51
|
Fadeeva M, Klaiman D, Caspy I, Nelson N. CryoEM PSII structure reveals adaptation mechanisms to environmental stress in Chlorella ohadii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539358. [PMID: 37205566 PMCID: PMC10187303 DOI: 10.1101/2023.05.04.539358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Performing photosynthesis in the desert is a challenging task since it requires a fast adaptation to extreme illumination and temperature changes. To understand adaptive mechanisms, we purified Photosystem II (PSII) from Chlorella ohadii , a green alga from the desert soil surface, and identified structural elements that might enable the photosystem functioning under harsh conditions. The 2.72 Å cryogenic electron-microscopy (cryoEM) structure of PSII exhibited 64 subunits, encompassing 386 chlorophylls, 86 carotenoids, four plastoquinones, and several structural lipids. At the luminal side of PSII, the oxygen evolving complex was protected by a unique subunit arrangement - PsbO (OEE1), PsbP (OEE2), CP47, and PsbU (plant OEE3 homolog). PsbU interacted with PsbO, CP43, and PsbP, thus stabilising the oxygen evolving shield. Substantial changes were observed on the stromal electron acceptor side - PsbY was identified as a transmembrane helix situated alongside PsbF and PsbE enclosing cytochrome b559, supported by the adjacent C-terminal helix of Psb10. These four transmembrane helices bundled jointly, shielding cytochrome b559 from the solvent. The bulk of Psb10 formed a cap protecting the quinone site and probably contributed to the PSII stacking. So far, the C. ohadii PSII structure is the most complete description of the complex, suggesting numerous future experiments. A protective mechanism that prevented Q B from rendering itself fully reduced is proposed.
Collapse
Affiliation(s)
| | | | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
52
|
Shao C, Tao S, Liang Y. Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. BMC Genomics 2023; 24:173. [PMID: 37020280 PMCID: PMC10077639 DOI: 10.1186/s12864-023-09276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that different molecular interaction mechanisms exist the two Gymnosporangium species with junipers. RESULTS Comparative transcriptome analysis was performed to investigate genes regulation of juniper in responses to the infections of G. asiaticum and G. yamadae at different stages. Functional enrichment analysis showed that genes related to transport, catabolism and transcription pathways were up-regulated, while genes related to energy metabolism and photosynthesis were down-regulated in juniper branch tissues after infection with G. asiaticum and G. yamadae. The transcript profiling of G. yamadae-induced gall tissues revealed that more genes involved in photosynthesis, sugar metabolism, plant hormones and defense-related pathways were up-regulated in the vigorous development stage of gall compared to the initial stage, and were eventually repressed overall. Furthermore, the concentration of cytokinins (CKs) in the galls tissue and the telia of G. yamadae was significantly higher than in healthy branch tissues of juniper. As well, tRNA-isopentenyltransferase (tRNA-IPT) was identified in G. yamadae with highly expression levels during the gall development stages. CONCLUSIONS In general, our study provided new insights into the host-specific mechanisms by which G. asiaticum and G. yamadae differentially utilize CKs and specific adaptations on juniper during their co-evolution.
Collapse
Affiliation(s)
- Chenxi Shao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, No. 35, Qinghua Eastern Road, Beijing, 100083, China.
| |
Collapse
|
53
|
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 2023; 616:199-206. [PMID: 36922595 DOI: 10.1038/s41586-023-05831-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.
Collapse
Affiliation(s)
- Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
54
|
Chanu NK, Mandal MK, Srivastava A, Mishra Y, Chaurasia N. Proteomics Reveals Damaging Effect of Alpha-Cypermethrin Exposure in a Non-Target Freshwater Microalga Chlorella sp. NC-MKM. Curr Microbiol 2023; 80:144. [PMID: 36943524 DOI: 10.1007/s00284-023-03179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/02/2023] [Indexed: 03/23/2023]
Abstract
Alpha-cypermethrin, a pyrethroid pesticide, is frequently used on crops to prevent insect attacks. However, occasionally, due to drift, leaching, or with rainwater, it enters the aquatic environment and poses a serious threat to the growth of non-target aquatic organisms. In the current study, we were interested in investigating the damaging effect of alpha-cypermethrin on a local freshwater non-target green alga Chlorella sp. NC-MKM in terms of its protein levels. This was achieved by exposing Chlorella sp. NC-MKM to an EC50 concentration of alpha-cypermethrin for 1 day, followed by the two-dimensional (2-D) gel electrophoresis and MALDI-TOF MS. Fifty-three proteins, which had showed significant differential accumulation (> 1.5 fold, P < 0.05) after exposure to alpha-cypermethrin, were considered as differentially accumulated proteins (DAPs). These DAPs were further divided into several functional categories, and the expressions of each in control and treatment samples were compared. Comparison revealed that alpha-cypermethrin exposure affects the accumulation of proteins related with photosynthesis, stress response, carbohydrate metabolism, signal transduction and transporters, translation, transcription, cell division, lipid metabolism, amino acid and nucleotide biosynthesis, secondary metabolites production, and post-translational modification, and thus rendered the tested algal isolate sensitive toward this pesticide. The overall findings of this research thus offer a fundamental understanding of the possible mechanism of action of the insecticide alpha-cypermethrin on the microalga Chlorella sp. NC-MKM and also suggest potential biomarkers for the investigation of pesticide exposed microalgae.
Collapse
Affiliation(s)
- Ng Kunjarani Chanu
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Madan Kumar Mandal
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
55
|
Structure of Photosystem I Supercomplex Isolated from a Chlamydomonas reinhardtii Cytochrome b6f Temperature-Sensitive Mutant. Biomolecules 2023; 13:biom13030537. [PMID: 36979472 PMCID: PMC10046768 DOI: 10.3390/biom13030537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has been widely used as a model system to study photosynthesis. Its possibility to generate and analyze specific mutants has made it an excellent tool for mechanistic and biogenesis studies. Using negative selection of ultraviolet (UV) irradiation–mutated cells, we isolated a mutant (TSP9) with a single amino acid mutation in the Rieske protein of the cytochrome b6f complex. The W143R mutation in the petC gene resulted in total loss of cytochrome b6f complex function at the non-permissive temperature of 37 °C and recovery at the permissive temperature of 25 °C. We then isolated photosystem I (PSI) and photosystem II (PSII) supercomplexes from cells grown at the non-permissive temperature and determined the PSI structure with high-resolution cryogenic electron microscopy. There were several structural alterations compared with the structures obtained from wild-type cells. Our structural data suggest that the mutant responded by excluding the Lhca2, Lhca9, PsaL, and PsaH subunits. This structural alteration prevents state two transition, where LHCII migrates from PSII to bind to the PSI complex. We propose this as a possible response mechanism triggered by the TSP9 phenotype at the non-permissive temperature.
