51
|
Sreenivasan K, Ianni A, Künne C, Strilic B, Günther S, Perdiguero E, Krüger M, Spuler S, Offermanns S, Gómez-Del Arco P, Redondo JM, Munoz-Canoves P, Kim J, Braun T. Attenuated Epigenetic Suppression of Muscle Stem Cell Necroptosis Is Required for Efficient Regeneration of Dystrophic Muscles. Cell Rep 2021; 31:107652. [PMID: 32433961 PMCID: PMC7242912 DOI: 10.1016/j.celrep.2020.107652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration. Necroptotic cell death of MuSCs is essential for efficient muscle regeneration Inhibition of necroptosis exacerbates adverse crosstalk among mdx muscle stem cells The CHD4/NuRD complex directly represses Ripk3-dependent necroptosis Attenuated recruitment of CHD4 to Ripk3 locus lowers necroptosis threshold in dystrophy
Collapse
Affiliation(s)
- Krishnamoorthy Sreenivasan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eusebio Perdiguero
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; CECAD Research Center, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center (ECRC), University Clinic Charité Berlin, Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK)
| | - Pablo Gómez-Del Arco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain; Institute of Rare Diseases Research, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pura Munoz-Canoves
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK).
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK); German Center for Lung Research (DZL).
| |
Collapse
|
52
|
Minina EA, Dauphinee AN, Ballhaus F, Gogvadze V, Smertenko AP, Bozhkov PV. Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biol 2021; 19:100. [PMID: 33980238 PMCID: PMC8117276 DOI: 10.1186/s12915-021-01018-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants. Furthermore, plants are devoid of the key components of apoptotic machinery, including phagocytosis as well as caspases and Bcl-2 family proteins. Nevertheless, the concept of plant "apoptosis-like programmed cell death" (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies. RESULTS Here, we provide a comprehensive spatio-temporal analysis of cytological and biochemical events occurring in plant cells subjected to heat shock at 40-55 °C and 85 °C, the experimental conditions typically used to trigger AL-PCD and necrotic cell death, respectively. We show that cell death under both conditions was not accompanied by membrane blebbing or formation of apoptotic bodies, as would be expected during apoptosis. Instead, we observed instant and irreversible permeabilization of the plasma membrane and ATP depletion. These processes did not depend on mitochondrial functionality or the presence of Ca2+ and could not be prevented by an inhibitor of ferroptosis. We further reveal that the lack of protoplast shrinkage at 85 °C, the only striking morphological difference between cell deaths induced by 40-55 °C or 85 °C heat shock, is a consequence of the fixative effect of the high temperature on intracellular contents. CONCLUSIONS We conclude that heat shock-induced cell death is an energy-independent process best matching definition of necrosis. Although the initial steps of this necrotic cell death could be genetically regulated, classifying it as apoptosis or AL-PCD is a terminological misnomer. Our work supports the viewpoint that apoptosis is not conserved across animal and plant kingdoms and demonstrates the importance of focusing on plant-specific aspects of cell death pathways.
Collapse
Affiliation(s)
- Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
- COS, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Florentine Ballhaus
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Andrei P Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
53
|
Mehrotra N, Kharbanda S, Singh H. BH3 mimetics in cancer therapy and their future perspectives with nanodelivery. Nanomedicine (Lond) 2021; 16:1067-1070. [PMID: 33904325 DOI: 10.2217/nnm-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi & All Indian Institute of Medical Sciences, New Delhi, Delhi 110016, India
| | - Surender Kharbanda
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi & All Indian Institute of Medical Sciences, New Delhi, Delhi 110016, India
| |
Collapse
|
54
|
Mielczarek-Palacz A, Jasińska S, Strzelec A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Caspases-Markers Involved in the Regulation of Apoptosis-In Patients with Ovarian Cancer. Diagnostics (Basel) 2021; 11:704. [PMID: 33919909 PMCID: PMC8070894 DOI: 10.3390/diagnostics11040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer remains a major diagnostic and therapeutic problem in modern gynecological oncology. For this reason, research which focuses on the search for new diagnostic markers and the assessment of their possible usefulness in clinical practice is still being conducted. The aim of this study was to evaluate serum levels of caspase-3, caspase-8, and caspase-9 in women with ovarian cancer. Patients with ovarian serous cystadenoma (Cystadenoma serosum) and papillary serous cystadenocarcinoma (Cystadenocarcinoma papillare serosum IIIC) were included in the study, as well as healthy women who constituted the control group. The results of the study revealed a statistically significantly decreased mean serum levels of caspase-3, caspase-8, and caspase-9 in women with ovarian cancer as compared to the control group (p ˂ 0.001), which indicates the involvement of the studied parameters in immune system disturbances occurring in the process of apoptosis by the extrinsic and intrinsic pathway and may be one of the mechanisms of immunosuppression accompanying these tumors. Determination of serum levels of examined caspases and CA 125 antigen in women with ovarian cancer in combination with other markers may prove useful in the future in the diagnosis of ovarian cancer, but this requires further studies.
Collapse
Affiliation(s)
- Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.J.); (A.S.)
| | | | | |
Collapse
|
55
|
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021; 11:biom11040572. [PMID: 33919846 PMCID: PMC8070820 DOI: 10.3390/biom11040572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Xuan Zhai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- Correspondence: (P.L.); (H.C.)
