51
|
Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
52
|
McAllister LA, Butler CR, Mente S, O’Neil SV, Fonseca KR, Piro JR, Cianfrogna JA, Foley TL, Gilbert AM, Harris AR, Helal CJ, Johnson DS, Montgomery JI, Nason DM, Noell S, Pandit J, Rogers BN, Samad TA, Shaffer CL, da Silva RG, Uccello DP, Webb D, Brodney MA. Discovery of Trifluoromethyl Glycol Carbamates as Potent and Selective Covalent Monoacylglycerol Lipase (MAGL) Inhibitors for Treatment of Neuroinflammation. J Med Chem 2018; 61:3008-3026. [DOI: 10.1021/acs.jmedchem.8b00070] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura A. McAllister
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Christopher R. Butler
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Scot Mente
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Steven V. O’Neil
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kari R. Fonseca
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Justin R. Piro
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Julie A. Cianfrogna
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy L. Foley
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Adam M. Gilbert
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anthony R. Harris
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. Helal
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Justin I. Montgomery
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Deane M. Nason
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Noell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bruce N. Rogers
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Tarek A. Samad
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Christopher L. Shaffer
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Rafael G. da Silva
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel P. Uccello
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Damien Webb
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Michael A. Brodney
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
53
|
Zhang Z, Fang T, Zhou H, Yuan J, Liu Q. Characterization of the in Vitro Metabolic Profile of Evodiamine in Human Liver Microsomes and Hepatocytes by UHPLC-Q Exactive Mass Spectrometer. Front Pharmacol 2018. [PMID: 29520234 PMCID: PMC5827300 DOI: 10.3389/fphar.2018.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evodiamine is an indoloquinazoline alkaloid isolated from the fruit of Evodia rutaecarpa, which has a wide range of pharmacological effects like anti-tumor and anti-inflammatory effects. This study was intended to investigate the metabolic characteristics of evodiamine in human liver microsomes and hepatocytes by ultra-high performance liquid chromatography coupled with a Q Exactive mass spectrometer. A total of 12 phase I metabolites were detected in human liver microsomes; whereas in human hepatocytes 19 metabolites, including seven phase II metabolites were detected. The structures of the metabolites were characterized based on their accurate masses, fragment ions, and chromatographic retention times. Four metabolites (M1, M2, M5, and M7) were further unambiguously confirmed by matching their retention times, accurate masses, and fragment ions with those of their reference standards. Among these metabolites, 12 metabolites are first identified (M2, M5–M8, M10–M13, and M17–M19). The current study revealed that oxygenation, N-demethylation, dehydrogenation, glucuronidation, and GSH conjugation were the major metabolic pathways for evodiamine. This study elucidated the detailed metabolite profiles of evodiamine, which is helpful in predicting in vivo metabolism of evodiamine in human and in understanding the elimination mechanism of evodiamine and in turn, the effectiveness and toxicity.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Tianzi Fang
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Hongyun Zhou
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Jie Yuan
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Qingwang Liu
- Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
54
|
Rebelo SLH, Pires SMG, Simões MMQ, Medforth CJ, Cavaleiro JAS, Neves MGPMS. A Green and Versatile Route to Highly Functionalized Benzofuran Derivatives Using Biomimetic Oxygenation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susana L. H. Rebelo