Collapse
|
56
|
Wang Y, Zhang M, Li X, Zhou R, Xue X, Zhang J, Liu N, Xue R, Qi X. Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:ijms24065226. [PMID: 36982301 PMCID: PMC10049290 DOI: 10.3390/ijms24065226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Psb28 is a soluble protein in the photosystem II (PSII) complex, but its role in the drought stress response of wheat remains unclear. Here, we functionally characterized the TaPsb28 gene, which positively regulates drought tolerance in wheat. When the full-length 546-bp TaPsb28 cDNA was transferred into Arabidopsis thaliana, it was located in the guard cell chloroplast around the stroma. Overexpression of TaPsb28 conferred drought tolerance, as exhibited by the increases in the survival rate. Transgenic plants maintained lower MDA content and higher chlorophyll content by inducing chlorophyll synthase (ChlG) gene transcription. The content of abscisic acid (ABA) and zeatin increased significantly in wild-type (WT) plants under drought stress, and the transcriptional expression levels of RD22, dihydroflavonol 4-reductase (DFR) and anthocyanin reductase (ANR) genes were induced, thus enhancing the contents of endogenous cyanidin, delphinidin, and proanthocyanidins. However, in transgenic plants, although anthocyanins were further aggregated, the ABA increase was inhibited, zeatin was restored to the control level under drought stress, and stomatal closure was promoted. These findings indicate ABA and zeatin have opposite synergistic effects in the process of drought tolerance caused by TaPsb28 because only after the effect of zeatin is alleviated can ABA better play its role in promoting anthocyanin accumulation and stomatal closure, thus enhancing the drought tolerance of transgenic plants. The results suggest that overexpression of TaPsb28 exerts a positive role in the drought response by influencing the functional metabolism of endogenous hormones. The understanding acquired through the research laid a foundation for further in-depth investigation of the function of TaPsb28 in drought resistance in wheat, especially its relationship with anthocyanidin accumulation.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (X.Q.); Tel./Fax: +86-(37)-163555319 (Y.W.)
| | - Menghan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruixiang Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinyu Xue
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Nana Liu
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Ruili Xue
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (Y.W.); (X.Q.); Tel./Fax: +86-(37)-163555319 (Y.W.)
| |
Collapse
|
57
|
Shang H, Li M, Pan X. Dynamic Regulation of the Light-Harvesting System through State Transitions in Land Plants and Green Algae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1173. [PMID: 36904032 PMCID: PMC10005731 DOI: 10.3390/plants12051173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes whose main function is to increase the light-harvesting capability of the core. In order to maintain optimal photosynthetic activity under a constantly changing natural light environment, plants and green algae regulate the absorbed photo-excitation energy between PSI and PSII through processes known as state transitions. State transitions represent a short-term light adaptation mechanism for balancing the energy distribution between the two photosystems by relocating light-harvesting complex II (LHCII) proteins. The preferential excitation of PSII (state 2) results in the activation of a chloroplast kinase which in turn phosphorylates LHCII, a process followed by the release of phosphorylated LHCII from PSII and its migration to PSI, thus forming the PSI-LHCI-LHCII supercomplex. The process is reversible, as LHCII is dephosphorylated and returns to PSII under the preferential excitation of PSI. In recent years, high-resolution structures of the PSI-LHCI-LHCII supercomplex from plants and green algae were reported. These structural data provide detailed information on the interacting patterns of phosphorylated LHCII with PSI and on the pigment arrangement in the supercomplex, which is critical for constructing the excitation energy transfer pathways and for a deeper understanding of the molecular mechanism of state transitions progress. In this review, we focus on the structural data of the state 2 supercomplex from plants and green algae and discuss the current state of knowledge concerning the interactions between antenna and the PSI core and the potential energy transfer pathways in these supercomplexes.
Collapse
Affiliation(s)
- Hui Shang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
58
|
Akagi C, Kurihara Y, Makita Y, Kawauchi M, Tsuge T, Aoyama T, Matsui M. Translational activation of ribosome-related genes at initial photoreception is dependent on signals derived from both the nucleus and the chloroplasts in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2023; 136:227-238. [PMID: 36658292 DOI: 10.1007/s10265-022-01430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Light is one of the indispensable elements that plants need in order to grow and develop. In particular, it is essential for inducing morphogenesis, such as suppression of hypocotyl elongation and cotyledon expansion, that plants undergo when they first emerge after germination. However, there is a lack of knowledge about the gene expression and, in particular, the translational levels that induce a response upon light exposure. We have investigated the translational expression of nuclear genes in Arabidopsis thaliana seedlings germinated in the dark and then exposed to blue monochromatic light. In this study, ribosome profiling analysis was performed in the blue-light-receptor mutant cry1cry2 and the light-signaling mutant hy5 to understand which signaling pathways are responsible for the changes in gene expression at the translational level after blue-light exposure. The analysis showed that the expression of certain chloroplast- and ribosome-related genes was up-regulated at the translational level in the wild type. However, in both mutants the translational up-regulation of ribosome-related genes was apparently compromised. This suggests that light signaling through photoreceptors and the HY5 transcription factor are responsible for translation of ribosome-related genes. To further understand the effect of photoreception by chloroplasts on nuclear gene expression, chloroplast function was inhibited by adding a photosynthesis inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a carotenoid synthesis inhibitor, norflurazon. The results show that inhibition of chloroplast function did not lead to an increase in the expression of ribosome-related genes at the translational level. These results suggest that signals from both the nucleus and chloroplasts are required to activate translation of ribosome-related genes during blue-light reception.
Collapse
Affiliation(s)
- Chika Akagi
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Faculty of Engineering, Maebashi Institute of Technology, Kamisadori 460-1, Maebashi, Gunma, 371-0816, Japan
| | - Masaharu Kawauchi
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Nanobioscience Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
59
|
Pires RC, Ferro A, Capote T, Usié A, Correia B, Pinto G, Menéndez E, Marum L. Laser Microdissection of Woody and Suberized Plant Tissues for RNA-Seq Analysis. Mol Biotechnol 2023; 65:419-432. [PMID: 35976558 DOI: 10.1007/s12033-022-00542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/05/2022] [Indexed: 10/15/2022]
Abstract
An accurate profile of gene expression at a cellular level can contribute to a better understanding of biological processes and complexities involved in regulatory mechanism of woody plants. Laser microdissection is one technique that allows isolation of specific, target cells or tissue from a heterogeneous cell population. This technique entails microscopic visualization of the selected tissue and use a laser beam to separate the desired cells from surrounding tissue. Initial identification of these cells is made based on morphology and/or histological staining. Some works have been made in several tissues and plant models. However, there are few studies of laser microdissection application in woody species, particularly, lignified and suberized cells. Moreover, the presence of high level of suberin in cell walls can be a big challenge for the application of this approach. In our study it was developed a technique for tissue isolation, using laser microdissection of four different plant cell types (phellogen, lenticels, cortex and xylem) from woody tissues of cork oak (Quercus suber), followed by RNA extraction and RNA-Seq. We tested several methodologies regarding laser microdissection, cryostat equipments, fixation treatments, duration of single-cells collection and number of isolated cells by laser microdissection and RNA extraction procedures. A simple and efficient protocol for tissue isolation by laser microdissection and RNA purification was obtained, with a final method validation of RNA-Seq analysis. The optimized methodology combining RNA-Seq for expression analysis will contribute to elucidate the molecular pathways associated with different development processes of the xylem and phellem in oaks, including the lenticular channels formation.
Collapse
Affiliation(s)
- Rita Costa Pires
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Ana Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.,Center for Genomics and Systems Biology, New York University Abu Dhabi, NYUAD Campus, 129188, Abu Dhabi, United Arab Emirates
| | - Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.,Center for Genomics and Systems Biology, New York University Abu Dhabi, NYUAD Campus, 129188, Abu Dhabi, United Arab Emirates
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | - Bárbara Correia
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,B-hive Innovations Ltd., Boole Technology Centre, Beevor Street, Lincoln, LN6 7DJ, UK
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Esther Menéndez
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research (IIFA), University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal.,Department of Microbiology and Genetics/CIALE, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Liliana Marum
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal. .,MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.
| |
Collapse
|
60
|
Zhang L, Wang Y. Decoupled Artificial Photosynthesis. Angew Chem Int Ed Engl 2023; 62:e202219076. [PMID: 36847210 DOI: 10.1002/anie.202219076] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Natural photosynthesis (NP) generates oxygen and carbohydrates from water and CO2 utilizing solar energy to nourish lives and balance CO2 levels. Following nature, artificial photosynthesis (AP), typically, overall water or CO2 splitting, produces fuels and chemicals from renewable energy. However, hydrogen evolution or CO2 reduction is inherently coupled with kinetically sluggish water oxidation, lowering efficiencies and raising safety concerns. Decoupled systems have thus emerged. In this review, we elaborate how decoupled artificial photosynthesis (DAP) evolves from NP and AP and unveil their distinct photoelectrochemical mechanisms in energy capture, transduction and conversion. Advances of AP and DAP are summarized in terms of photochemical (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) catalysis based on material and device design. The energy transduction process of DAP is emphasized. Challenges and perspectives on future researches are also presented.