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Correspondence: (P.L.); (H.C.)
| |
Collapse
|
56
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
57
|
Zehra S, Tabassum S, Arjmand F. Biochemical pathways of copper complexes: progress over the past 5 years. Drug Discov Today 2021; 26:1086-1096. [PMID: 33486113 DOI: 10.1016/j.drudis.2021.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Copper is an essential trace element with vital roles in many metalloenzymes; it is also prominent among nonplatinum anticancer metallodrugs. Copper-based complexes are endogenously biocompatible, tenfold more potent than cisplatin, exhibit fewer adverse effects, and have a wide therapeutic window. In cancer biology, copper acts as an antitumor agent by inhibiting cancer via multiple pathways. Herein, we present an overview of advances in copper complexes as 'lead' antitumor drug candidates, and in understanding their biochemical and pharmacological pathways over the past 5 years. This review will help to develop more efficacious therapeutics to improve clinical outcomes for cancer treatments.
Collapse
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
58
|
Wylot M, Whittaker DTE, Wren SAC, Bothwell JH, Hughes L, Griffin JL. Monitoring apoptosis in intact cells by high-resolution magic angle spinning 1 H NMR spectroscopy. NMR IN BIOMEDICINE 2021; 34:e4456. [PMID: 33398876 DOI: 10.1002/nbm.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Apoptosis maintains an equilibrium between cell proliferation and cell death. Many diseases, including cancer, develop because of defects in apoptosis. A known metabolic marker of apoptosis is a notable increase in 1 H NMR-observable resonances associated with lipids stored in lipid droplets. However, standard one-dimensional NMR experiments allow the quantification of lipid concentration only, without providing information about physical characteristics such as the size of lipid droplets, viscosity of the cytosol, or cytoskeletal rigidity. This additional information can improve monitoring of apoptosis-based cancer treatments in intact cells and provide us with mechanistic insight into why these changes occur. In this paper, we use high-resolution magic angle spinning (HRMAS) 1 H NMR spectroscopy to monitor lipid concentrations and apparent diffusion coefficients of mobile lipid in intact cells treated with the apoptotic agents cisplatin or etoposide. We also use solution-state NMR spectroscopy to study changes in lipid profiles of organic solvent cell extracts. Both NMR techniques show an increase in the concentration of lipids but the relative changes are 10 times larger by HRMAS 1 H NMR spectroscopy. Moreover, the apparent diffusion rates of lipids in apoptotic cells measured by HRMAS 1 H NMR spectroscopy decrease significantly as compared with control cells. Slower diffusion rates of mobile lipids in apoptotic cells correlate well with the formation of larger lipid droplets as observed by microscopy. We also compared the mean lipid droplet displacement values calculated from the two methods. Both methods showed shorter displacements of lipid droplets in apoptotic cells. Our results demonstrate that the NMR-based diffusion experiments on intact cells discriminate between control and apoptotic cells. Apparent diffusion measurements in conjunction with 1 H NMR spectroscopy-derived lipid signals provide a novel means of following apoptosis in intact cells. This method could have potential application in enhancing drug discovery by monitoring drug treatments in vitro, particularly for agents that cause portioning of lipids such as apoptosis.
Collapse
Affiliation(s)
- Marta Wylot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - David T E Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Stephen A C Wren
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | | | - Leslie Hughes
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
59
|
Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev 2021; 39:553-566. [PMID: 32020420 DOI: 10.1007/s10555-020-09866-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is a tightly controlled, coordinated cellular event responsible for inducing programmed cell death to rid the body of defective or unfit cells. Inhibition of apoptosis is, therefore, an essential process for cancer cells to harness. Genomic variants in apoptotic-controlling genes are highly prevalent in cancer and have been identified to induce pro-proliferation and pro-survival pathways, rendering cancer cells resistant to apoptosis. Traditional understanding of apoptosis defines it as an irreversible process; however, growing evidence suggests that apoptosis is a reversible process from which cells can escape, even after the activation of its most committed stages. The mechanism invoked to reverse apoptosis has been termed anastasis and poses challenges for the development and utilization of chemotherapeutic agents. Anastasis has also been identified as a mechanism by which cells can recover from apoptotic lesions and revert back to its previous functioning state. In this review, we intend to focus the attention of the reader on the comprehensive role of survival, metastasis, and epithelial mesenchymal transition (EMT), as well as DNA damage repair mechanisms in promoting anastasis. Additionally, we will emphasize the mechanistic consequences of anastasis on drug resistance and recent rational therapeutic approaches designed to combat this resistance.
Collapse
Affiliation(s)
- Souneek Chakraborty
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Khalid Bashir Mir
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Hematology and Oncology, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | - Debasis Nayak
- College of Pharmacy, The Ohio State University, 540 Riffe Building, 496 West 12th Ave, Columbus, OH, 43210, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
60
|
Turk-Erbul B, Karaman EF, Duran GN, Ozbil M, Ozden S, Goktas F. Synthesis, in vitro cytotoxic and apoptotic effects, and molecular docking study of novel adamantane derivatives. Arch Pharm (Weinheim) 2021; 354:e2000256. [PMID: 33410150 DOI: 10.1002/ardp.202000256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 12/09/2022]
Abstract
[4-(Adamantane-1-carboxamido)-3-oxo-1-thia-4-azaspiro[4.4]nonan-2-yl]acetic acid (4a) and [4-(adamantane-1-carboxamido)-8-nonsubstituted/substituted-3-oxo-1-thia-4-azas-piro[4.5]decane-2-yl]acetic acid (4b-g) derivatives were synthesized; their structures were verified by elemental analysis, infrared spectroscopy, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectroscopy data; and their in vitro cytotoxicity activities were investigated against human hepatocellular carcinoma, human prostate adenocarcinoma, and human lung carcinoma cell lines (HepG2, PC-3, and A549, respectively), and a mouse fibroblast cell line (NIH/3T3). All compounds, except compound 4e, were found as cytotoxic, especially on A549 cells as compared with the other cells (selectivity index = 2.01-11.6). As a further step, the effects of compounds 4a-c on apoptosis induction were tested and the expression of selected apoptosis genes was analyzed. Among the selected compounds, compound 4a induced apoptosis remarkably. Moreover, computational calculations of the binding of compounds 4a-c to the BIR3 domain of the human inhibitor of apoptosis protein revealed ligand-protein interactions at the atomistic level and emphasized the importance of a hydrophobic moiety on the ligands for better binding.