- LAQV-REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Sónia M. G. Pires
- QOPNA Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Mário M. Q. Simões
- QOPNA Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Craig J. Medforth
- UCIBIO-REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, 4169–007 Porto
| | | | | |
Collapse
|
55
|
Xu J, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro 2018; 48:286-301. [PMID: 29407385 DOI: 10.1016/j.tiv.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Immortalized liver cells have been used for evaluating the toxicity of compounds; however, excessive glutathione is considered to lessen cytotoxicity. In this study, we compared the effects of glutathione depletion on cytotoxicities of drugs using HepaRG and HepG2 cells, which express and lack drug-metabolizing enzymes, respectively, for predicting drug-induced liver injury (DILI) risks. These cells were pre-incubated with L-buthionine-S,R-sulfoximine (BSO) and then exposed to 34 test compounds with various DILI risks for 24 h. ATP level exhibited the highest predictability of DILI among tested parameters. BSO treatment rendered cells susceptible to drug-induced cytotoxicity when evaluated by cell viability and caspase 3/7 activity with the sensitivity of cell viability from 50% in non-treated HepaRG cells to 71% in BSO-treated HepaRG cells. These results indicate that cytotoxicity assays using GSH-depleted HepaRG cells improve the predictability of DILI risks. However, HepaRG cells were not always superior to HepG2 cells when assessed by ATP level. The combination of HepG2 and HepaRG cells index produced the best prediction in the cases of caspase 3/7 acitivity and ATP level. In conclusions, the developed highly sensitive cell-based assay using GSH-reduced cells would be useful for predicting potential DILI risks at an early stage of drug development.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
56
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
57
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
58
|
Lin D, Kostov R, Huang JTJ, Henderson CJ, Wolf CR. Novel Pathways of Ponatinib Disposition Catalyzed By CYP1A1 Involving Generation of Potentially Toxic Metabolites. J Pharmacol Exp Ther 2017; 363:12-19. [PMID: 28882992 PMCID: PMC5596814 DOI: 10.1124/jpet.117.243246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Ponatinib, a pan-BCR-ABL tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia (CML), causes severe side effects including vascular occlusions, pancreatitis, and liver toxicity, although the underlying mechanisms remain unclear. Modifications of critical proteins through reactive metabolites are thought to be responsible for a number of adverse drug reactions. In vitro metabolite screening of ponatinib with human liver microsomes and glutathione revealed unambiguous signals of ponatinib-glutathione (P-GSH) adducts. Further profiling of human cytochrome P450 (P450) indicated that CYP1A1 was the predominant P450 enzyme driving this reaction. P-GSH conjugate formation paralleled the disappearance of hydroxylated ponatinib metabolites, suggesting the initial reaction was epoxide generation. Mouse glutathione S-transferase p1 (mGstp1) further enhanced P-GSH adduct formation in vitro. Ponatinib pharmacokinetics were determined in vivo in wild-type (WT) mice and mice humanized for CYP1A1/2 and treated with the CYP1A1 inducers 2,3,7,8-tetrachlorodibenzodioxin or 3-methylcholanthrene. Ponatinib exposure was significantly decreased in treated mice compared with controls (7.7- and 2.2-fold for WT and humanized CYP1A1/2, respectively). Interestingly, the P-GSH conjugate was only found in the feces of CYP1A1-induced mice, but not in control animals. Protein adducts were also identified by liquid chromatography-tandem mass spectrometry analysis of mGstp1 tryptic digests. These results indicate that not only could CYP1A1 be involved in ponatinib disposition, which has not been previously reported, but also that electrophilic intermediates resulting from CYP1A1 metabolism in normal tissues may contribute to ponatinib toxicity. These data are consistent with a recent report that CML patients who smoke are at greater risk of disease progression and premature death.