Collapse
Affiliation(s)
- Linlin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
61
|
Caspy I, Fadeeva M, Mazor Y, Nelson N. Structure of Dunaliella photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes. eLife 2023; 12:e81150. [PMID: 36799903 PMCID: PMC9949808 DOI: 10.7554/elife.81150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Photosystem II (PSII) generates an oxidant whose redox potential is high enough to enable water oxidation , a substrate so abundant that it assures a practically unlimited electron source for life on earth . Our knowledge on the mechanism of water photooxidation was greatly advanced by high-resolution structures of prokaryotic PSII . Here, we show high-resolution cryogenic electron microscopy (cryo-EM) structures of eukaryotic PSII from the green alga Dunaliella salina at two distinct conformations. The conformers are also present in stacked PSII, exhibiting flexibility that may be relevant to the grana formation in chloroplasts of the green lineage. CP29, one of PSII associated light-harvesting antennae, plays a major role in distinguishing the two conformations of the supercomplex. We also show that the stacked PSII dimer, a form suggested to support the organisation of thylakoid membranes , can appear in many different orientations providing a flexible stacking mechanism for the arrangement of grana stacks in thylakoids. Our findings provide a structural basis for the heterogenous nature of the eukaryotic PSII on multiple levels.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Maria Fadeeva
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- Biodesign Center for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
62
|
Wang P, Frank A, Zhao F, Nowaczyk MM, Conzuelo F, Schuhmann W. A biomimetic assembly of folded photosystem I monolayers for an improved light utilization in biophotovoltaic devices. Bioelectrochemistry 2023; 149:108288. [DOI: 10.1016/j.bioelechem.2022.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022]
|
63
|
Liu M, Sun Q, Cao K, Xu H, Zhou X. Acetylated Proteomics of UV-B Stress-Responsive in Photosystem II of Rhododendron chrysanthum. Cells 2023; 12:cells12030478. [PMID: 36766818 PMCID: PMC9913721 DOI: 10.3390/cells12030478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Rhododendron chrysanthum (Rhododendron chrysanthum Pall.), an alpine plant, has developed UV-B resistance mechanisms and has grown to be an important plant resource with the responsive capacity of UV-B stress. Our study uses acetylated proteomics and proteome analysis, together with physiological measurement, to show the Rhododendron chrysanthum seedling's reaction to UV-B stress. Following a 2-day, 8-h radiation therapy, 807 significantly altered proteins and 685 significantly altered acetylated proteins were discovered. Significantly altered proteins and acetylated proteins, according to COG analysis, were mostly engaged in post-translational modification, protein turnover, and chaperone under UV-B stress. It indicates that protein acetylation modification plays an important role in plant resistance to UV-B. The experimental results show that photosynthesis was inhibited under UV-B stress, but some photosynthetic proteins will undergo acetylation modification, which can alleviate the UV-B damage of plants to a certain extent. These results will serve as the basis for more research into the intricate molecular mechanisms underlying plant UV-B adaptation.
Collapse
|
64
|
Zhang S, Zou B, Cao P, Su X, Xie F, Pan X, Li M. Structural insights into photosynthetic cyclic electron transport. MOLECULAR PLANT 2023; 16:187-205. [PMID: 36540023 DOI: 10.1016/j.molp.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.
Collapse
Affiliation(s)
- Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
65
|
Burnap RL. Cyanobacterial Bioenergetics in Relation to Cellular Growth and Productivity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:25-64. [PMID: 36764956 DOI: 10.1007/10_2022_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cyanobacteria, the evolutionary originators of oxygenic photosynthesis, have the capability to convert CO2, water, and minerals into biomass using solar energy. This process is driven by intricate bioenergetic mechanisms that consist of interconnected photosynthetic and respiratory electron transport chains coupled. Over the last few decades, advances in physiochemical analysis, molecular genetics, and structural analysis have enabled us to gain a more comprehensive understanding of cyanobacterial bioenergetics. This includes the molecular understanding of the primary energy conversion mechanisms as well as photoprotective and other dissipative mechanisms that prevent photodamage when the rates of photosynthetic output, primarily in the form of ATP and NADPH, exceed the rates that cellular assimilatory processes consume these photosynthetic outputs. Despite this progress, there is still much to learn about the systems integration and the regulatory circuits that control expression levels for optimal cellular abundance and activity of the photosynthetic complexes and the cellular components that convert their products into biomass. With an improved understanding of these regulatory principles and mechanisms, it should be possible to optimally modify cyanobacteria for enhanced biotechnological purposes.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
66
|
Agarwala N, Makita H, Hastings G. Time-resolved FTIR difference spectroscopy for the study of photosystem I with high potential naphthoquinones incorporated into the A 1 binding site. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148918. [PMID: 36116485 DOI: 10.1016/j.bbabio.2022.148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
Time-resolved step-scan Fourier transform infrared difference spectroscopy has been used to study cyanobacterial photosystem I photosynthetic reaction centers from Synechocystis sp. PCC 6803 (S6803) with four high-potential, 1,4-naphthoquinones incorporated into the A1 binding site. The high-potential naphthoquinones are 2-chloro-, 2-bromo-, 2,3-dichloro- and 2,3-dibromo-1,4-naphthoquinone. "Foreign minus native" double difference spectra (DDS) were constructed by subtracting difference spectra for native photosystem I (with phylloquinone in the A1 binding site) from corresponding spectra obtained using photosystem I with the different quinones incorporated. To help assess and assign bands in the difference and double difference spectra, density functional theory based vibrational frequency calculations for the different quinones in solvent, or in the presence of a single asymmetric H- bond to either a water molecule or a peptide backbone NH group, were undertaken. Calculated and experimental spectra agree best for the peptide backbone asymmetrically H- bonded system. By comparing multiple sets of double difference spectra, several new bands for the native quinone (phylloquinone) are identified. By comparing calculated and experimental spectra we conclude that the mono-substituted halogenated NQs can occupy the binding site in either of two different orientations, with the chlorine or bromine atom being either ortho or meta to the H- bonded CO group.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Hiroki Makita
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
67
|
Sapeta H, Yokono M, Takabayashi A, Ueno Y, Cordeiro AM, Hara T, Tanaka A, Akimoto S, Oliveira MM, Tanaka R. Reversible down-regulation of photosystems I and II leads to fast photosynthesis recovery after long-term drought in Jatropha curcas. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:336-351. [PMID: 36269314 DOI: 10.1093/jxb/erac423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Jatropha curcas is a drought-tolerant plant that maintains its photosynthetic pigments under prolonged drought, and quickly regains its photosynthetic capacity when water is available. It has been reported that drought stress leads to increased thermal dissipation in PSII, but that of PSI has been barely investigated, perhaps due to technical limitations in measuring the PSI absolute quantum yield. In this study, we combined biochemical analysis and spectroscopic measurements using an integrating sphere, and verified that the quantum yields of both photosystems are temporarily down-regulated under drought. We found that the decrease in the quantum yield of PSII was accompanied by a decrease in the core complexes of PSII while light-harvesting complexes are maintained under drought. In addition, in drought-treated plants, we observed a decrease in the absolute quantum yield of PSI as compared with the well-watered control, while the amount of PSI did not change, indicating that non-photochemical quenching occurs in PSI. The down-regulation of both photosystems was quickly lifted in a few days upon re-watering. Our results indicate, that in J. curcas under drought, the down-regulation of both PSII and PSI quantum yield protects the photosynthetic machinery from uncontrolled photodamage.