Collapse
Affiliation(s)
- Basak Turk-Erbul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ecem F Karaman
- Department of Pharmaceutical Toxicology, Biruni University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Gizem N Duran
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Fusun Goktas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
61
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
62
|
García-Murria MJ, Duart G, Grau B, Diaz-Beneitez E, Rodríguez D, Mingarro I, Martínez-Gil L. Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis. Nat Commun 2020; 11:6056. [PMID: 33247105 PMCID: PMC7695858 DOI: 10.1038/s41467-020-19881-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.
Collapse
Affiliation(s)
- Maria Jesús García-Murria
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Gerard Duart
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
63
|
TAK1 is involved in sodium L-lactate-stimulated p38 signaling and promotes apoptosis. Mol Cell Biochem 2020; 476:873-882. [PMID: 33111211 DOI: 10.1007/s11010-020-03952-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
In the present study, we found that the phosphorylation of p38 mitogen-activated protein kinase (p38) was significantly increased in L-lactate-treated HeLa cells, which is under concentration- and time-dependent manner. The protein level of Bcl-2 was significantly reduced and Bax and C-caspase3 were significantly increased in L-lactate-treated cells. qRT-PCR analysis suggested that the expression level of apoptosis-related genes Bax, C-myc, and FasL were significantly upregulated by L-lactate treatment. In addition, p38 inhibitor SB203580 blocked the L-lactate-stimulated phosphorylation of p38 (p-p38) and apoptosis, which suggested that L-lactate-stimulated apoptosis may be related to the activation of p38. Moreover, TAK1 inhibitor Takinib reduced L-lactate-triggered phosphorylation of p38 and also apoptosis; however, ASK1 inhibitor NQDI-1 did not. Cells transfected with siRNA of TAK1(siTAK1) showed similar results with Takinib inhibitor. These results suggested that the L-lactate treatment elevated activation of p38 and apoptosis was related to TAK1. In this study, we suggested that TAK1 plays an important role in L-lactate-stimulated activation of p38 affecting apoptosis in HeLa cells.
Collapse
|
64
|
Rok J, Rzepka Z, Beberok A, Pawlik J, Wrześniok D. Cellular and Molecular Aspects of Anti-Melanoma Effect of Minocycline-A Study of Cytotoxicity and Apoptosis on Human Melanotic Melanoma Cells. Int J Mol Sci 2020; 21:E6917. [PMID: 32967177 PMCID: PMC7555712 DOI: 10.3390/ijms21186917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Minocycline is a tetracycline compound with pleiotropic pharmacological properties. In addition to its antibacterial action, it shows many non-antimicrobial effects, including an anti-cancer activity. The anti-cancer action was confirmed in studies on ovarian carcinoma cells, hepatocellular carcinoma cells, glioma cells, or acute myeloid leukemia cells. Malignant melanoma remains a serious medical problem despite the extensive knowledge of the disease. The low effectiveness of the standard treatment, as well as the resistance to therapy, result in high mortality rates. This work aimed to investigate the potential and mechanisms of anti-melanoma action of minocycline. Human skin melanotic melanoma cell line COLO 829 was used in the study. The obtained results showed that minocycline decreased cell viability and inhibited the growth of melanoma cells, proportional to the drug concentration as well as to the time of incubation. The EC50 values were calculated to be 78.6 µM, 31.7 µM, and 13.9 µM for 24 h, 48 h, and 72 h, respectively. It was observed that treated cells had a disturbed cell cycle and significantly changed morphology. Moreover, minocycline caused a decrease in mitochondrial membrane potential and an increase in cells with a low level of reduced thiols. Finally, it was found that the anti-melanoma effect of minocycline was related to the induction of apoptosis. The drug activated caspases 8, 9, and 3/7 as well as increased the number of annexin V-positive cells. The presented results show that minocycline possesses anti-melanoma potential.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.); (J.P.); (D.W.)
| | | | | | | | | |
Collapse
|
65
|
Bai C, Zhang Z, Zhou L, Zhang HY, Chen Y, Tang Y. Repurposing Ziyuglycoside II Against Colorectal Cancer via Orchestrating Apoptosis and Autophagy. Front Pharmacol 2020; 11:576547. [PMID: 33071789 PMCID: PMC7533566 DOI: 10.3389/fphar.2020.576547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023] Open
Abstract
Effective chemotherapy drugs for colorectal cancer remain a challenge. In this research, Ziyuglycoside II (Ziyu II), exhibits considerable antitumor activity against CRC cells both in vitro and in vivo. The results showed that Ziyu II induced apoptosis through the accumulation of reactive oxygen species (ROS), which was necessary for Ziyu II to inhibit colorectal cancer cells. Intriguingly, The treatment of Ziyu II triggered complete autophagic flux in CRC cells. Inhibition of autophagy partially reversed Ziyu II-induced growth inhibition, demonstrating a cytotoxic role of autophagy in response to Ziyu II-treated. Mechanism indicated that Ziyu II-induced autophagy by inhibiting Akt/mTOR pathway. Akt reactivation partially reduced Ziyu II-induced LC3-II turnover and LC3 puncta accumulation. Especially, Ziyu II improves the sensitivity of 5-fluorouracil which is the first-line chemotherapy drug in colorectal cancer cells. This research provides novel insight into the molecular mechanism of Ziyu II’s anti-proliferation, including apoptosis and autophagy, and lays a foundation for the potential application of Ziyu II in clinical CRC treatment.
