Hemrick-Luecke SK, Bymaster FP, Evans DC, Wess J, Felder CC. Muscarinic agonist-mediated increases in serum corticosterone levels are abolished in m(2) muscarinic acetylcholine receptor knockout mice.
J Pharmacol Exp Ther 2002;
303:99-103. [PMID:
12235238 DOI:
10.1124/jpet.102.036020]
[Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic acetylcholine receptors (M(1)-M(5)) regulate many key functions in the central and peripheral nervous system. Due to the lack of receptor subtype-selective ligands, however, the physiological roles of individual muscarinic receptor subtypes remain to be determined. In this study, we examined the effects of the muscarinic M(2)/M(4) receptor-preferring agonist [5R-(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-[3.2.1]-octane (BuTAC) on serum corticosterone levels in M(2) and M(4) receptor single knockout (KO) and M(2,4) receptor double KO mice. Responses were compared with those obtained with the corresponding wild-type (WT) mice. BuTAC (0.03-0.3 mg/kg s.c.) dose dependently and significantly increased serum corticosterone concentrations in WT mice to 5-fold or greater levels compared with vehicle controls. In muscarinic M(2) and M(2,4) KO mice, however, BuTAC had no significant effect on corticosterone concentrations at doses of 0.1, 0.3, and 1 mg/kg s.c. In both WT and muscarinic M(4) KO mice increases in serum corticosterone concentrations induced by BuTAC (0.1 and 0.3 mg/kg) were not significantly different and were blocked by scopolamine. In summary, the muscarinic M(2,4)-preferring agonist BuTAC had no effect on corticosterone levels in mice lacking functional muscarinic M(2) receptors. These data suggest that the muscarinic M(2) receptor subtype mediates muscarinic agonist-induced activation of the hypothalamic-pituitary-adrenocortical axis in mice.
Collapse