Collapse
Affiliation(s)
- Helena Sapeta
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, Sokendai, Okazaki 444-8585, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - André M Cordeiro
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Toshihiko Hara
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - M Margarida Oliveira
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| |
Collapse
|
68
|
Labban A, Shibl AA, Calleja ML, Hong PY, Morán XAG. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environ Microbiol 2022; 25:1007-1021. [PMID: 36567447 DOI: 10.1111/1462-2920.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 μm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.
Collapse
Affiliation(s)
- Abbrar Labban
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmed A Shibl
- Genetic Heritage Group, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria Ll Calleja
- Climate Geochemistry Department, Max Plank Institute for Chemistry, Mainz, Germany
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO-CSIC), Gijón/Xixón, Spain
| |
Collapse
|
69
|
Magyar M, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev PH, Garab G. Characterization of the Rate-Limiting Steps in the Dark-To-Light Transitions of Closed Photosystem II: Temperature Dependence and Invariance of Waiting Times during Multiple Light Reactions. Int J Mol Sci 2022; 24:ijms24010094. [PMID: 36613535 PMCID: PMC9820552 DOI: 10.3390/ijms24010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA quinone acceptor molecule, generated only an F1(<Fm) fluorescence level; (ii) to produce the maximum (Fm) level, additional excitations were required, which, however, (iii) were effective only with sufficiently long Δτ waiting times between consecutive STSFs. Detailed studies revealed the gradual formation of the light-adapted charge-separated state, PSIIL. The data presented here substantiate this assignment: (i) the Δτ1/2 half-increment rise (or half-waiting) times of the diuron-treated isolated PSII core complexes (CCs) of Thermostichus vulcanus and spinach thylakoid membranes displayed similar temperature dependences between 5 and −80 °C, with substantially increased values at low temperatures; (ii) the Δτ1/2 values in PSII CC were essentially invariant on the Fk−to-Fk+1 (k = 1−4) increments both at 5 and at −80 °C, indicating the involvement of the same physical mechanism during the light-adaptation process of PSIIL. These data are in harmony with the earlier proposed role of dielectric relaxation processes in the formation of the light-adapted charge-separated state and in the variable chlorophyll-a fluorescence of PSII.
Collapse
Affiliation(s)
- Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
- Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
70
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
71
|
Lu X, Ma L, Zhang C, Yan H, Bao J, Gong M, Wang W, Li S, Ma S, Chen B. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC PLANT BIOLOGY 2022; 22:528. [PMID: 36376811 PMCID: PMC9661776 DOI: 10.1186/s12870-022-03907-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soil salinization and alkalization are widespread environmental problems that limit grapevine (Vitis vinifera L.) growth and yield. However, little is known about the response of grapevine to alkali stress. This study investigated the differences in physiological characteristics, chloroplast structure, transcriptome, and metabolome in grapevine plants under salt stress and alkali stress. RESULTS We found that grapevine plants under salt stress and alkali stress showed leaf chlorosis, a decline in photosynthetic capacity, a decrease in chlorophyll content and Rubisco activity, an imbalance of Na+ and K+, and damaged chloroplast ultrastructure. Fv/Fm decreased under salt stress and alkali stress. NPQ increased under salt stress whereas decreased under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the differentially expressed genes (DEGs) induced by salt stress and alkali stress were involved in different biological processes and have varied molecular functions. The expression of stress genes involved in the ABA and MAPK signaling pathways was markedly altered by salt stress and alkali stress. The genes encoding ion transporter (AKT1, HKT1, NHX1, NHX2, TPC1A, TPC1B) were up-regulated under salt stress and alkali stress. Down-regulation in the expression of numerous genes in the 'Porphyrin and chlorophyll metabolism', 'Photosynthesis-antenna proteins', and 'Photosynthesis' pathways were observed under alkali stress. Many genes in the 'Carbon fixation in photosynthetic organisms' pathway in salt stress and alkali stress were down-regulated. Metabolome showed that 431 and 378 differentially accumulated metabolites (DAMs) were identified in salt stress and alkali stress, respectively. L-Glutamic acid and 5-Aminolevulinate involved in chlorophyll synthesis decreased under salt stress and alkali stress. The abundance of 19 DAMs under salt stress related to photosynthesis decreased. The abundance of 16 organic acids in salt stress and 22 in alkali stress increased respectively. CONCLUSIONS Our findings suggested that alkali stress had more adverse effects on grapevine leaves, chloroplast structure, ion balance, and photosynthesis than salt stress. Transcriptional and metabolic profiling showed that there were significant differences in the effects of salt stress and alkali stress on the expression of key genes and the abundance of pivotal metabolites in grapevine plants.
Collapse
Affiliation(s)
- Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070 China
| | - CongCong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - HaoKai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - JinYu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - MeiShuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - WenHui Wang
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of HorticultureCollege of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - ShaoYing Ma
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - BaiHong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
72
|
Maroudas‐Sklare N, Kolodny Y, Yochelis S, Keren N, Paltiel Y. Controlling photosynthetic energy conversion by small conformational changes. PHYSIOLOGIA PLANTARUM 2022; 174:e13802. [PMID: 36259916 PMCID: PMC9828261 DOI: 10.1111/ppl.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Control phenomena in biology usually refer to changes in gene expression and protein translation and modification. In this paper, another mode of regulation is highlighted; we propose that photosynthetic organisms can harness the interplay between localization and delocalization of energy transfer by utilizing small conformational changes in the structure of light-harvesting complexes. We examine the mechanism of energy transfer in photosynthetic pigment-protein complexes, first through the scope of theoretical work and then by in vitro studies of these complexes. Next, the biological relevance to evolutionary fitness of this localization-delocalization switch is explored by in vivo experiments on desert crust and marine cyanobacteria, which are both exposed to rapidly changing environmental conditions. These examples demonstrate the flexibility and low energy cost of this mechanism, making it a competitive survival strategy.
Collapse
Affiliation(s)
- Naama Maroudas‐Sklare
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yuval Kolodny
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Shira Yochelis
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yossi Paltiel
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
73
|
Chen Q, Xiao Y, Ming Y, Peng R, Hu J, Wang HB, Jin HL. Quantitative proteomics reveals redox-based functional regulation of photosynthesis under fluctuating light in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2168-2186. [PMID: 35980302 DOI: 10.1111/jipb.13348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis involves a series of redox reactions and is the major source of reactive oxygen species in plant cells. Fluctuating light (FL) levels, which occur commonly in natural environments, affect photosynthesis; however, little is known about the specific effects of FL on the redox regulation of photosynthesis. Here, we performed global quantitative mapping of the Arabidopsis thaliana cysteine thiol redox proteome under constant light and FL conditions. We identified 8857 redox-switched thiols in 4350 proteins, and 1501 proteins that are differentially modified depending on light conditions. Notably, proteins related to photosynthesis, especially photosystem I (PSI), are operational thiol-switching hotspots. Exposure of wild-type A. thaliana to FL resulted in decreased PSI abundance, stability, and activity. Interestingly, in response to PSI photodamage, more of the PSI assembly factor PSA3 dynamically switches to the reduced state. Furthermore, the Cys199 and Cys200 sites in PSA3 are necessary for its full function. Moreover, thioredoxin m (Trx m) proteins play roles in redox switching of PSA3, and are required for PSI activity and photosynthesis. This study thus reveals a mechanism for redox-based regulation of PSI under FL, and provides insight into the dynamic acclimation of photosynthesis in a changing environment.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yixian Xiao
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Ming
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Peng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiliang Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
74
|
Jacobi R, Hernández-Castillo D, Sinambela N, Bösking J, Pannwitz A, González L. Computation of Förster Resonance Energy Transfer in Lipid Bilayer Membranes. J Phys Chem A 2022; 126:8070-8081. [PMID: 36260519 PMCID: PMC9639162 DOI: 10.1021/acs.jpca.2c04524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Calculations of Förster
Resonance Energy Transfer (FRET)
often neglect the influence of different chromophore orientations
or changes in the spectral overlap. In this work, we present two computational
approaches to estimate the energy transfer rate between chromophores
embedded in lipid bilayer membranes. In the first approach, we assess
the transition dipole moments and the spectral overlap by means of
quantum chemical calculations in implicit solvation, and we investigate
the alignment and distance between the chromophores in classical molecular
dynamics simulations. In the second, all properties are evaluated
integrally with hybrid quantum mechanical/molecular mechanics (QM/MM)
calculations. Both approaches come with advantages and drawbacks,
and despite the fact that they do not agree quantitatively, they provide
complementary insights on the different factors that influence the
FRET rate. We hope that these models can be used as a basis to optimize
energy transfers in nonisotropic media.