Collapse
Affiliation(s)
- De Lin
- Division of Cancer Research, Jacqui Wood Cancer Centre (D.L., C.J.H., C.R.W.), Molecular & Cellular Medicine (R.K.), and Biomarker & Drug Analysis Core (J.T.-J.H.), School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Rumen Kostov
- Division of Cancer Research, Jacqui Wood Cancer Centre (D.L., C.J.H., C.R.W.), Molecular & Cellular Medicine (R.K.), and Biomarker & Drug Analysis Core (J.T.-J.H.), School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Jeffrey T-J Huang
- Division of Cancer Research, Jacqui Wood Cancer Centre (D.L., C.J.H., C.R.W.), Molecular & Cellular Medicine (R.K.), and Biomarker & Drug Analysis Core (J.T.-J.H.), School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre (D.L., C.J.H., C.R.W.), Molecular & Cellular Medicine (R.K.), and Biomarker & Drug Analysis Core (J.T.-J.H.), School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre (D.L., C.J.H., C.R.W.), Molecular & Cellular Medicine (R.K.), and Biomarker & Drug Analysis Core (J.T.-J.H.), School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
59
|
Mikov M, Đanić M, Pavlović N, Stanimirov B, Goločorbin-Kon S, Stankov K, Al-Salami H. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes. Eur J Drug Metab Pharmacokinet 2017; 42:881-890. [DOI: 10.1007/s13318-017-0417-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today 2017; 22:751-756. [DOI: 10.1016/j.drudis.2016.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
|
61
|
Revisiting the Metabolism and Bioactivation of Ketoconazole in Human and Mouse Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Int J Mol Sci 2017; 18:ijms18030621. [PMID: 28335386 PMCID: PMC5372636 DOI: 10.3390/ijms18030621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
Although ketoconazole (KCZ) has been used worldwide for 30 years, its metabolic characteristics are poorly described. Moreover, the hepatotoxicity of KCZ limits its therapeutic use. In this study, we used liquid chromatography–mass spectrometry-based metabolomics to evaluate the metabolic profile of KCZ in mouse and human and identify the mechanisms underlying its hepatotoxicity. A total of 28 metabolites of KCZ, 11 of which were novel, were identified in this study. Newly identified metabolites were classified into three categories according to the metabolic positions of a piperazine ring, imidazole ring, and N-acetyl moiety. The metabolic characteristics of KCZ in human were comparable to those in mouse. Moreover, three cyanide adducts of KCZ were identified in mouse and human liver microsomal incubates as “flags” to trigger additional toxicity study. The oxidation of piperazine into iminium ion is suggested as a biotransformation responsible for bioactivation. In summary, the metabolic characteristics of KCZ, including reactive metabolites, were comprehensively understood using a metabolomics approach.
Collapse
|
62
|
Hughes TB, Swamidass SJ. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism. Chem Res Toxicol 2017; 30:642-656. [PMID: 28099803 DOI: 10.1021/acs.chemrestox.6b00385] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .
Collapse
Affiliation(s)
- Tyler B Hughes
- Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
63
|
Raschi E, De Ponti F. Drug-induced liver injury: Towards early prediction and risk stratification. World J Hepatol 2017; 9:30-37. [PMID: 28105256 PMCID: PMC5220269 DOI: 10.4254/wjh.v9.i1.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 11/27/2016] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a hot topic for clinicians, academia, drug companies and regulators, as shown by the steadily increasing number of publications and agents listed as causing liver damage (http://livertox.nih.gov/). As it was the case in the past decade with drug-induced QT prolongation/arrhythmia, there is an urgent unmet clinical need to develop tools for risk assessment and stratification in clinical practice and, in parallel, to improve prediction of pre-clinical models to support regulatory steps and facilitate early detection of liver-specific adverse drug events. Although drug discontinuation and therapy reconciliation still remain the mainstay in patient management to minimize occurrence of DILI, especially acute liver failure events, different multidisciplinary attempts have been proposed in 2016 to predict and assess drug-related risk in individual patients; these promising, albeit preliminary, results strongly support the need to pursue this innovative pathway.
Collapse
Affiliation(s)
- Emanuel Raschi
- Emanuel Raschi, Fabrizio De Ponti, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Fabrizio De Ponti
- Emanuel Raschi, Fabrizio De Ponti, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
64
|
Abstract
Although safety of drug candidates is carefully monitored in preclinical and clinical studies using a variety of approaches, drug toxicity may still occur in clinical practice. Therefore, novel approaches are needed to complement the current drug safety evaluation system. Metabolomics comprehensively analyzes the metabolites altered by drug exposure, which can therefore be used to profile drug metabolism, endobiotic metabolism, and drug-microbiota interactions. The information from metabolomic analysis can be used to determine the off-targets of a drug candidate, and thus provide a mechanistic understanding of drug toxicity. We herein discuss the opportunities of metabolomics in drug safety evaluation.
