51
|
Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, Wu J, Liu B, Ying X, Liu Y. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021; 70:464-475. [PMID: 32532891 PMCID: PMC7873416 DOI: 10.1136/gutjnl-2019-320368] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Tumour heterogeneity represents a major obstacle to accurate diagnosis and treatment in gastric adenocarcinoma (GA). Here, we report a systematic transcriptional atlas to delineate molecular and cellular heterogeneity in GA using single-cell RNA sequencing (scRNA-seq). DESIGN We performed unbiased transcriptome-wide scRNA-seq analysis on 27 677 cells from 9 tumour and 3 non-tumour samples. Analysis results were validated using large-scale histological assays and bulk transcriptomic datasets. RESULTS Our integrative analysis of tumour cells identified five cell subgroups with distinct expression profiles. A panel of differentiation-related genes reveals a high diversity of differentiation degrees within and between tumours. Low differentiation degrees can predict poor prognosis in GA. Among them, three subgroups exhibited different differentiation grade which corresponded well to histopathological features of Lauren's subtypes. Interestingly, the other two subgroups displayed unique transcriptome features. One subgroup expressing chief-cell markers (eg, LIPF and PGC) and RNF43 with Wnt/β-catenin signalling pathway activated is consistent with the previously described entity fundic gland-type GA (chief cell-predominant, GA-FG-CCP). We further confirmed the presence of GA-FG-CCP in two public bulk datasets using transcriptomic profiles and histological images. The other subgroup specifically expressed immune-related signature genes (eg, LY6K and major histocompatibility complex class II) with the infection of Epstein-Barr virus. In addition, we also analysed non-malignant epithelium and provided molecular evidences for potential transition from gastric chief cells into MUC6+TFF2+ spasmolytic polypeptide expressing metaplasia. CONCLUSION Altogether, our study offers valuable resource for deciphering gastric tumour heterogeneity, which will provide assistance for precision diagnosis and prognosis.
Collapse
Affiliation(s)
- Min Zhang
- Academy of Military Medical Sciences, Beijing, China,The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuofeng Hu
- Academy of Military Medical Sciences, Beijing, China,Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Min Min
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Lu
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaotian Sun
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,Department of internal medicine, Beijing South Medical District of Chinese PLA General Hospital, Beijing, China
| | - Jiaqi Wu
- Academy of Military Medical Sciences, Beijing, China,Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Bing Liu
- Academy of Military Medical Sciences, Beijing, China .,The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaomin Ying
- Academy of Military Medical Sciences, Beijing, China .,Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yan Liu
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
52
|
Jones DW, Zavros Y. In vivo and in vitro models of gastric cancer. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:157-184. [DOI: 10.1016/b978-0-323-85563-1.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
53
|
Bockerstett KA, Lewis SA, Noto CN, Ford EL, Saenz JB, Jackson NM, Ahn TH, Mills JC, DiPaolo RJ. Single-Cell Transcriptional Analyses Identify Lineage-Specific Epithelial Responses to Inflammation and Metaplastic Development in the Gastric Corpus. Gastroenterology 2020; 159:2116-2129.e4. [PMID: 32835664 PMCID: PMC7725914 DOI: 10.1053/j.gastro.2020.08.