Collapse
Affiliation(s)
- Richard Jacobi
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090Vienna, Austria
| | - David Hernández-Castillo
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090Vienna, Austria
| | - Novitasari Sinambela
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Julian Bösking
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090Vienna, Austria
| |
Collapse
|
75
|
From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II. Proc Natl Acad Sci U S A 2022; 119:e2208033119. [PMID: 36215463 PMCID: PMC9586314 DOI: 10.1073/pnas.2208033119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The photosystem II core complex (PSII-CC) is a photosynthetic complex that contains antenna proteins, which collect energy from sunlight, and a reaction center, which converts the collected energy to redox potential. Understanding the interplay between the antenna proteins and the reaction center will facilitate the development of more efficient solar energy conversion technologies. Here, we study the sub-100-ps dynamics of PSII-CC with two-dimensional electronic-vibrational spectroscopy, which connects energy flows with physical space, allowing a direct mapping of energy transfer pathways. Our results reveal a complex dynamical scheme which includes a specific pathway that connects CP43 to the reaction center. Resolving this pathway experimentally provides insights into the energy conversion processes in natural photosynthesis. The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.
Collapse
|
76
|
Riznichenko GY, Belyaeva NE, Kovalenko IB, Antal TK, Goryachev SN, Maslakov AS, Plyusnina TY, Fedorov VA, Khruschev SS, Yakovleva OV, Rubin AB. Mathematical Simulation of Electron Transport in the Primary Photosynthetic Processes. BIOCHEMISTRY (MOSCOW) 2022; 87:1065-1083. [DOI: 10.1134/s0006297922100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
77
|
Dey D, Nishijima M, Tanaka R, Kurisu G, Tanaka H, Ito H. Crystal structure and reaction mechanism of a bacterial Mg-dechelatase homolog from the Chloroflexi Anaerolineae. Protein Sci 2022; 31:e4430. [PMID: 36173179 PMCID: PMC9514216 DOI: 10.1002/pro.4430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
Chlorophyll degradation plays a myriad of physiological roles in photosynthetic organisms, including acclimation to light environment and nutrient remobilization during senescence. Mg extraction from chlorophyll a is the first and committed step of the chlorophyll degradation pathway. This reaction is catalyzed by the Mg-dechelatase enzyme encoded by Stay-Green (SGR). The reaction mechanism of SGR protein remains elusive since metal ion extraction from organic molecules is not a common enzymatic reaction. Additionally, experimentally derived structural information about SGR or its homologs has not yet been reported. In this study, the crystal structure of the SGR homolog from Anaerolineae bacterium was determined using the molecular replacement method at 1.85 Å resolution. Our previous study showed that three residues-H32, D34, and D62 are essential for the catalytic activity of the enzyme. Biochemical analysis involving mutants of D34 residue further strengthened its importance in the functioning of the dechelatase. Docking simulation also revealed the interaction between the D34 side chain and central Mg ion of chlorophyll a. Structural analysis showed the arrangement of D34/H32/D62 in the form of a catalytic triad that is generally found in hydrolases. The probable reaction mechanism suggests that deprotonated D34 side chain coordinates and destabilizes Mg, resulting in Mg extraction. Besides, H32 possibly acts as a general base catalyst and D62 facilitates H32 to be a better proton acceptor. Taken together, the reaction mechanism of SGR partially mirrors the one observed in hydrolases.
Collapse
Affiliation(s)
- Debayan Dey
- Graduate School of Life ScienceHokkaido UniversitySapporoJapan
- Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
| | | | - Ryouichi Tanaka
- Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
| | - Genji Kurisu
- Institute for Protein ResearchOsaka UniversitySuitaJapan
| | - Hideaki Tanaka
- Institute for Protein ResearchOsaka UniversitySuitaJapan
| | - Hisashi Ito
- Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
| |
Collapse
|
78
|
Ustynyuk LY, Tikhonov AN. Plastoquinol Oxidation: Rate-Limiting Stage in the Electron Transport Chain of Chloroplasts. BIOCHEMISTRY (MOSCOW) 2022; 87:1084-1097. [DOI: 10.1134/s0006297922100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
79
|
Synergistic interplay between photoisomerization and photoluminescence in a light-driven rotary molecular motor. Nat Commun 2022; 13:5765. [PMID: 36180434 PMCID: PMC9525625 DOI: 10.1038/s41467-022-33177-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Photoactuators and photoluminescent dyes utilize light to perform mechanical motion and undergo spontaneous radiation emission, respectively. Combining these two functionalities in a single molecule would benefit the construction of advanced molecular machines. Due to the possible detrimental interaction between the two light-dependent functional parts, the design of hybrid systems featuring both functions in parallel remains highly challenging. Here, we develop a light-driven rotary molecular motor with an efficient photoluminescent dye chemically attached to the motor, not compromising its motor function. This molecular system shows efficient rotary motion and bright photoluminescence, and these functions can be addressed by a proper choice of excitation wavelengths and solvents. The moderate interaction between the two parts generates synergistic effects, which are beneficial for lower-energy excitation and chirality transfer from the motor to the photoluminescent dye. Our results provide prospects towards photoactive multifunctional systems capable of carrying out molecular rotary motion and tracking its location in a complex environment. Combining photofunctionalities in a single molecule is challenging due to inherent detrimental interactions. Here, the authors construct a molecular motor that exhibits photoinduced rotary motion together with bright photoluminescence.
Collapse
|
80
|
Miernicka K, Tokarz B, Makowski W, Mazur S, Banasiuk R, Tokarz KM. The Adjustment Strategy of Venus Flytrap Photosynthetic Apparatus to UV-A Radiation. Cells 2022; 11:cells11193030. [PMID: 36230991 PMCID: PMC9564066 DOI: 10.3390/cells11193030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.
Collapse
Affiliation(s)
- Karolina Miernicka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Stanisław Mazur
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland
| | - Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| |
Collapse
|
81
|
Kobayashi A, Takizawa SY, Hirahara M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
82
|
Christ A, Schmittmann O, Schulze Lammers P. Capability of the TrueColor Sensor Array for Determining the Nitrogen Supply in Winter Barley ( Hordeum vulgare L.). SENSORS (BASEL, SWITZERLAND) 2022; 22:6032. [PMID: 36015794 PMCID: PMC9414219 DOI: 10.3390/s22166032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
In agriculture, efforts are being made to reduce pesticides and fertilizers because of the possible negative environmental impacts, high costs, political requirements, and declining social acceptance. With precision farming, significant savings can be achieved by the site-specific application of fertilizers. In contrast to currently available single sensors and camera-based systems, arrays or line sensors provide a suitable spatial resolution without requiring complex signal processing and promise significant potential regarding price and precision. Such systems comprise a cost-effective and compact unit that can be extended to any working width by cascading into arrays. In this study, experiments were performed to evaluate the applicability of a TrueColor sensor array in monitoring the nitrogen supply of winter barley during its growth. This sensor is based on recording the reflectance values in various channels of the CIELab color space: luminosity, green-red, and blue-yellow. The unique selling point of this sensor is the detection of luminosity because only the CIELab color space provides this opportunity. Strong correlations were found between the different reflection channels and the nitrogen level (R² = 0.959), plant coverage (R² = 0.907), and fresh mass yield (R² = 0.866). The fast signal processing allows this sensor to meet stringent demands for the operating speed, spatial resolution, and price structure.