Collapse
Affiliation(s)
- Can Bai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan-Yu Zhang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
66
|
Mertens RT, Parkin S, Awuah SG. Cancer cell-selective modulation of mitochondrial respiration and metabolism by potent organogold(iii) dithiocarbamates. Chem Sci 2020; 11:10465-10482. [PMID: 34094305 PMCID: PMC8162438 DOI: 10.1039/d0sc03628e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is a key cancer hallmark that has led to the therapeutic targeting of glycolysis. However, agents that target dysfunctional mitochondrial respiration for targeted therapy remains underexplored. We report the synthesis and characterization of ten (10) novel, highly potent organometallic gold(iii) complexes supported by dithiocarbamate ligands as selective inhibitors of mitochondrial respiration. The structure of dithiocarbamates employed dictates the biological stability and cellular cytotoxicity. Most of the compounds exhibit 50% inhibitory concentration (IC50) in the low-micromolar (0.50-2.9 μM) range when tested in a panel of aggressive cancer types with significant selectivity for cancer cells over normal cells. Consequently, there is great interest in the mechanism of action of gold chemotherapeutics, particularly, considering that DNA is not the major target of most gold complexes. We investigate the mechanism of action of representative complexes, 1a and 2a in the recalcitrant triple negative breast cancer (TNBC) cell line, MDA-MB-231. Whole-cell transcriptomics sequencing revealed genes related to three major pathways, namely: cell cycle, organelle fission, and oxidative phosphorylation. 2a irreversibly and rapidly inhibits maximal respiration in TNBC with no effect on normal epithelial cells, implicating mitochondrial OXPHOS as a potential target. Furthermore, the modulation of cyclin dependent kinases and G1 cell cycle arrest induced by these compounds is promising for the treatment of cancer. This work contributes to the need for mitochondrial respiration modulators in biomedical research and outlines a systematic approach to study the mechanism of action of metal-based agents.
Collapse
Affiliation(s)
- Randall T Mertens
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
| |
Collapse
|
67
|
Noguchi M, Hirata N, Tanaka T, Suizu F, Nakajima H, Chiorini JA. Autophagy as a modulator of cell death machinery. Cell Death Dis 2020; 11:517. [PMID: 32641772 PMCID: PMC7343815 DOI: 10.1038/s41419-020-2724-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023]
Abstract
The balance between cell death and survival is a critical parameter in the regulation of cells and the maintenance of homeostasis in vivo. Three major mechanisms for cell death have been identified in mammalian cells: apoptosis (type I), autophagic cell death (type II), and necrosis (type III). These three mechanisms have been suggested to engage in cross talk with each other. Among them, autophagy was originally characterized as a cell survival mechanism for amino acid recycling during starvation. Whether autophagy functions primarily in cell survival or cell death is a critical question yet to be answered. Here, we present a comprehensive review of the cell death-related events that take place during autophagy and their underlying mechanisms in cancer and autoimmune disease development.
Collapse
Affiliation(s)
- Masayuki Noguchi
- grid.39158.360000 0001 2173 7691Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Hirata
- grid.39158.360000 0001 2173 7691Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tsutomu Tanaka
- grid.94365.3d0000 0001 2297 5165National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Futoshi Suizu
- grid.39158.360000 0001 2173 7691Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nakajima
- grid.136304.30000 0004 0370 1101Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - John A. Chiorini
- grid.94365.3d0000 0001 2297 5165National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
68
|
Lamb HM. Double agents of cell death: novel emerging functions of apoptotic regulators. FEBS J 2020; 287:2647-2663. [PMID: 32239637 PMCID: PMC8796856 DOI: 10.1111/febs.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated form of cell death that is required for many homeostatic and pathological processes. Recently, alternative cell death pathways have emerged whose regulation is dependent on proteins with canonical functions in apoptosis. Dysregulation of apoptotic signaling frequently underlies the pathogenesis of many cancers, reinforcing the need to develop therapies that initiate alternative cell death processes. This review outlines the convergence points between apoptosis and other death pathways with the purpose of identifying novel strategies for the treatment of apoptosis-refractory cancers. Apoptosis proteins can play key roles in the initiation, regulation, and execution of nonapoptotic death processes that include necroptosis, autophagy, pyroptosis, mPTP-mediated necrosis, and ferroptosis. Notably, recent evidence illustrates that dying cells can exhibit biochemical and molecular characteristics of more than one different type of regulated cell death. Thus, this review highlights the amazing complexity and interconnectivity of cell death processes and also raises the idea that a top-to-bottom approach to describing cell death mechanisms may be inadequate for fully understanding the means by which cells die.
