 2018; 43:1105-1112. [PMID: 30306793 DOI: 10.1139/apnm-2018-0260] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity is a promising strategy for dementia prevention and disease modification. Here, we provide a narrative review of the current evidence from epidemiological and intervention studies on the role of physical activity and exercise in promoting cognitive health in older adults both without and with cognitive impairment. We highlight some of the potential underlying mechanisms and discuss biological sex as a potential moderating factor. We conclude with limitations and future directions for this rapidly expanding line of research.
Collapse
Affiliation(s)
- Teresa Liu-Ambrose
- a Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Laboratory, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,b Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cindy K Barha
- a Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Laboratory, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,b Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John R Best
- a Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Laboratory, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,b Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
62
|
Törpel A, Herold F, Hamacher D, Müller NG, Schega L. Strengthening the Brain-Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement? J Clin Med 2018; 7:E337. [PMID: 30304785 PMCID: PMC6210989 DOI: 10.3390/jcm7100337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is accompanied by a decrease in physical capabilities (e.g., strength loss) and cognitive decline. The observed bidirectional relationship between physical activity and brain health suggests that physical activities could be beneficial to maintain and improve brain functioning (e.g., cognitive performance). However, the exercise type (e.g., resistance training, endurance training) and their exercise variables (e.g., load, duration, frequency) for an effective physical activity that optimally enhance cognitive performance are still unknown. There is growing evidence that resistance training induces substantial brain changes which contribute to improved cognitive functions. A relative new method in the field of resistance training is blood flow restriction training (BFR). While resistance training with BFR is widely studied in the context of muscular performance, this training strategy also induces an activation of signaling pathways associated with neuroplasticity and cognitive functions. Based on this, it seems reasonable to hypothesize that resistance training with BFR is a promising new strategy to boost the effectiveness of resistance training interventions regarding cognitive performance. To support our hypothesis, we provide rationales of possible adaptation processes induced by resistance training with BFR. Furthermore, we outline recommendations for future studies planning to investigate the effects of resistance training with BFR on cognition.
Collapse
Affiliation(s)
- Alexander Törpel
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Dennis Hamacher
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| |
Collapse
|
63
|
Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential Effects of Extended Exercise and Memantine Treatment on Adult Neurogenesis in Male and Female Rats. Neuroscience 2018; 390:241-255. [PMID: 30176321 DOI: 10.1016/j.neuroscience.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Adult neurogenesis has potential to ameliorate a number of disorders that negatively impact the hippocampus, including age-related cognitive decline, depression, and schizophrenia. A number of treatments enhance adult neurogenesis including exercise, NMDA receptor antagonism, antidepressant drugs and environmental enrichment. Despite the chronic nature of many disorders, most animal studies have only examined the efficacy of neurogenic treatments over short timescales (≤1 month). Also, studies of neurogenesis typically include only 1 sex, even though many disorders differentially impact males and females. We tested whether two known neurogenic treatments, running and the NMDA receptor antagonist, memantine, could cause sustained increases in neurogenesis in male and female rats. We found that continuous access to a running wheel (cRUN) initially increased neurogenesis, but effects were minimal after 1 month and completely absent after 5 months. Similarly, a single injection of memantine (sMEM) transiently increased neurogenesis before returning to baseline at 1 month. To determine whether neurogenesis could be increased over a 2-month timeframe, we next subjected rats to interval running (iRUN), multiple memantine injections (mMEM), or alternating blocks of iRUN and mMEM. Two months of iRUN increased DCX+ cells in females and iRUN followed by mMEM increased DCX+ cells in males, indicating that neurogenesis was increased in the later stages of the treatments. However, thymidine analogs revealed that neurogenesis was minimally increased during the initial stages of the treatments. These findings highlight temporal limitations and sex differences in the efficacy of neurogenic manipulations, which may be relevant for designing plasticity-promoting treatments.