Collapse
|
83
|
Conformation and structural features of diuron and irgarol: insights from quantum chemistry calculations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Nau REP, Bösking J, Pannwitz A. Compartmentalization Accelerates Photosensitized NADH to NAD+ Conversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roland E. P. Nau
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I GERMANY
| | - Julian Bösking
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I GERMANY
| | - Andrea Pannwitz
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
85
|
Pamu R, Khomami B, Mukherjee D. Observation of anomalous carotenoid and blind chlorophyll activations in photosystem I under synthetic membrane confinements. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183930. [PMID: 35398026 DOI: 10.1016/j.bbamem.2022.183930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The role of natural thylakoid membrane confinements in architecting the robust structural and electrochemical properties of PSI is not fully understood. Most PSI studies till date extract the proteins from their natural confinements that can lead to non-native conformations. Recently our group had successfully reconstituted PSI in synthetic lipid membranes using detergent-mediated liposome solubilizations. In this study, we investigate the alterations in chlorophylls and carotenoids interactions and reorganization in PSI based on spectral property changes induced by its confinement in anionic DPhPG and zwitterionic DPhPC phospholipid membranes. To this end, we employ a combination of absorption, fluorescence, and circular dichroism (CD) spectroscopic measurements. Our results indicate unique activation and alteration of photoresponses from the PSI carotenoid (Car) bands in PSI-DPhPG proteoliposomes that can tune the Excitation Energy Transfer (EET), otherwise absent in PSI at non-native environments. Specifically, we observe broadband light harvesting via enhanced absorption in the otherwise non-absorptive green region (500-580 nm) of the Chlorophylls (Chl) along with ~64% increase in the full-width half maximum of the Qy band (650-720 nm). The CD results indicate enhanced Chl-Chl and Chl-Car interactions along with conformational changes in protein secondary structures. Such distinct changes in the Car and Chl bands are not observed in PSI confined in DPhPC. The fundamental insights into membrane microenvironments tailoring PSI subunits reorganization and interactions provide novel strategies for tuning photoexcitation processes and rational designing of biotic-abiotic interfaces in PSI-based photoelectrochemical energy conversion systems.
Collapse
Affiliation(s)
- Ravi Pamu
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
| | - Dibyendu Mukherjee
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
86
|
Riznichenko GY, Antal TK, Belyaeva NE, Khruschev SS, Kovalenko IB, Maslakov AS, Plyusnina TY, Fedorov VA, Rubin AB. Molecular, Brownian, kinetic and stochastic models of the processes in photosynthetic membrane of green plants and microalgae. Biophys Rev 2022; 14:985-1004. [PMID: 36124262 PMCID: PMC9481862 DOI: 10.1007/s12551-022-00988-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022] Open
Abstract
The paper presents the results of recent work at the Department of Biophysics of the Biological Faculty, Lomonosov Moscow State University on the kinetic and multiparticle modeling of processes in the photosynthetic membrane. The detailed kinetic models and the rule-based kinetic Monte Carlo models allow to reproduce the fluorescence induction curves and redox transformations of the photoactive pigment P700 in the time range from 100 ns to dozens of seconds and make it possible to reveal the role of individual carriers in their formation for different types of photosynthetic organisms under different illumination regimes, in the presence of inhibitors, under stress conditions. The fitting of the model curves to the experimental data quantifies the reaction rate constants that cannot be directly measured experimentally, including the non-radiative thermal relaxation reactions. We use the direct multiparticle models to explicitly describe the interactions of mobile photosynthetic carrier proteins with multienzyme complexes both in solution and in the biomembrane interior. An analysis of these models reveals the role of diffusion and electrostatic factors in the regulation of electron transport, the influence of ionic strength and pH of the cellular environment on the rate of electron transport reactions between carrier proteins. To describe the conformational intramolecular processes of formation of the final complex, in which the actual electron transfer occurs, we use the methods of molecular dynamics. The results obtained using kinetic and molecular models supplement our knowledge of the mechanisms of organization of the photosynthetic electron transport processes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Galina Yu. Riznichenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Taras K. Antal
- Laboratory of Integrated Environmental Research, Pskov State University, Lenin Sq. 2, 180000 Pskov, Russia
| | - Natalia E. Belyaeva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Sergey S. Khruschev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Ilya B. Kovalenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Alexey S. Maslakov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Tatyana Yu Plyusnina
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Vladimir A. Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Andrey B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| |
Collapse
|
87
|
Gao P, Xia H, Li Q, Li Z, Zhai C, Weng L, Mi H, Yan S, Datla R, Wang H, Yang J. PALE-GREEN LEAF 1, a rice cpSRP54 protein, is essential for the assembly of the PSI-LHCI supercomplex. PLANT DIRECT 2022; 6:e436. [PMID: 35949951 PMCID: PMC9358330 DOI: 10.1002/pld3.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 05/27/2023]
Abstract
Although photosynthetic multiprotein complexes have received major attention, our knowledge about the assembly of these proteins into functional complexes in plants is still limited. In the present study, we have identified a chlorophyll-deficient mutant, pale-green leaf 1 (pgl1), in rice that displays abnormally developed chloroplasts. Map-based cloning of this gene revealed that OsPGL1 encodes a chloroplast targeted protein homologous to the 54-kDa subunit of the signal recognition particle (cpSRP54). Immunoblot analysis revealed that the accumulation of the PSI core proteins PsaA and PsaB, subunits from the ATP synthase, cytochrome, and light-harvesting complex (LHC) is dramatically reduced in pgl1. Blue native gel analysis of thylakoid membrane proteins showed the existence of an extra band in the pgl1 mutant, which located between the dimeric PSII/PSI-LHCI and the monomeric PSII. Immunodetection after 2D separation indicated that the extra band consists of the proteins from the PSI core complex. Measurements of chlorophyll fluorescence at 77 K further confirmed that PSI, rather than PSII, was primarily impaired in the pgl1 mutant. These results suggest that OsPGL1 might act as a molecular chaperone that is required for the efficient assembly and specific integration of the peripheral LHCI proteins into the PSI core complex in rice.