Collapse
Affiliation(s)
- Heather M. Lamb
- W. Harry Feinstone Department of Molecular Microbiology and
Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore,
MD 21205 USA
| |
Collapse
|
69
|
Panuzzo C, Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Fava C, Cilloni D. Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. Int J Mol Sci 2020; 21:ijms21113928. [PMID: 32486249 PMCID: PMC7312164 DOI: 10.3390/ijms21113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell’s type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new “hot spots” for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| | - Aleksandar Jovanovski
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
70
|
Anaya-Eugenio GD, Tan CY, Rakotondraibe LH, Carcache de Blanco EC. Tumor suppressor p53 independent apoptosis in HT-29 cells by auransterol from Penicillium aurantiacobrunneum. Biomed Pharmacother 2020; 127:110124. [PMID: 32407985 DOI: 10.1016/j.biopha.2020.110124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the third leading cause of cancer related-death in the United States. Search for new alternatives to treat this type of cancer is necessary. In a previous report, auransterol from Penicillium aurantiacobrunneum showed cytotoxicity in HT-29 cancer cells. Thus, the goal of this study was to examine the potential cytotoxic mechanism of auransterol in HT-29 cells. Real-time cytotoxicity of auransterol was determined in HT-29 colon cancer cells, using the SRB assay. Loss of MTP, overproduction of ROS, cell cycle, cell migration, and caspase activity were analyzed. Western blot analysis was used to evaluate protein expression. Auransterol reduced cell proliferation rate in a time and concentration-dependent manner, with an IC50 value > 100, 49.1 and 23.8 μM at 24, 48 and 72 h of treatment, respectively. After 24 h of treatment, 50 μM of auransterol induced loss of MTP, overproduction of ROS, increased caspase activity, induced cell cycle G1 phase accumulation and inhibition of migration in HT-29 cells compared to control. These results were supported by protein upregulation of Cyt c, BAX, PARP-1, p21 and procaspase-3, and downregulation of Bcl-2 with no modifications in procaspase-7 and p53. The cytotoxic effect of auransterol in HT-29 colon cancer cells is mediated by mitochondrial apoptosis independent of p53 activation, cell cycle G1 phase arrest, and inhibition of cell migration. This work encourages further preclinical and clinical studies of auransterol and suggests auransterol as a good candidate for colorectal cancer treatment.
Collapse
Affiliation(s)
- Gerardo D Anaya-Eugenio
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Choon Yong Tan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Harinantenaina Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
71
|
Djajawi TM, Liu L, Gong JN, Huang AS, Luo MJ, Xu Z, Okamoto T, Call MJ, Huang DCS, van Delft MF. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ 2020; 27:2484-2499. [PMID: 32094511 PMCID: PMC7370232 DOI: 10.1038/s41418-020-0517-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co-operate to mark MCL1 for degradation by the proteasome—specifically when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane. MTCH2 has not previously been reported to regulate protein stability, but is known to influence the mitochondrial localization of certain key apoptosis regulators and to impact metabolism. We have now pinpointed an essential but previously unappreciated role for MTCH2 in turnover of the MCL1:NOXA complex by MARCH5, further strengthening its links to BCL2-regulated apoptosis.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lei Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ming-Jie Luo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhen Xu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Melissa J Call
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
72
|
Tripathi SK, Rengasamy KRR, Biswal BK. Plumbagin engenders apoptosis in lung cancer cells via caspase-9 activation and targeting mitochondrial-mediated ROS induction. Arch Pharm Res 2020; 43:242-256. [PMID: 32034669 DOI: 10.1007/s12272-020-01221-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 01/10/2023]
Abstract
Plumbagin is a naturally-derived phytochemical which exhibits promising medicinal properties, including anticancer activities. In the present study, the anticancer potential of plumbagin has been demonstrated in lung cancer cells by targeting reactive oxygen species (ROS) and the intrinsic mitochondrial apoptotic pathway. Plumbagin showed impressive cytotoxic, anti-proliferative, and anti-migratory activities with IC50 3.10 ± 0.5 μM and 4.10 ± 0.5 μM in A549 and NCI-H522 cells, respectively. Plumbagin treatment significantly reduced the size of A549 tumor spheroids in a concentration-dependent manner. Plumbagin enhanced ROS production and arrested lung cancer cells in S and G2/M phase. Expression of antioxidant genes such as glutathione S-transferase P1 and superoxide dismutase-2 were found to be upregulated with plumbagin treatment in A549 cells. Plumbagin induced dissipation in mitochondrial membrane potential and affected the expression of intrinsic apoptotic pathway proteins. Increased expression of cytochrome c promotes the activation of pro-apoptotic protein Bax with decreased expression of anti-apoptotic protein Bcl-2. Further, plumbagin activated the mitochondrial downstream pathway protein caspase-9 and caspase-3 leading to apoptosis of A549 cells. Collectively, plumbagin could be a promising future phytotherapeutic candidate for lung cancer treatment via targeting intrinsic mitochondrial apoptotic pathway and ROS.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Kannan R R Rengasamy
- Department of Bioresource and Food Science, Konkuk University, Seoul, 05029, South Korea
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
73
|
Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers (Basel) 2019; 12:E48. [PMID: 31877856 PMCID: PMC7016989 DOI: 10.3390/cancers12010048] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is characterised by uncontrolled cell division and abnormal cell growth, which is largely caused by a variety of gene mutations. There are continuous efforts being made to develop effective cancer treatments as resistance to current anticancer drugs has been on the rise. Natural products represent a promising source in the search for anticancer treatments as they possess unique chemical structures and combinations of compounds that may be effective against cancer with a minimal toxicity profile or few side effects compared to standard anticancer therapy. Extensive research on natural products has shown that bioactive natural compounds target multiple cellular processes and pathways involved in cancer progression. In this review, we discuss honokiol, a plant bioactive compound that originates mainly from the Magnolia species. Various studies have proven that honokiol exerts broad-range anticancer activity in vitro and in vivo by regulating numerous signalling pathways. These include induction of G0/G1 and G2/M cell cycle arrest (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins), epithelial-mesenchymal transition inhibition via the downregulation of mesenchymal markers and upregulation of epithelial markers. Additionally, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases (activation of 5' AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling), inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)). Combining these studies provides significant insights for the potential of honokiol to be a promising candidate natural compound for chemoprevention and treatment.