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Chronic atrophic gastritis can lead to gastric metaplasia and increase risk of gastric adenocarcinoma. Metaplasia is a precancerous lesion associated with an increased risk for carcinogenesis, but the mechanism(s) by which inflammation induces metaplasia are poorly understood. We investigated transcriptional programs in mucous neck cells and chief cells as they progress to metaplasia mice with chronic gastritis. METHODS We analyzed previously generated single-cell RNA-sequencing (scRNA-seq) data of gastric corpus epithelium to define transcriptomes of individual epithelial cells from healthy BALB/c mice (controls) and TxA23 mice, which have chronically inflamed stomachs with metaplasia. Chronic gastritis was induced in B6 mice by Helicobacter pylori infection. Gastric tissues from mice and human patients were analyzed by immunofluorescence to verify findings at the protein level. Pseudotime trajectory analysis of scRNA-seq data was used to predict differentiation of normal gastric epithelium to metaplastic epithelium in chronically inflamed stomachs. RESULTS Analyses of gastric epithelial transcriptomes revealed that gastrokine 3 (Gkn3) mRNA is a specific marker of mouse gastric corpus metaplasia (spasmolytic polypeptide expressing metaplasia, SPEM). Gkn3 mRNA was undetectable in healthy gastric corpus; its expression in chronically inflamed stomachs (from TxA23 mice and mice with Helicobacter pylori infection) identified more metaplastic cells throughout the corpus than previously recognized. Staining of healthy and diseased human gastric tissue samples paralleled these results. Although mucous neck cells and chief cells from healthy stomachs each had distinct transcriptomes, in chronically inflamed stomachs, these cells had distinct transcription patterns that converged upon a pre-metaplastic pattern, which lacked the metaplasia-associated transcripts. Finally, pseudotime trajectory analysis confirmed the convergence of mucous neck cells and chief cells into a pre-metaplastic phenotype that ultimately progressed to metaplasia. CONCLUSIONS In analyses of tissues from chronically inflamed stomachs of mice and humans, we expanded the definition of gastric metaplasia to include Gkn3 mRNA and GKN3-positive cells in the corpus, allowing a more accurate assessment of SPEM. Under conditions of chronic inflammation, chief cells and mucous neck cells are plastic and converge into a pre-metaplastic cell type that progresses to metaplasia.
Collapse
Affiliation(s)
- Kevin A. Bockerstett
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Scott A. Lewis
- Program of Bioinformatics and Computational Biology, Department of Computer Science, Saint Louis University, Saint Louis, MO, USA
| | - Christine N. Noto
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eric L. Ford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - José B. Saenz
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nicholas M. Jackson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Tae-Hyuk Ahn
- Program of Bioinformatics and Computational Biology, Department of Computer Science, Saint Louis University, Saint Louis, MO, USA
| | - Jason C. Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard J. DiPaolo
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
54
|
Sayols S, Klassek J, Werner C, Möckel S, Ritz S, Mendez-Lago M, Soshnikova N. Signalling codes for the maintenance and lineage commitment of embryonic gastric epithelial progenitors. Development 2020; 147:dev.188839. [PMID: 32878924 DOI: 10.1242/dev.188839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The identity of embryonic gastric epithelial progenitors is unknown. We used single-cell RNA-sequencing, genetic lineage tracing and organoid assays to assess whether Axin2- and Lgr5-expressing cells are gastric progenitors in the developing mouse stomach. We show that Axin2 + cells represent a transient population of embryonic epithelial cells in the forestomach. Lgr5 + cells generate both glandular corpus and squamous forestomach organoids ex vivo Only Lgr5 + progenitors give rise to zymogenic cells in culture. Modulating the activity of the WNT, BMP and Notch pathways in vivo and ex vivo, we found that WNTs are essential for the maintenance of Lgr5 + epithelial cells. Notch prevents differentiation of the embryonic epithelial cells along all secretory lineages and hence ensures their maintenance. Whereas WNTs promote differentiation of the embryonic progenitors along the zymogenic cell lineage, BMPs enhance their differentiation along the parietal lineage. In contrast, WNTs and BMPs are required to suppress differentiation of embryonic gastric epithelium along the pit cell lineage. Thus, coordinated action of the WNT, BMP and Notch pathways controls cell fate determination in the embryonic gastric epithelium.