Collapse
Affiliation(s)
- Peng Gao
- Saskatoon Research and Development CentreAgriculture and Agri‐food CanadaSaskatoonSKCanada
| | - Haoqiang Xia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zongzhu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Chun Zhai
- Saskatoon Research and Development CentreAgriculture and Agri‐food CanadaSaskatoonSKCanada
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Song Yan
- Rice Research InstituteJiangxi Academy of Agricultural SciencesNanchangChina
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
88
|
Cai WH, Zheng XQ, Liang YR. High-Light-Induced Degradation of Photosystem II Subunits’ Involvement in the Albino Phenotype in Tea Plants. Int J Mol Sci 2022; 23:ijms23158522. [PMID: 35955658 PMCID: PMC9369412 DOI: 10.3390/ijms23158522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The light-sensitive (LS) albino tea plant grows albinic shoots lacking chlorophylls (Chls) under high-light (HL) conditions, and the albinic shoots re-green under low light (LL) conditions. The albinic shoots contain a high level of amino acids and are preferential materials for processing quality green tea. The young plants of the albino tea cultivars are difficult to be cultivated owing to lacking Chls. The mechanisms of the tea leaf bleaching and re-greening are unknown. We detected the activity and composition of photosystem II (PSII) subunits in LS albino tea cultivar “Huangjinya” (HJY), with a normal green-leaf cultivar “Jinxuan” (JX) as control so as to find the relationship of PSII impairment to the albino phenotype in tea. The PSII of HJY is more vulnerable to HL-stress than JX. HL-induced degradation of PSII subunits CP43, CP47, PsbP, PsbR. and light-harvest chlorophyll–protein complexes led to the exposure and degradation of D1 and D2, in which partial fragments of the degraded subunits were crosslinked to form larger aggregates. Two copies of subunits PsbO, psbN, and Lhcb1 were expressed in response to HL stress. The cDNA sequencing of CP43 shows that there is no difference in sequences of PsbC cDNA and putative amino acids of CP43 between HJY and JX. The de novo synthesis and/or repair of PSII subunits is considered to be involved in the impairment of PSII complexes, and the latter played a predominant role in the albino phenotype in the LS albino tea plant.
Collapse
|
89
|
Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophys Rev 2022; 14:871-886. [DOI: 10.1007/s12551-022-00979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 01/08/2023] Open
|
90
|
Kazerooni EA, Al-Sadi AM, Rashid U, Kim ID, Kang SM, Lee IJ. Salvianolic Acid Modulates Physiological Responses and Stress-Related Genes That Affect Osmotic Stress Tolerance in Glycine max and Zea mays. FRONTIERS IN PLANT SCIENCE 2022; 13:904037. [PMID: 35783988 PMCID: PMC9240475 DOI: 10.3389/fpls.2022.904037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 05/23/2023]
Abstract
Drought is a serious threat worldwide to soybean and maize production. This study was conducted to discern the impact of salvianolic acid treatment on osmotic-stressed soybean (Glycine max L.) and maize (Zea mays L.) seedlings from the perspective of physiochemical and molecular reactions. Examination of varied salvianolic acid concentrations (0, 0.1, 1, 5, 10, and 25 μM) on soybean and maize seedling growth confirmed that the 0.1 and 1 μM concentrations, respectively, showed an improvement in agronomic traits. Likewise, the investigation ascertained how salvianolic acid application could retrieve osmotic-stressed plants. Soybean and maize seedlings were irrigated with water or 25% PEG for 8 days. The results indicated that salvianolic acid application promoted the survival of the 39-day-old osmotic-stressed soybean and maize plants. The salvianolic acid-treated plants retained high photosynthetic pigments, protein, amino acid, fatty acid, sugar, and antioxidant contents, and demonstrated low hydrogen peroxide and lipid contents under osmotic stress conditions. Gene transcription pattern certified that salvianolic acid application led to an increased expression of GmGOGAT, GmUBC2, ZmpsbA, ZmNAGK, ZmVPP1, and ZmSCE1d genes, and a diminished expression of GmMIPS2, GmSOG1, GmACS, GmCKX, ZmPIS, and ZmNAC48 genes. Together, our results indicate the utility of salvianolic acid to enhance the osmotic endurance of soybean and maize plants.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Malaysia
| | - Il-Doo Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
91
|
Wei Y, Lu X, Bao J, Zhang C, Yan H, Li K, Gong M, Li S, Ma S. Identification and expression analysis of chlorophyll a/b binding protein gene family in grape ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1147-1158. [PMID: 35910436 PMCID: PMC9334500 DOI: 10.1007/s12298-022-01204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED In higher plants, light capture of chlorophyll a/b binding protein (Lhc) plays a crucial role in the plant's response to adverse environment. So far, the family has not been systematically identified in grapes. In this study, 20 VvLhcs were identified in the grape genome, which were distributed in 13 of 19 grape chromosomes and divided into 7 developing branches. The results of gene duplication analysis showed that 6 VvLhcs formed fragment duplication events, while there was no tandem duplication in VvLhcs. Exon-intron structure analysis showed that they had a wide number of exons. Protein conserved motif analysis showed that VvLhcs contained more similar motif structures in the same phylogenetic branch. The cis-acting elements in the VvLhcs promoter region mainly respond to light, plant hormones and abiotic stresses. In addition, qRT-PCR results showed that different proportions of salt stress and red-blue light affected the expression of VvLhcs and the expression patterns of genes in different grape varieties were different. The results for further study on different grape varieties in different combinations of red and blue light of the Lhc provide a theoretical basis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01204-5.
Collapse
Affiliation(s)
- Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Congcong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Haokai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kang Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Meishuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
92
|
Ho TTH, Schwier C, Elman T, Fleuter V, Zinzius K, Scholz M, Yacoby I, Buchert F, Hippler M. Photosystem I light-harvesting proteins regulate photosynthetic electron transfer and hydrogen production. PLANT PHYSIOLOGY 2022; 189:329-343. [PMID: 35157085 PMCID: PMC9070821 DOI: 10.1093/plphys/kiac055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/23/2022] [Indexed: 05/06/2023]
Abstract
Linear electron flow (LEF) and cyclic electron flow (CEF) compete for light-driven electrons transferred from the acceptor side of photosystem I (PSI). Under anoxic conditions, such highly reducing electrons also could be used for hydrogen (H2) production via electron transfer between ferredoxin and hydrogenase in the green alga Chlamydomonas reinhardtii. Partitioning between LEF and CEF is regulated through PROTON-GRADIENT REGULATION5 (PGR5). There is evidence that partitioning of electrons also could be mediated via PSI remodeling processes. This plasticity is linked to the dynamics of PSI-associated light-harvesting proteins (LHCAs) LHCA2 and LHCA9. These two unique light-harvesting proteins are distinct from all other LHCAs because they are loosely bound at the PSAL pole. Here, we investigated photosynthetic electron transfer and H2 production in single, double, and triple mutants deficient in PGR5, LHCA2, and LHCA9. Our data indicate that lhca2 and lhca9 mutants are efficient in photosynthetic electron transfer, that LHCA2 impacts the pgr5 phenotype, and that pgr5/lhca2 is a potent H2 photo-producer. In addition, pgr5/lhca2 and pgr5/lhca9 mutants displayed substantially different H2 photo-production kinetics. This indicates that the absence of LHCA2 or LHCA9 impacts H2 photo-production independently, despite both being attached at the PSAL pole, pointing to distinct regulatory capacities.
Collapse
Affiliation(s)
- Thi Thu Hoai Ho
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam
| | - Chris Schwier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Tamar Elman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vera Fleuter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | | |
Collapse
|
93
|
Qiu X, Chiechi RC. Printable logic circuits comprising self-assembled protein complexes. Nat Commun 2022; 13:2312. [PMID: 35484124 PMCID: PMC9050843 DOI: 10.1038/s41467-022-30038-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics. Proteins are promising molecular materials for next-generation electronic devices. Here, the authors fabricated printable digital logic circuits comprising resistors and diodes from self-assembled photosystem I complexes that enable pulse modulation.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, United States.