Collapse
|
65
|
Marín-Ramos NI, Piñar C, Vázquez-Villa H, Martín-Fontecha M, González Á, Canales Á, Algar S, Mayo PP, Jiménez-Barbero J, Gajate C, Mollinedo F, Pardo L, Ortega-Gutiérrez S, Viso A, López-Rodríguez ML. Development of a Nucleotide Exchange Inhibitor That Impairs Ras Oncogenic Signaling. Chemistry 2016; 23:1676-1685. [PMID: 27885731 DOI: 10.1002/chem.201604905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Despite more than three decades of intense effort, no anti-Ras therapies have reached clinical application. Contributing to this failure has been an underestimation of Ras complexity and a dearth of structural information. In this regard, recent studies have revealed the highly dynamic character of the Ras surface and the existence of transient pockets suitable for small-molecule binding, opening up new possibilities for the development of Ras modulators. Herein, a novel Ras inhibitor (compound 12) is described that selectively impairs mutated Ras activity in a reversible manner without significantly affecting wild-type Ras, reduces the Ras-guanosine triphosphate (GTP) levels, inhibits the activation of the mitogen-activated protein kinase (MAPK) pathway, and exhibits remarkable cytotoxic activity in Ras-driven cellular models. The use of molecular dynamics simulations and NMR spectroscopy experiments has enabled the molecular bases responsible for the interactions between compound 12 and Ras protein to be explored. The new Ras inhibitor binds partially to the GTP-binding region and extends into the adjacent hydrophobic pocket delimited by switch II. Hence, Ras inhibitor 12 could represent a new compound for the development of more efficacious drugs to target Ras-driven cancers; a currently unmet clinical need.
Collapse
Affiliation(s)
- Nagore I Marín-Ramos
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.,CEI Campus Moncloa, UCM-UPM and CSIC, 28040, Madrid, Spain
| | - Carmen Piñar
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ángel González
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ángeles Canales
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Sergio Algar
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Paloma P Mayo
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edif. 801A, 48160, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48103, Bilbao, Spain
| | - Consuelo Gajate
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Faustino Mollinedo
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Leonardo Pardo
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| | - María L López-Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
66
|
Gan J, Zhang H, Humphreys WG. Drug–Protein Adducts: Chemistry, Mechanisms of Toxicity, and Methods of Characterization. Chem Res Toxicol 2016; 29:2040-2057. [DOI: 10.1021/acs.chemrestox.6b00274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinping Gan
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - Haiying Zhang
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - W. Griffith Humphreys
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| |
Collapse
|
67
|
Lauschke VM, Ingelman-Sundberg M. The Importance of Patient-Specific Factors for Hepatic Drug Response and Toxicity. Int J Mol Sci 2016; 17:E1714. [PMID: 27754327 PMCID: PMC5085745 DOI: 10.3390/ijms17101714] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Responses to drugs and pharmacological treatments differ considerably between individuals. Importantly, only 50%-75% of patients have been shown to react adequately to pharmacological interventions, whereas the others experience either a lack of efficacy or suffer from adverse events. The liver is of central importance in the metabolism of most drugs. Because of this exposed status, hepatotoxicity is amongst the most common adverse drug reactions and hepatic liabilities are the most prevalent reason for the termination of development programs of novel drug candidates. In recent years, more and more factors were unveiled that shape hepatic drug responses and thus underlie the observed inter-individual variability. In this review, we provide a comprehensive overview of different principle mechanisms of drug hepatotoxicity and illustrate how patient-specific factors, such as genetic, physiological and environmental factors, can shape drug responses. Furthermore, we highlight other parameters, such as concomitantly prescribed medications or liver diseases and how they modulate drug toxicity, pharmacokinetics and dynamics. Finally, we discuss recent progress in the field of in vitro toxicity models and evaluate their utility in reflecting patient-specific factors to study inter-individual differences in drug response and toxicity, as this understanding is necessary to pave the way for a patient-adjusted medicine.