Collapse
Affiliation(s)
- Sergi Sayols
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | - Jakub Klassek
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | - Clara Werner
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | | | - Sandra Ritz
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | | | - Natalia Soshnikova
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| |
Collapse
|
55
|
Bockerstett KA, Petersen CP, Noto CN, Kuehm LM, Wong CF, Ford EL, Teague RM, Mills JC, Goldenring JR, DiPaolo RJ. Interleukin 27 Protects From Gastric Atrophy and Metaplasia During Chronic Autoimmune Gastritis. Cell Mol Gastroenterol Hepatol 2020; 10:561-579. [PMID: 32376420 PMCID: PMC7399182 DOI: 10.1016/j.jcmgh.2020.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The association between chronic inflammation and gastric carcinogenesis is well established, but it is not clear how immune cells and cytokines regulate this process. We investigated the role of interleukin 27 (IL27) in the development of gastric atrophy, hyperplasia, and metaplasia (preneoplastic lesions associated with inflammation-induced gastric cancer) in mice with autoimmune gastritis. METHODS We performed studies with TxA23 mice (control mice), which express a T-cell receptor against the H+/K+ adenosine triphosphatase α chain and develop autoimmune gastritis, and TxA23xEbi3-/- mice, which develop gastritis but do not express IL27. In some experiments, mice were given high-dose tamoxifen to induce parietal cell atrophy and spasmolytic polypeptide-expressing metaplasia (SPEM). Recombinant IL27 was administered to mice with mini osmotic pumps. Stomachs were collected and analyzed by histopathology and immunofluorescence; we used flow cytometry to measure IL27 and identify immune cells that secrete IL27 in the gastric mucosa. Single-cell RNA sequencing was performed on immune cells that infiltrated stomach tissues. RESULTS We identified IL27-secreting macrophages and dendritic cell in the corpus of mice with chronic gastritis (TxA23 mice). Mice deficient in IL27 developed more severe gastritis, atrophy, and SPEM than control mice. Administration of recombinant IL27 significantly reduced the severity of inflammation, atrophy, and SPEM in mice with gastritis. Single-cell RNA sequencing showed that IL27 acted almost exclusively on stomach-infiltrating CD4+ T cells to suppress expression of inflammatory genes. CONCLUSIONS In studies of mice with autoimmune gastritis, we found that IL27 is an inhibitor of gastritis and SPEM, suppressing CD4+ T-cell-mediated inflammation in the gastric mucosa.
Collapse
Affiliation(s)
- Kevin A Bockerstett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Christine P Petersen
- Nashville Veterans Affairs Medical Center, Department of Surgery, Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Chun Fung Wong
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Eric L Ford
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Pathology and Immunology, Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| | - James R Goldenring
- Nashville Veterans Affairs Medical Center, Department of Surgery, Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
56
|
Hata M, Kinoshita H, Hayakawa Y, Konishi M, Tsuboi M, Oya Y, Kurokawa K, Hayata Y, Nakagawa H, Tateishi K, Fujiwara H, Hirata Y, Worthley DL, Muranishi Y, Furukawa T, Kon S, Tomita H, Wang TC, Koike K. GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology 2020; 158:1650-1666.e15. [PMID: 32032583 PMCID: PMC8796250 DOI: 10.1053/j.gastro.2020.01.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gastric chief cells, a mature cell type that secretes digestive enzymes, have been proposed to be the origin of metaplasia and cancer through dedifferentiation or transdifferentiation. However, studies supporting this claim have had technical limitations, including issues with the specificity of chief cell markers and the toxicity of drugs used. We therefore sought to identify genes expressed specifically in chief cells and establish a model to trace these cells. METHODS We performed transcriptome analysis of Mist1-CreERT-traced cells, with or without chief cell depletion. Gpr30-rtTA mice were generated and crossed to TetO-Cre mice, and lineage tracing was performed after crosses to R26-TdTomato mice. Additional lineage tracing experiments were performed using Mist1-CreERT, Kitl-CreERT, Tff1-Cre, and Tff2-Cre mice crossed to reporter mice. Mice were given high-dose tamoxifen or DMP-777 or were infected with Helicobacter pylori to induce gastric metaplasia. We studied