Collapse
Affiliation(s)
| | | | - Yin Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia; (C.P.O.); (W.L.L.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia; (C.P.O.); (W.L.L.)
| |
Collapse
|
74
|
Safety Assessment of Methanol Extract of Melastoma malabathricum L. Leaves following the Subacute and Subchronic Oral Consumptions in Rats and Its Cytotoxic Effect against the HT29 Cancer Cell Line. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5207958. [PMID: 31885651 PMCID: PMC6899264 DOI: 10.1155/2019/5207958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 11/23/2022]
Abstract
Methanol extract of Melastoma malabathricum (MEMM) has been traditionally used by the Malay to treat various ailments. In an attempt to develop the plant as an herbal product, MEMM was subjected to the subacute and subchronic toxicity and cytotoxicity studies. On the one hand, the subacute study was performed on three groups of male and three groups of female rats (n = 6), which were orally administered with 8% Tween 80 (vehicle control group) or MEMM (500 and 1000 mg/kg) daily for 28 days, respectively. On the other hand, the subchronic study was performed on four groups of rats (n = 6), which were orally administered with 8% Tween 80 (vehicle control group) or MEMM (50, 250, and 500 mg/kg) daily for 90 days, respectively. In the in vitro study, the cytotoxic effect of MEMM against the HT29 colon cancer cell line was assessed using the MTT assay. MEMM was also subjected to the UHPLC-ESI-HRMS analysis. The results demonstrated that MEMM administration did not cause any mortality, irregularity of behaviour, modification in body weight, as well as food and water intake following the subacute and subchronic oral treatment. There were no significant differences observed in haematological parameters between treatment and control groups in both studies, respectively. The in vitro study demonstrated that MEMM exerts a cytotoxic effect against the HT29 colon cancer cell line when observed under the inverted and phase-contrast microscope and confirmed by the acridine orange/propidium iodide (AOPI) staining. The UHPLC-ESI-HRMS analysis of MEMM demonstrated the occurrence of several compounds including quercetin, p-coumaric acid, procyanidin A, and epigallocatechin. In conclusion, M. malabathricum leaves are safe for oral consumption either at the subacute or subchronic levels and possess cytotoxic action against the HT29 colon cancer cells possibly due to the synergistic action of several flavonoid-based compounds.
Collapse
|
75
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
76
|
Belashov AV, Zhikhoreva AA, Belyaeva TN, Nikolsky NN, Semenova IV, Kornilova ES, Vasyutinskii OS. Quantitative assessment of changes in cellular morphology at photodynamic treatment in vitro by means of digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:4975-4986. [PMID: 31646023 PMCID: PMC6788599 DOI: 10.1364/boe.10.004975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 05/03/2023]
Abstract
Temporal dependence of changes in the morphological characteristics of cells of two cultured lines of cancer origin, HeLa and A549, induced by photodynamic treatment with Radachlorin photosensitizer, have been monitored using digital holographic microscopy during first two hours after short-term irradiation. The observed post-treatment early dynamics of the phase shift in the transmitted wavefront indicated several distinct scenarios of cell behavior depending upon the irradiation dose. In particular the phase shift increased at low doses, which can be associated with apoptosis, while at high doses it decreased, which can be associated with necrosis. As shown, the two cell types responded differently to similar irradiation doses. Although the sequence of death scenarios with the increase of the irradiation dose was the same, each scenario was realized at substantially different doses. These findings suggest that the average phase shift of the transmitted wavefront can be used for quantitative non-invasive cell death characterization. The conclusions made were cofirmed by commonly used test assays using confocal fluorescent microscopy.
Collapse
Affiliation(s)
- A. V. Belashov
- Ioffe Institute; 26, Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | - A. A. Zhikhoreva
- Ioffe Institute; 26, Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | - T. N. Belyaeva
- Institute of Cytology of RAS; 4, Tikhoretsky pr., St. Petersburg, 194064, Russia
| | - N. N. Nikolsky
- Institute of Cytology of RAS; 4, Tikhoretsky pr., St. Petersburg, 194064, Russia
| | - I. V. Semenova
- Ioffe Institute; 26, Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | - E. S. Kornilova
- Institute of Cytology of RAS; 4, Tikhoretsky pr., St. Petersburg, 194064, Russia
- Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya, St. Petersburg, 195251, Russia
- St. Petersburg State University, 7/9, University Embankment, St. Petersburg, 199034, Russia
| | | |
Collapse
|
77
|
Kong ZL, Kuo HP, Johnson A, Wu LC, Chang KLB. Curcumin-Loaded Mesoporous Silica Nanoparticles Markedly Enhanced Cytotoxicity in Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20122918. [PMID: 31207976 PMCID: PMC6628080 DOI: 10.3390/ijms20122918] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenol extracted from a perennial herb Curcuma longa has been verified for many physiological activities such as anti-oxidant, anti-inflammatory, and anti-tumor properties. The direct use of curcumin cytotoxicity studies are limited due to its unstable chemical structure, low bioavailability, easy oxidation, and degradation by ultraviolet (UV) light etc. Trying to overcome this problem, silica-encapsulated curcumin nanoparticles (SCNP) and chitosan with silica co-encapsulated curcumin nanoparticles (CSCNP) were prepared by silicification and biosilicification methods, respectively, and encapsulated curcumin within it. We investigated the antitumor properties of SCNP and CSCNP on different tumor cell lines. Scanning electron microscopy (SEM) analysis revealed that both SCNP and CSCNP were almost spherical in shape and the average particle size of CSCNP was 75.0 ± 14.62 nm, and SCNP was 61.7 ± 23.04 nm. The results show that CSCNP has more anti-oxidant activity as compared to curcumin and SCNP. The higher cytotoxicity towards different cancerous cell lines was also observed in CSCNP treated tumor cells. It was noted that the SCNP and CSCNP has a high percentage of IC50 values in Hep G2 cells. The encapsulation of curcumin improved instability, antioxidant activity, and antitumor activity. Our results demonstrated that nanoencapsulation of curcumin with silica and chitosan not only increase curcumin stability but also enhance its cytotoxic activity on hepatocellular carcinoma cells. On the basis of these primary studies, the curcumin-loaded nanoparticles appear to be promising as an innovative therapeutic material for the treatment of tumors.