Collapse
Affiliation(s)
- Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
68
|
de Lima Moreira F, Habenschus MD, Barth T, Marques LMM, Pilon AC, da Silva Bolzani V, Vessecchi R, Lopes NP, de Oliveira ARM. Metabolic profile and safety of piperlongumine. Sci Rep 2016; 6:33646. [PMID: 27681015 PMCID: PMC5041077 DOI: 10.1038/srep33646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 08/15/2016] [Indexed: 11/24/2022] Open
Abstract
Piperlongumine (PPL), a natural plant product, has been extensively studied in cancer treatment going up on clinical trials. Since the first report related to its use on cancer research (in 2011) around 80 papers have been published in less than 10 years, but a gap still remaining. There are no metabolism studies of PPL in human organism. For the lack of a better view, here, the CYP450 in vitro oxidation of PPL was described for the first time. In addition, the enzymatic kinetic data, the predicted in vivo parameters, the produced metabolites, the phenotyping study and possible piperlongumine-drug interactions in vivo is presented.
Collapse
Affiliation(s)
- Fernanda de Lima Moreira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Maísa D Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Thiago Barth
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé - IMMT, 27930-560, Macaé, RJ, Brazil
| | - Lucas M M Marques
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Alan Cesar Pilon
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natural Products - NuBBE, Sao Paulo State University - UNESP - Chemistry Institute, Department of Organic Chemistry, Araraquara, Sao Paulo, Brazil
| | - Vanderlan da Silva Bolzani
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natural Products - NuBBE, Sao Paulo State University - UNESP - Chemistry Institute, Department of Organic Chemistry, Araraquara, Sao Paulo, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto-SP, Brazil
| | - Anderson R M de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| |
Collapse
|
69
|
Gan J, Ma S, Zhang D. Non-cytochrome P450-mediated bioactivation and its toxicological relevance. Drug Metab Rev 2016; 48:473-501. [DOI: 10.1080/03602532.2016.1225756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
70
|
Rana P, Will Y, Nadanaciva S, Jones LH. Development of a cell viability assay to assess drug metabolite structure-toxicity relationships. Bioorg Med Chem Lett 2016; 26:4003-6. [PMID: 27397500 DOI: 10.1016/j.bmcl.2016.06.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/24/2023]
Abstract
Many adverse drug reactions are caused by the cytochrome P450 (CYP)-dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-induced toxicity and to improve the safety of drug candidates, we developed a simple cell viability assay by combining a bioactivation system (human CYP3A4, CYP2D6 and CYP2C9) with Hep3B cells. We screened a series of drugs to explore structural motifs that may be responsible for CYP450-dependent activation caused by reactive metabolite formation, which highlighted specific liabilities regarding certain phenols and anilines.
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, CT 06340, USA
| | - Yvonne Will
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, CT 06340, USA
| | - Sashi Nadanaciva
- Compound Safety Prediction, Pfizer, Eastern Point Road, Groton, CT 06340, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, 610 Main St., Cambridge, MA 02139, USA.
| |
Collapse
|
71
|
Geohagen BC, Vydyanathan A, Kosharskyy B, Shaparin N, Gavin T, LoPachin RM. Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity. J Pharmacol Exp Ther 2016; 357:476-86. [PMID: 27029584 PMCID: PMC4885508 DOI: 10.1124/jpet.115.231001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis.