| |
Collapse
|
94
|
Allgöwer F, Gamiz-Hernandez AP, Rutherford AW, Kaila VRI. Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. J Am Chem Soc 2022; 144:7171-7180. [PMID: 35421304 PMCID: PMC9052759 DOI: 10.1021/jacs.1c13041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
95
|
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, Shen JR. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. eLife 2022; 11:73990. [PMID: 35404232 PMCID: PMC9000952 DOI: 10.7554/elife.73990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | | | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | | - Akio Murakami
- Graduate School of Science, Kobe University
- Research Center for Inland Seas, Kobe University
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University
| | | | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
96
|
Golub M, Gätcke J, Subramanian S, Kölsch A, Darwish T, Howard JK, Feoktystov A, Matsarskaia O, Martel A, Porcar L, Zouni A, Pieper J. "Invisible" Detergents Enable a Reliable Determination of Solution Structures of Native Photosystems by Small-Angle Neutron Scattering. J Phys Chem B 2022; 126:2824-2833. [PMID: 35384657 DOI: 10.1021/acs.jpcb.2c01591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosystems I (PSI) and II (PSII) are pigment-protein complexes capable of performing the light-induced charge separation necessary to convert solar energy into a biochemically storable form, an essential step in photosynthesis. Small-angle neutron scattering (SANS) is unique in providing structural information on PSI and PSII in solution under nearly physiological conditions without the need for crystallization or temperature decrease. We show that the reliability of the solution structure critically depends on proper contrast matching of the detergent belt surrounding the protein. Especially, specifically deuterated ("invisible") detergents are shown to be properly matched out in SANS experiments by a direct, quantitative comparison with conventional matching strategies. In contrast, protonated detergents necessarily exhibit incomplete matching so that related SANS results systematically overestimate the size of the membrane protein under study. While the solution structures obtained are close to corresponding high-resolution structures, we show that temperature and solution state lead to individual structural differences compared with high-resolution structures. We attribute these differences to the presence of a manifold of conformational substates accessible by protein dynamics under physiological conditions.
Collapse
Affiliation(s)
- M Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | - J Gätcke
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - S Subramanian
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - A Kölsch
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - T Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - J K Howard
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - A Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748 Garching, Germany
| | - O Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - A Martel
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - L Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - A Zouni
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - J Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| |
Collapse
|
97
|
Voloshin R, Shumilova S, Zadneprovskaya E, Zharmukhamedov S, Alwasel S, Hou H, Allakhverdiev S. Photosystem II in bio-photovoltaic devices. PHOTOSYNTHETICA 2022; 60:121-135. [PMID: 39649000 PMCID: PMC11559483 DOI: 10.32615/ps.2022.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/18/2022] [Indexed: 12/10/2024]
Abstract
Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.
Collapse
Affiliation(s)
- R.A. Voloshin
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.M. Shumilova
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - E.V. Zadneprovskaya
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.K. Zharmukhamedov
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
| | - S. Alwasel
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H.J.M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical/Forensic Sciences, Alabama State University, Montgomery, 36104 Alabama, United States
| | - S.I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
98
|
Platzer B, Berionni Berna B, Bischetti M, Cicero DO, Paolesse R, Nardis S, Torres T, Guldi DM. Exploring the Association of Electron‐Donating Corroles with Phthalocyanines as Electron Acceptors. Chemistry 2022; 28:e202103891. [PMID: 35084748 PMCID: PMC9306480 DOI: 10.1002/chem.202103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Electron‐donating corroles (Cor) were integrated with electron‐accepting phthalocyanines (Pc) to afford two different non‐covalent Cor ⋅ Pc systems. At the forefront was the coordination between a 10‐meso‐pyridine Cor and a ZnPc. The complexation was corroborated in a combination of NMR, absorption, and fluorescence assays, and revealed association with binding constants as high as 106
m−1. Steady‐state and time‐resolved spectroscopies evidenced that regardless of exciting Cor or Pc, the charge‐separated state evolved efficiently in both cases, followed by a slow charge‐recombination to reinstate the ground state. The introduction of non‐covalent linkages between Cor and Pc induces sizeable differences in the context of light harvesting and transfer of charges when compared with covalently linked Cor‐Pc conjugates.
Collapse
Affiliation(s)
- Benedikt Platzer
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Beatrice Berionni Berna
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Departamento de Química Orgánica Universidad Autónoma de Madrid, Campus de Cantoblanco C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Martina Bischetti
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniel O. Cicero
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Tomás Torres
- Departamento de Química Orgánica Universidad Autónoma de Madrid, Campus de Cantoblanco C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, Campus de Cantoblanco 28049 Madrid Spain
- IMDEA-Nanociencia C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
99
|
Maeda H, Takahashi K, Ueno Y, Sakata K, Yokoyama A, Yarimizu K, Myouga F, Shinozaki K, Ozawa SI, Takahashi Y, Tanaka A, Ito H, Akimoto S, Takabayashi A, Tanaka R. Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2022; 135:361-376. [PMID: 35146632 DOI: 10.1007/s10265-022-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The assembly process of photosystem II (PSII) requires several auxiliary proteins to form assembly intermediates. In plants, early assembly intermediates comprise D1 and D2 subunits of PSII together with a few auxiliary proteins including at least ONE-HELIX PROTEIN1 (OHP1), OHP2, and HIGH-CHLOROPHYLL FLUORESCENCE 244 (HCF244) proteins. Herein, we report the basic characterization of the assembling intermediates, which we purified from Arabidopsis transgenic plants overexpressing a tagged OHP1 protein and named the OHP1 complexes. We analyzed two major forms of OHP1 complexes by mass spectrometry, which revealed that the complexes consist of OHP1, OHP2, and HCF244 in addition to the PSII subunits D1, D2, and cytochrome b559. Analysis of chlorophyll fluorescence showed that a major form of the complex binds chlorophyll a and carotenoids and performs quenching with a time constant of 420 ps. To identify the localization of the auxiliary proteins, we solubilized thylakoid membranes using a digitonin derivative, glycodiosgenin, and separated them into three fractions by ultracentrifugation, and detected these proteins in the loose pellet containing the stroma lamellae and the grana margins together with two chlorophyll biosynthesis enzymes. The results indicated that chlorophyll biosynthesis and assembly may take place in the same compartments of thylakoid membranes. Inducible suppression of the OHP2 mRNA substantially decreased the OHP2 protein in mature Arabidopsis leaves without a significant reduction in the maximum quantum yield of PSII under low-light conditions, but it compromised the yields under high-light conditions. This implies that the auxiliary protein is required for acclimation to high-light conditions.
Collapse
Affiliation(s)
- Hanaki Maeda
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Koharu Takahashi
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657‑8501, Japan
| | - Kei Sakata
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Akari Yokoyama
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Kozue Yarimizu
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Fumiyoshi Myouga
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657‑8501, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
100
|
Ali F, Shafaa MW, Amin M. Computational Approach for Probing Redox Potential for Iron-Sulfur Clusters in Photosystem I. BIOLOGY 2022; 11:362. [PMID: 35336736 PMCID: PMC8945787 DOI: 10.3390/biology11030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Photosystem I is a light-driven electron transfer device. Available X-ray crystal structure from Thermosynechococcus elongatus showed that electron transfer pathways consist of two nearly symmetric branches of cofactors converging at the first iron-sulfur cluster FX, which is followed by two terminal iron-sulfur clusters FA and FB. Experiments have shown that FX has lower oxidation potential than FA and FB, which facilitates the electron transfer reaction. Here, we use density functional theory and Multi-Conformer Continuum Electrostatics to explain the differences in the midpoint Em potentials of the FX, FA and FB clusters. Our calculations show that FX has the lowest oxidation potential compared to FA and FB due to strong pairwise electrostatic interactions with surrounding residues. These interactions are shown to be dominated by the bridging sulfurs and cysteine ligands, which may be attributed to the shorter average bond distances between the oxidized Fe ion and ligating sulfurs for FX compared to FA and FB. Moreover, the electrostatic repulsion between the 4Fe-4S clusters and the positive potential of the backbone atoms is lowest for FX compared to both FA and FB. These results agree with the experimental measurements from the redox titrations of low-temperature EPR signals and of room temperature recombination kinetics.
Collapse
Affiliation(s)
- Fedaa Ali
- Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt; (F.A.); (M.W.S.)
- Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Medhat W. Shafaa
- Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt; (F.A.); (M.W.S.)
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
- Universiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9718 BG Groningen, The Netherlands
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
| |
Collapse
|