Collapse
Affiliation(s)
- Shaina P Cahill
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John Darby Cole
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ru Qi Yu
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jack Clemans-Gibbon
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
64
|
Herold F, Hamacher D, Schega L, Müller NG. Thinking While Moving or Moving While Thinking - Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement. Front Aging Neurosci 2018; 10:228. [PMID: 30127732 PMCID: PMC6089337 DOI: 10.3389/fnagi.2018.00228] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
The demographic change in industrial countries, with increasingly sedentary lifestyles, has a negative impact on mental health. Normal and pathological aging leads to cognitive deficits. This development poses major challenges on national health systems. Therefore, it is necessary to develop efficient cognitive enhancement strategies. The combination of regular physical exercise with cognitive stimulation seems especially suited to increase an individual's cognitive reserve, i.e., his/her resistance to degenerative processes of the brain. Here, we outline insufficiently explored fields in exercise-cognition research and provide a classification approach for different motor-cognitive training regimens. We suggest to classify motor-cognitive training in two categories, (I) sequential motor-cognitive training (the motor and cognitive training are conducted time separated) and (II) simultaneous motor-cognitive training (motor and cognitive training are conducted sequentially). In addition, simultaneous motor-cognitive training may be distinguished based on the specific characteristics of the cognitive task. If successfully solving the cognitive task is not a relevant prerequisite to complete the motor-cognitive task, we would consider this type of training as (IIa) motor-cognitive training with additional cognitive task. In contrast, in ecologically more valid (IIb) motor cognitive training with incorporated cognitive task, the cognitive tasks are a relevant prerequisite to solve the motor-cognitive task. We speculate that incorporating cognitive tasks into motor tasks, rather than separate training of mental and physical functions, is the most promising approach to efficiently enhance cognitive reserve. Further research investigating the influence of motor(-cognitive) exercises with different quantitative and qualitative characteristics on cognitive performance is urgently needed.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dennis Hamacher
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
65
|
Domínguez-Sanchéz MA, Bustos-Cruz RH, Velasco-Orjuela GP, Quintero AP, Tordecilla-Sanders A, Correa-Bautista JE, Triana-Reina HR, García-Hermoso A, González-Ruíz K, Peña-Guzmán CA, Hernández E, Peña-Ibagon JC, Téllez-T LA, Izquierdo M, Ramírez-Vélez R. Acute Effects of High Intensity, Resistance, or Combined Protocol on the Increase of Level of Neurotrophic Factors in Physically Inactive Overweight Adults: The BrainFit Study. Front Physiol 2018; 9:741. [PMID: 29997519 PMCID: PMC6030369 DOI: 10.3389/fphys.2018.00741] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to compare the neurotrophic factor response following one session of high-intensity exercise, resistance training or both in a cohort of physically inactive overweight adults aged 18–30 years old. A randomized, parallel-group clinical trial of 51 men (23.6 ± 3.5 years; 83.5 ± 7.8 kg; 28.0 ± 1.9 kg/m2) who are physically inactive (i.e., < 150 min of moderate-intensity exercise per week or IPAQ score of <600 MET min/week for >6 months) and are either abdominally obese (waist circumference ≥90 cm) or have a body mass index, BMI ≥25 and ≤ 30 kg/m2 were randomized to the following four exercise protocols: high-intensity exercise (4 × 4 min intervals at 85–95% maximum heart rate [HRmax] interspersed with 4 min of recovery at 75–85% HRmax) (n = 14), resistance training (12–15 repetitions per set, at 50–70% of one repetition maximum with 60 s of recovery) (n = 12), combined high-intensity and resistance exercise (n = 13), or non-exercising control (n = 12). The plasma levels of neurotrophin-3 (NT-3), neurotrophin-4 (also known as neurotrophin 4/5; NT-4 or NT-4/5), and brain-derived neurotrophic factor (BDNF) were determined before (pre-exercise) and 1-min post-exercise for each protocol session. Resistance training induced significant increases in NT-3 (+39.6 ng/mL [95% CI, 2.5–76.6; p = 0.004], and NT-4/5 (+1.3 ng/mL [95% CI, 0.3–2.3; p = 0.014]), respectively. Additionally, combined training results in favorable effects on BDNF (+22.0, 95% CI, 2.6–41.5; p = 0.029) and NT-3 (+32.9 ng/mL [95% CI, 12.3–53.4; p = 0.004]), respectively. The regression analysis revealed a significant positive relationship between changes in BDNF levels and changes in NT-4/5 levels from baseline to immediate post-exercise in the combined training group (R2 = 0.345, p = 0.034) but not the other intervention groups. The findings indicate that acute resistance training and combined exercise increase neurotrophic factors in physically inactive overweight adults. Further studies are required to determine the biological importance of changes in neurotrophic responses in overweight men and chronic effects of these exercise protocols. Trial Registration: ClinicalTrials.gov, NCT02915913 (Date: September 22, 2016).