Collapse
Affiliation(s)
- Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Amaresh Vydyanathan
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Boleslav Kosharskyy
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Naum Shaparin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Terrence Gavin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| |
Collapse
|
72
|
Brito Palma B, Fisher CW, Rueff J, Kranendonk M. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites. Chem Res Toxicol 2016; 29:747-56. [DOI: 10.1021/acs.chemrestox.5b00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernardo Brito Palma
- Centre
for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology
and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, CEDOC II Building, Rua Câmara Pestana 6, room 2.23, 1150-082 Lisbon, Portugal
| | - Charles W. Fisher
- School
of Pharmacy, Texas Tech University, 1300 Coulter Avenue, Amarillo, Texas 79106, United States
| | - José Rueff
- Centre
for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology
and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, CEDOC II Building, Rua Câmara Pestana 6, room 2.23, 1150-082 Lisbon, Portugal
| | - Michel Kranendonk
- Centre
for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology
and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, CEDOC II Building, Rua Câmara Pestana 6, room 2.23, 1150-082 Lisbon, Portugal
| |
Collapse
|
73
|
Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities. J Biochem Mol Toxicol 2016; 30:295-301. [DOI: 10.1002/jbt.21793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments. Chem Res Toxicol 2016; 29:505-33. [DOI: 10.1021/acs.chemrestox.5b00410] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard A. Thompson
- DMPK, Respiratory, Inflammation & Autoimmunity iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Emre M. Isin
- DMPK, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Monday O. Ogese
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| | - Jerome T. Mettetal
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, 35 Gatehouse Dr, Waltham, Massachusetts 02451, United States
| | - Dominic P. Williams
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| |
Collapse
|
75
|
Jaladanki CK, Taxak N, Varikoti RA, Bharatam PV. Toxicity Originating from Thiophene Containing Drugs: Exploring the Mechanism using Quantum Chemical Methods. Chem Res Toxicol 2015; 28:2364-76. [PMID: 26574776 DOI: 10.1021/acs.chemrestox.5b00364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug metabolism of thiophene containing substrates by cytochrome P450s (CYP450) leads to toxic side effects, for example, nephrotoxicity (suprofen, ticlopidine), hepatotoxicity (tienilic acid), thrombotic thrombocytopenic purpura (clopidogrel), and aplastic anemia (ticlopidine). The origin of toxicity in these cases has been attributed to two different CYP450 mediated metabolic reactions: S-oxidation and epoxidation. In this work, the molecular level details of the bioinorganic chemistry associated with the generation of these competitive reactions are reported. Density functional theory was utilized (i) to explore the molecular mechanism for S-oxidation and epoxidation using the radical cationic center Cpd I [(iron(IV)-oxo-heme porphine system with SH(-) as the axial ligand, to mimic CYP450s] as the model oxidant, (ii) to establish the 3D structures of the reactants, transition states, and products on both the metabolic pathways, and (iii) to examine the potential energy (PE) profile for both the pathways to determine the energetically preferred toxic metabolite formation. The energy barrier required for S-oxidation was observed to be 14.75 kcal/mol as compared to that of the epoxidation reaction (13.23 kcal/mol) on the doublet PE surface of Cpd I. The formation of the epoxide metabolite was found to be highly exothermic (-23.24 kcal/mol), as compared to S-oxidation (-8.08 kcal/mol). Hence, on a relative scale the epoxidation process was observed to be thermodynamically and kinetically more favorable. The energy profiles associated with the reactions of the S-oxide and epoxide toxic metabolites were also explored. This study helps in understanding the CYP450-catalyzed toxic reactions of drugs containing the thiophene ring at the atomic level.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Nikhil Taxak
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Rohith A Varikoti
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
76
|
Abstract
Predictive toxicology plays a critical role in reducing the failure rate of new drugs in pharmaceutical research and development. Despite recent gains in our understanding of drug-induced toxicity, however, it is urgent that the utility and limitations of our current predictive tools be determined in order to identify gaps in our understanding of mechanistic and chemical toxicology. Using recently published computational regression analyses of in vitro and in vivo toxicology data, it will be demonstrated that significant gaps remain in early safety screening paradigms. More strategic analyses of these data sets will allow for a better understanding of their domain of applicability and help identify those compounds that cause significant in vivo toxicity but which are currently mis-predicted by in silico and in vitro models. These ‘outliers’ and falsely predicted compounds are metaphorical lighthouses that shine light on existing toxicological knowledge gaps, and it is essential that these compounds are investigated if attrition is to be reduced significantly in the future. As such, the modern computational toxicologist is more productively engaged in understanding these gaps and driving investigative toxicology towards addressing them.