Collapse
Affiliation(s)
- Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Hsiang-Ping Kuo
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Li-Cyuan Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ke Liang B Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
78
|
Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N, Ullah H, Rastrelli L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152883. [PMID: 30986716 DOI: 10.1016/j.phymed.2019.152883] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Breast cancer is worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several options. Extensive literature is available that demonstrating polyphenols, the richly introduce phytopharmaceuticals as anticancer agents. Among these polyphenols, resveratrol, silibinin, quercetin, genistein, curcumin reported to have an awesome potential against breast cancer. However, till now no comprehensive survey found about the anticarcinogenic properties of luteolin against breast cancer. SCOPE AND APPROACH This review targeted the available literature on luteolin in the treatment of breast cancer, effects in combination with other anticancer drugs with possible mechanisms. KEY FINDINGS AND CONCLUSION An outstanding therapeutic potential of luteolin in the treatment of breast cancer has been recorded not just as a chemopreventive and chemotherapeutic agent yet complemented by its synergistic effects with other anticancer therapies such as cyclophosphamide, doxorubicin, and NSAID such as celecoxib, and possible underlying mechanisms. Ideally, this review will open new dimensions for luteolin as an effective and safe therapeutic agent in diminishing breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan University Mardan 23200, Pakistan.
| | - Deborah Fratantonio
- "Bambino Gesù" Children's Hospital-IRCCS, Research Laboratories, V.le di San Paolo 15, 00146, Rome, Italy.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali khan University Mardan 23200, Pakistan
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
79
|
Urbańska K, Orzechowski A. Unappreciated Role of LDHA and LDHB to Control Apoptosis and Autophagy in Tumor Cells. Int J Mol Sci 2019; 20:ijms20092085. [PMID: 31035592 PMCID: PMC6539221 DOI: 10.3390/ijms20092085] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Tumor cells possess a high metabolic plasticity, which drives them to switch on the anaerobic glycolysis and lactate production when challenged by hypoxia. Among the enzymes mediating this plasticity through bidirectional conversion of pyruvate and lactate, the lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB), are indicated. LDHA has a higher affinity for pyruvate, preferentially converting pyruvate to lactate, and NADH to NAD+ in anaerobic conditions, whereas LDHB possess a higher affinity for lactate, preferentially converting lactate to pyruvate, and NAD+ to NADH, when oxygen is abundant. Apart from the undisputed role of LDHA and LDHB in tumor cell metabolism and adaptation to unfavorable environmental or cellular conditions, these enzymes participate in the regulation of cell death. This review presents the latest progress made in this area on the roles of LDHA and LDHB in apoptosis and autophagy of tumor cells. Several examples of how LDHA and LDHB impact on these processes, as well as possible molecular mechanisms, will be discussed in this article. The information included in this review points to the legitimacy of modulating LDHA and/or LDHB to target tumor cells in the context of human and veterinary medicine.
Collapse
Affiliation(s)
- Kaja Urbańska
- Department of Morphological Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
80
|
Sharifi M, Hosseinali SH, Saboury AA, Szegezdi E, Falahati M. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. J Control Release 2019; 299:121-137. [DOI: 10.1016/j.jconrel.2019.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022]
|
81
|
Cytotoxic and Apoptotic Activity of Majoranolide from Mezilaurus crassiramea on HL-60 Leukemia Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3464237. [PMID: 30941193 PMCID: PMC6421045 DOI: 10.1155/2019/3464237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/10/2019] [Indexed: 01/08/2023]
Abstract
Majoranolide, a butanolide isolated from the nonpolar fraction of an ethanol extract of Mezilaurus crassiramea (Lauraceae) fruits, is being reported for the first time in this genus and the third time in plants. Structurally identified from 1D and 2D NMR and HRESIMS data, majoranolide proved cytotoxic against cancer cells—MCF-7 and MDA-MB-231 (breast), HT-29 (colon), PC-3 (prostate), 786-0 (renal), and HL-60 (leukemia)—inhibiting growth in HL-60 cells (GI50 = 0.21 μM) and exhibiting higher selectivity for this line than for nonneoplastic NIH/3T3 murine fibroblasts. Effects on the cell cycle, caspase-3 activation, and plasma membrane integrity were evaluated by flow cytometry. Expression of genes related to apoptotic pathways (BAX, BCL2, BIRC5, and CASP8) was investigated using RT-qPCR. At 50 μM, majoranolide induced cell cycle arrest at G1 in 24 h increased the sub-G1 population in 48 h and increased caspase-3 activation in a time-dependent manner. The compound upregulated BAX and CASP8 transcription (proapoptotic genes) and downregulated BIRC5 (antiapoptotic). Loss of plasma membrane integrity in 30% of cells occurred at 48 h, but not at 24 h, characterizing gradual, programmed death. The results suggest that majoranolide cytotoxicity involves apoptosis induction in HL-60 cells, although other mechanisms may contribute to this cell death.