Collapse
Affiliation(s)
- María A Domínguez-Sanchéz
- Grupo de Investigación Movimiento Corporal Humano, Facultad de Enfermería y Rehabilitación, Universidad de La Sabana, Chía, Colombia
| | - Rosa H Bustos-Cruz
- Evidence-Based Therapeutic Group, Clinical Pharmacology, Universidad de La Sabana, Bogotá, Colombia
| | - Gina P Velasco-Orjuela
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Andrea P Quintero
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Tordecilla-Sanders
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Jorge E Correa-Bautista
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Héctor R Triana-Reina
- Grupo GICAEDS, Programa de Cultura Física, Deporte y Recreación, Universidad Santo Tomás, Bogotá, Colombia
| | - Antonio García-Hermoso
- Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
| | - Katherine González-Ruíz
- Grupo de Ejercicio Físico y Deportes, Facultad de Salud, Programa de Fisioterapia, Universidad Manuela Beltrán, Bogotá, Colombia
| | - Carlos A Peña-Guzmán
- Facultad de Ingeniería Ambiental, Grupo de Investigación INAM-USTA Universidad Santo Tomás, Bogotá, Colombia
| | - Enrique Hernández
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Jhonatan C Peña-Ibagon
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Luis A Téllez-T
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarra, Navarrabiomed, CIBER of Frailty and Healthy Aging (CIBERFES) Instituto de Salud Carlos III, Pamplona, Spain
| | - Robinson Ramírez-Vélez
- Centro de Estudios en Medición de la Actividad Física, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
66
|
Acute and Long-term Effects of Resistance Training on Executive Function. JOURNAL OF COGNITIVE ENHANCEMENT 2018. [DOI: 10.1007/s41465-018-0079-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
67
|
Anderson-Hanley C, Barcelos NM, Zimmerman EA, Gillen RW, Dunnam M, Cohen BD, Yerokhin V, Miller KE, Hayes DJ, Arciero PJ, Maloney M, Kramer AF. The Aerobic and Cognitive Exercise Study (ACES) for Community-Dwelling Older Adults With or At-Risk for Mild Cognitive Impairment (MCI): Neuropsychological, Neurobiological and Neuroimaging Outcomes of a Randomized Clinical Trial. Front Aging Neurosci 2018; 10:76. [PMID: 29780318 PMCID: PMC5945889 DOI: 10.3389/fnagi.2018.00076] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
Abstract
Prior research has found that cognitive benefits of physical exercise and brain health in older adults may be enhanced when mental exercise is interactive simultaneously, as in exergaming. It is unclear whether the cognitive benefit can be maximized by increasing the degree of mental challenge during exercise. This randomized clinical trial (RCT), the Aerobic and Cognitive Exercise Study (ACES) sought to replicate and extend prior findings of added cognitive benefit from exergaming to those with or at risk for mild cognitive impairment (MCI). ACES compares the effects of 6 months of an exer-tour (virtual reality bike rides) with the effects of a more effortful exer-score (pedaling through a videogame to score points). Fourteen community-dwelling older adults meeting screening criteria for MCI (sMCI) were adherent to their assigned exercise for 6 months. The primary outcome was executive function, while secondary outcomes included memory and everyday cognitive function. Exer-tour and exer-score yielded significant moderate effects on executive function (Stroop A/C; d's = 0.51 and 0.47); there was no significant interaction effect. However, after 3 months the exer-tour revealed a significant and moderate effect, while exer-score showed little impact, as did a game-only condition. Both exer-tour and exer-score conditions also resulted in significant improvements in verbal memory. Effects appear to generalize to self-reported everyday cognitive function. Pilot data, including salivary biomarkers and structural MRI, were gathered at baseline and 6 months; exercise dose was associated with increased BDNF as well as increased gray matter volume in the PFC and ACC. Improvement in memory was associated with an increase in the DLPFC. Improved executive function was associated with increased expression of exosomal miRNA-9. Interactive physical and cognitive exercise (both high and low mental challenge) yielded similarly significant cognitive benefit for adherent sMCI exercisers over 6 months. A larger RCT is needed to confirm these findings. Further innovation and clinical trial data are needed to develop accessible, yet engaging and effective interventions to combat cognitive decline for the growing MCI population. ClinicalTrials.gov ID: NCT02237560
Collapse
Affiliation(s)
- Cay Anderson-Hanley
- The Healthy Aging and Neuropsychology Lab, Union College, Schenectady, NY, United States
| | - Nicole M Barcelos
- The Healthy Aging and Neuropsychology Lab, Union College, Schenectady, NY, United States
| | - Earl A Zimmerman
- Alzheimer's Disease Center, Albany Medical Center, Albany, NY, United States
| | - Robert W Gillen
- Sunnyview Rehabilitation Hospital, Schenectady, NY, United States
| | - Mina Dunnam
- Stratton VA Medical Center, Albany, NY, United States
| | - Brian D Cohen
- Department of Biology, Union College, Schenectady, NY, United States
| | - Vadim Yerokhin
- Biomedical Sciences Department, Oklahoma State University, Tulsa, OK, United States
| | - Kenneth E Miller
- Department of Anatomy and Cell Biology, Oklahoma State University, Tulsa, OK, United States
| | - David J Hayes
- The Healthy Aging and Neuropsychology Lab, Union College, Schenectady, NY, United States
| | - Paul J Arciero
- Department of Health & Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, United States
| | - Molly Maloney
- The Healthy Aging and Neuropsychology Lab, Union College, Schenectady, NY, United States
| | - Arthur F Kramer
- Beckman Institute, University of Illinois, Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
68
|
El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist 2018; 25:65-85. [PMID: 29683026 DOI: 10.1177/1073858418771538] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aerobic exercise improves cognitive and motor function by inducing neural changes detected using molecular, cellular, and systems level neuroscience techniques. This review unifies the knowledge gained across various neuroscience techniques to provide a comprehensive profile of the neural mechanisms that mediate exercise-induced neuroplasticity. Using a model of exercise-induced neuroplasticity, this review emphasizes the sequence of neural events that accompany exercise, and ultimately promote changes in human performance. This is achieved by differentiating between neuroplasticity induced by acute versus chronic aerobic exercise. Furthermore, this review emphasizes experimental considerations that influence the opportunity to observe exercise-induced neuroplasticity in humans. These include modifiable factors associated with the exercise intervention and nonmodifiable factors such as biological sex, ovarian hormones, genetic variations, and fitness level. To maximize the beneficial effects of exercise in health, disease, and following injury, future research should continue to explore the mechanisms that mediate exercise-induced neuroplasticity. This review identifies some fundamental gaps in knowledge that may serve to guide future research in this area.