Collapse
Affiliation(s)
- RT Naven
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Andover, MA, USA
| | | |
Collapse
|
77
|
Garcia-Serna R, Vidal D, Remez N, Mestres J. Large-Scale Predictive Drug Safety: From Structural Alerts to Biological Mechanisms. Chem Res Toxicol 2015; 28:1875-87. [PMID: 26360911 DOI: 10.1021/acs.chemrestox.5b00260] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent explosion of data linking drugs, proteins, and pathways with safety events has promoted the development of integrative systems approaches to large-scale predictive drug safety. The added value of such approaches is that, beyond the traditional identification of potentially labile chemical fragments for selected toxicity end points, they have the potential to provide mechanistic insights for a much larger and diverse set of safety events in a statistically sound nonsupervised manner, based on the similarity to drug classes, the interaction with secondary targets, and the interference with biological pathways. The combined identification of chemical and biological hazards enhances our ability to assess the safety risk of bioactive small molecules with higher confidence than that using structural alerts only. We are still a very long way from reliably predicting drug safety, but advances toward gaining a better understanding of the mechanisms leading to adverse outcomes represent a step forward in this direction.
Collapse
Affiliation(s)
- Ricard Garcia-Serna
- Chemotargets SL , Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain
| | - David Vidal
- Chemotargets SL , Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain
| | - Nikita Remez
- Chemotargets SL , Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain.,Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra , Parc de Recerca Biomèdica, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemotargets SL , Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain.,Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra , Parc de Recerca Biomèdica, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
78
|
Yamaoka T, Kitamura Y. Characterization of a highly sensitive and selective novel trapping reagent, stable isotope labeled glutathione ethyl ester, for the detection of reactive metabolites. J Pharmacol Toxicol Methods 2015; 76:83-95. [PMID: 26314789 DOI: 10.1016/j.vascn.2015.08.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Glutathione (GSH) trapping assays are widely used to predict the post-marketing risk for idiosyncratic drug reactions (IDRs) in the pharmaceutical industry. Although several GSH derivatives have been introduced as trapping reagents for reactive intermediates, more sensitive and selective reagents are desired to prevent the generation of erroneous results. In this study, stable isotope labeled GSH ethyl ester (GSHEE-d5) was designed and its detection capability was evaluated. METHODS GSHEE-d5 was synthesized and its detection potential was compared with stable isotope labeled GSH ([(13)C2,(15)N]GSH) as a reference trapping reagent. The trapping reagents were added to human liver microsomes as a 1:1 mixture with GSHEE or GSH, respectively, and incubated with seven IDR positive drugs and three IDR negative drugs. The adducts formed between the reagents and reactive metabolites were analyzed by unit resolution mass spectrometer (MS) using isotope pattern-dependent scan with neutral loss filtering. RESULTS A single-step reaction of GSH and ethanol-d6 produced GSHEE-d5 with a yield of 85%. The GSHEE-d5 assay detected adducts with all seven IDR positive drugs, and no adducts were detected with the three IDR negative drugs. In contrast, the [(13)C2,(15)N]GSH assay failed to detect adducts with three of the IDR positive drugs. In the case of diclofenac, the GSHEE-d5 assay showed a 4-times greater signal intensity than the [(13)C2,(15)N]GSH assay. DISCUSSION GSHEE-d5 enabled the detection of reactive metabolites with greater sensitivity and selectivity than [(13)C2,(15)N]GSH. These results demonstrate that GSHEE-d5 would be a useful trapping reagent for evaluating the risk of IDRs with unit resolution MS.
Collapse
Affiliation(s)
- Toshikazu Yamaoka
- DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| | - Yoshiaki Kitamura
- DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| |
Collapse
|
79
|
Insel PA, Amara SG, Blaschke TF. Introduction to the theme "Precision medicine and prediction in pharmacology". Annu Rev Pharmacol Toxicol 2014; 55:11-4. [PMID: 25562643 DOI: 10.1146/annurev-pharmtox-101714-123102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul A Insel
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093;
| | | | | |
Collapse
|