Collapse
|
82
|
Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, Ding L, Tao L. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif 2019; 52:e12543. [PMID: 30515909 PMCID: PMC6496724 DOI: 10.1111/cpr.12543] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of study was to investigate the anticancer activities of Ivermectin (IVM) and the possible mechanisms in cells level via cell proliferation inhibition, apoptosis and migration inhibition in model cancer cell HeLa. MATERIALS AND METHODS The MTT assay was used to study the inhibitory effect of IVM on the proliferation of Hela cells, and the cell cycle was analysed by flow cytometry. The neutral comet assay was used to study the DNA damage. The presence of apoptosis was confirmed by DAPI nuclear staining and flow cytometry. Changes in mitochondrial membrane potential and reactive oxygen species (ROS) levels were determined using Rhodamine 123 staining and DCFH-DA staining. Western blot analysis for apoptosis-related proteins was carried out. We use scratch test to analyse the antimigration potential of IVM. RESULTS Ivermectin can inhibit the viability of HeLa cells significantly. In addition, treatment with IVM resulted in cell cycle arrest at the G1/S phase which partly account for the suppressed proliferation. Typical apoptosis morphological changes were shown in IVM treatment cells including DNA fragmentation and chromatin condensation. At the same time, the results of flow cytometry analysis showed that the number of apoptotic cells increased significantly with the increase of IVM concentration. Moreover, we observed that the mitochondrial membrane potential collapses and the ratio of Bax/Bcl-2 in the cytoplasm increases, which induces cytochrome c release from the mitochondria to the cytoplasm, activates caspase-9/-3 and finally induces apoptosis. We also found that IVM can significantly increase intracellular ROS content. At the same time, we determined that IVM can significantly inhibit the migration of HeLa cells. CONCLUSIONS Our experimental results show that IVM might be a new potential anticancer drug for therapy of human cancer.
Collapse
Affiliation(s)
- Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Kuikui Liu
- Shandong Key Laboratory of Chemical MedicineShandong Academy of Pharmaceutical SciencesJinanChina
| | - Bin Liu
- Vegetable Technical Extension Station Qingpu District ShanghaiShanghaiChina
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Jufang Gao
- College of Life and Environmental SciencesShanghai Normal UniversityShanghaiChina
| | - Lei Ding
- Shanghai Key Laboratory of Chemical Biology, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| |
Collapse
|
83
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
84
|
Conformationally restricted goniofufurone mimics with halogen, azido or benzoyloxy groups at the C-7 position: Design, synthesis and antiproliferative activity. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 2018; 117:993-1001. [PMID: 29782972 DOI: 10.1016/j.ijbiomac.2018.05.121] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Several studies have processed conceivable evidence for the vital role of Signal Transducer and Activator of Transcription 3 (STAT3) in cancer transformation and carcinogenesis. Therefore, one of the important factors in formation of cancer is STAT3 and for design of novel anticancer drugs is a suitable target. On the other hand, apoptosis pathway has a critical role in the cancers pathogenesis. Generally, increasing developments have been existed to expression, production, phosphorylation or activation of STAT3 in the effective or responsible cells of most of the cancers. In return, apoptosis process in this cells have been suffered inhibition, decrease in expression, produce or activation in some related factors which lead to debilitation or inhibition of the process. Further understanding of the STAT3 related signaling and apoptosis pathway can lead to the invention of novel approaches for therapies in unstudied disease. In this manuscript, review and highlight recent knowledge of the STAT3 pathway and its connection with apoptosis process in cancers and discuss STAT3-targeting agents to therapeutic developments.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golnaz Rashidi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahriar Shahi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
86
|
Chen RJ, Kuo HC, Cheng LH, Lee YH, Chang WT, Wang BJ, Wang YJ, Cheng HC. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. Int J Mol Sci 2018; 19:ijms19010287. [PMID: 29346311 PMCID: PMC5796233 DOI: 10.3390/ijms19010287] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS) has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Hsiao-Che Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 707010, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40401, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
87
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
88
|
Jana S, Hsieh AC, Gupta R. Reciprocal amplification of caspase-3 activity by nuclear export of a putative human RNA-modifying protein, PUS10 during TRAIL-induced apoptosis. Cell Death Dis 2017; 8:e3093. [PMID: 28981101 PMCID: PMC5682645 DOI: 10.1038/cddis.2017.476] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Pus10 is a pseudouridine synthase present in Archaea and Eukarya, but not in Bacteria and yeast. It has been suggested that the human PUS10 (DOBI) gene is needed during TRAIL-induced apoptosis. We analyzed the role of PUS10 in TRAIL-induced apoptosis by immunofluorescence, immunoblotting and several indicators of apoptosis. We examined several TRAIL-sensitive cell lines and we also examined some resistant cell lines after treatment with cycloheximide. PUS10 is mainly present in the nucleus. Early during apoptosis, PUS10 translocates to mitochondria via CRM1-mediated export with the concurrent release of cytochrome c and SMAC. Caspase-3 is required for PUS10 translocation, which reciprocally amplifies the activity of caspase-3 through the intrinsic/mitochondrial pathway. This suggests that in addition to cytoplasmic factors, nuclear factors also have a direct role in the major apoptosis pathways. However, p53 is not involved in TRAIL-induced PUS10 movement. The caspase-3-mediated movement of PUS10 and the release of mitochondrial contents enhancing caspase-3 activity creates a feedback amplification loop for caspase-3 action. Therefore, any defect in the movement or interactions of PUS10 would reduce the TRAIL sensitivity of tumor cells.
Collapse
Affiliation(s)
- Sujata Jana
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL 62901-4413, USA
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL 62901-4413, USA
| |
Collapse
|