mice that expressed mutant forms of Ras in gastric cells, using TetO-KrasG12D, LSL-KrasG12D, and LSL-HrasG12V mice. We analyzed stomach tissues from GPR30-knockout mice. Mice were given dichloroacetate to inhibit pyruvate dehydrogenase kinase (PDK)-dependent cell competition. RESULTS We identified GPR30, the G-protein-coupled form of the estrogen receptor, as a cell-specific marker of chief cells in gastric epithelium of mice. Gpr30-rtTA mice crossed to TetO-Cre;R26-TdTomato mice had specific expression of GPR30 in chief cells, with no expression noted in isthmus stem cells or lineage tracing of glands. Expression of mutant Kras in GPR30+ chief cells did not lead to the development of metaplasia or dysplasia but, instead, led to a reduction in labeled numbers of chief cells and a compensatory expansion of neck lineage, which was derived from upper Kitl+ clones. Administration of high-dose tamoxifen, DMP-777, or H pylori decreased the number of labeled chief cells. Chief cells were eliminated from epithelia via GPR30- and PDK-dependent cell competition after metaplastic stimuli, whereas loss of GRP30 or inhibition of PDK activity preserved chief cell numbers and attenuated neck lineage cell expansion. CONCLUSIONS In tracing studies of mice, we found that most chief cells are lost during metaplasia and therefore are unlikely to contribute to gastric carcinogenesis. Expansion of cells that coexpress neck and chief lineage markers, known as spasmolytic polypeptide-expressing metaplasia, does not occur via dedifferentiation from chief cells but, rather, through a compensatory response from neck progenitors to replace the eliminated chief cells.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan,Co-first authors
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan,Department of Gastroenterology, The Institute for Adult Diseases, Asahi-life Foundation, Tokyo, 103-0002, Japan,Co-first authors
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Mitsuru Konishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Yukiko Oya
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Yuki Hayata
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, The Institute for Adult Diseases, Asahi-life Foundation, Tokyo, 103-0002, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | | | - Yuki Muranishi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Shunsuke Kon
- Tokyo University of Science, Division of Development and Aging, Research Institute for Biomedical Sciences, Chiba, 278-0022, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194, JAPAN
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| |
Collapse
|
57
|
Chen WQ, Yang XJ, Zhang JW. Progress in research of gastric spasmolytic polypeptide expressing metaplasia. Shijie Huaren Xiaohua Zazhi 2020; 28:254-259. [DOI: 10.11569/wcjd.v28.i7.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spasmolytic polypeptide expressing metaplasia (SPEM) is a critical precursor of gastric precancerous lesions and can lead to dysplasia or neoplasia in the presence of continuous chronic inflammation. Current research on SPEM using mouse models implies that the immune dysfunction of the gastric mucosa triggered by Helicobacter pylori infection might result in the progression of SPEM to intestinal metaplasia and even gastric cancer. Therefore, elucidating the origin and mechanism of progression of SPEM can help avoid the occurrence of SPEM, prevent SPEM progressing to intestinal metaplasia, and reduce the incidence of gastric cancer. In this paper, we will review the progress in the research of SPEM over the recent 10 years.
Collapse
Affiliation(s)
- Wan-Qun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| | - Xiao-Jun Yang
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| | - Jin-Wei Zhang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| |
Collapse
|
58
|
Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, He Z, Wang ZN, Mills JC. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell 2020; 26:910-925.e6. [PMID: 32243780 DOI: 10.1016/j.stem.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Luciana H Osaki
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Yan Kefalov
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng He
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
59
|
Gupta MK, Gouda G, Donde R, Vadde R. Tumor Heterogeneity: Challenges and Perspectives for Gastrointestinal Cancer Therapy. IMMUNOTHERAPY FOR GASTROINTESTINAL MALIGNANCIES 2020:1-15. [DOI: 10.1007/978-981-15-6487-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|