Collapse
Affiliation(s)
- Jenin El-Sayes
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Diana Harasym
- 2 School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Claudia V Turco
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mitchell B Locke
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- 1 Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
69
|
Grégoire CA, Tobin S, Goldenstein BL, Samarut É, Leclerc A, Aumont A, Drapeau P, Fulton S, Fernandes KJL. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus. Front Mol Neurosci 2018; 11:126. [PMID: 29706867 PMCID: PMC5908890 DOI: 10.3389/fnmol.2018.00126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
Environmental enrichment (EE) is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG), a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN), a locked disk (LD), or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE)]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running’s genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.
Collapse
Affiliation(s)
- Catherine-Alexandra Grégoire
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Stephanie Tobin
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Brianna L Goldenstein
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Éric Samarut
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andréanne Leclerc
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Anne Aumont
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada
| | - Pierre Drapeau
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Stephanie Fulton
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Karl J L Fernandes
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
70
|
The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur Rev Aging Phys Act 2017; 14:20. [PMID: 29276545 PMCID: PMC5738846 DOI: 10.1186/s11556-017-0189-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 01/11/2023] Open
Abstract
The decline in cognitive and motor functions with age affects the performance of the aging healthy population in many daily life activities. Physical activity appears to mitigate this decline or even improve motor and cognitive abilities in older adults. The current systematic review will focus mainly on behavioral studies that look into the dual effects of different types of physical training (e.g., balance training, aerobic training, strength training, group sports, etc.) on cognitive and motor tasks in older adults with no known cognitive or motor disabilities or disease. Our search retrieved a total of 1095 likely relevant articles, of which 41 were considered for full-text reading and 19 were included in the review after the full-text reading. Overall, observations from the 19 included studies conclude that improvements on both motor and cognitive functions were found, mainly in interventions that adopt physical-cognitive training or combined exercise training. While this finding advocates the use of multimodal exercise training paradigms or interventions to improve cognitive-motor abilities in older adults, the sizeable inconsistency among training protocols and endpoint measures complicates the generalization of this finding.
Collapse
|
71
|
Robinson JE, Kiely J. Preventing falls in older adults: Can improving cognitive capacity help? COGENT PSYCHOLOGY 2017. [DOI: 10.1080/23311908.2017.1405866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Joseph E. Robinson
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| | - John Kiely
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| |
Collapse
|
72
|
Barha CK, Hsiung GYR, Best JR, Davis JC, Eng JJ, Jacova C, Lee PE, Munkacsy M, Cheung W, Liu-Ambrose T. Sex Difference in Aerobic Exercise Efficacy to Improve Cognition in Older Adults with Vascular Cognitive Impairment: Secondary Analysis of a Randomized Controlled Trial. J Alzheimers Dis 2017; 60:1397-1410. [DOI: 10.3233/jad-170221] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cindy K. Barha
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Ging-Yuek R. Hsiung
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British ColumbiaHospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - John R. Best
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Jennifer C. Davis
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Janice J. Eng
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
| | - Claudia Jacova
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British ColumbiaHospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Philip E. Lee
- Vancouver Coastal Health Research Institute and University of British ColumbiaHospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | | | - Winnie Cheung
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| |
Collapse
|
73
|
Thornton JS. Paradoxes and personalised medicine: from preseason to post-diagnosis. Br J Sports Med 2017; 51:628. [PMID: 28351850 DOI: 10.1136/bjsports-2017-097743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 11/04/2022]
|