51
|
Che Y, Khavari PA. Research Techniques Made Simple: Emerging Methods to Elucidate Protein Interactions through Spatial Proximity. J Invest Dermatol 2017; 137:e197-e203. [PMID: 29169465 DOI: 10.1016/j.jid.2017.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 01/12/2023]
Abstract
Interactions between proteins are essential for fundamental cellular processes, and the diversity of such interactions enables the vast variety of functions essential for life. A persistent goal in biological research is to develop assays that can faithfully capture different types of protein interactions to allow their study. A major step forward in this direction came with a family of methods that delineates spatial proximity of proteins as an indirect measure of protein-protein interaction. A variety of enzyme- and DNA ligation-based methods measure protein co-localization in space, capturing novel interactions that were previously too transient or low affinity to be identified. Here we review some of the methods that have been successfully used to measure spatially proximal protein-protein interactions.
Collapse
Affiliation(s)
- Yonglu Che
- Program in Epithelial Biology, Stanford University, Stanford, California, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, California, USA; Dermatology Service, VA Palo Alto Health Care System, Palo Alto, California, USA.
| |
Collapse
|
52
|
Goda T, Miyahara Y. Specific binding of human C-reactive protein towards supported monolayers of binary and engineered phospholipids. Colloids Surf B Biointerfaces 2017; 161:662-669. [PMID: 29172154 DOI: 10.1016/j.colsurfb.2017.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 02/04/2023]
Abstract
Circulating C-reactive protein (CRP) recognizes altered plasma membranes and activates complements systems in the acute phase of inflammation and infection in human. We have shown previously the calcium-independent adsorption of CRP toward 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and lysophosphatidylcholine (LPC) on supported phospholipid monolayers. Here, we extended our study to other phospholipids and additives to elucidate the pattern recognition of CRP using a surface plasmon resonance biosensor. Surface density and lateral fluidity depended on the type of phospholipids in the monolayers as characterized by SPR and fluorescence recovery after photobleaching measurements. CRP recognized 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) in the supported POPC monolayers without calcium at pH 7.4 and 5.5. As opposed to LPC, CRP did not recognize 3-sn-lysophosphatidylethanolamine in the POPC monolayers in calcium-free conditions. While, the addition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or sphingomyelin to supported POPC monolayers blocked CRP adsorption. Calcium-dependent CRP binding was observed only at pH 5.5 on supported monolayers of engineered phospholipids with inverted headgroups relative to POPC. The complement 1q (C1q) protein recognized the active form of CRP on the supported phospholipid monolayers. The discovery of CRP recognition with these phospholipids aids our understanding of the activation dynamics of CRP with phospholipid-based biomaterials when used during the acute phase.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
53
|
Engel S, Spitzer D, Rodrigues LL, Fritz EC, Straßburger D, Schönhoff M, Ravoo BJ, Besenius P. Kinetic control in the temperature-dependent sequential growth of surface-confined supramolecular copolymers. Faraday Discuss 2017; 204:53-67. [PMID: 28766626 DOI: 10.1039/c7fd00100b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the sequential growth of supramolecular copolymers on gold surfaces, using oppositely charged dendritic peptide amphiphiles. By including water-solubilising thermoresponsive chains in the monomer design, we observed non-linear effects in the temperature-dependent sequential growth. The step-wise copolymerisation process is characterised using temperature dependent SPR and QCM-D measurements. At higher temperatures, dehydration of peripheral oligoethylene glycol chains supports copolymer growth due to more favourable comonomer interactions. Both monomers incorporate methionine amino acids but remarkably, desorption of the copolymers via competing sulphur gold interactions with the initial monomer layer is not observed. The surface-confined supramolecular copolymers remain kinetically trapped on the metal surface at near neutral pH and form viscoelastic films with a tuneable thickness.
Collapse
Affiliation(s)
- Sabrina Engel
- Organic Chemistry Institute, Westfälische Wilhelms-University Münster, Corrensstraße 40, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Vu CQ, Rotkrua P, Tantirungrotechai Y, Soontornworajit B. Oligonucleotide Hybridization Combined with Competitive Antibody Binding for the Truncation of a High-Affinity Aptamer. ACS COMBINATORIAL SCIENCE 2017; 19:609-617. [PMID: 28825469 DOI: 10.1021/acscombsci.6b00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Truncation can enhance the affinity of aptamers for their targets by limiting nonessential segments and therefore limiting the molecular degrees of freedom that must be overcome in the binding process. This study demonstrated a truncation protocol relying on competitive antibody binding and the hybridization of complementary oligonucleotides, using platelet derived growth factor BB (PDGF-BB) as the model target. On the basis of the immunoassay results, an initial long aptamer was truncated to a number of sequences with lengths of 36-40 nucleotides (nt). These sequences showed apparent KD values in the picomolar range, with the best case being a 36-nt truncated aptamer with a 150-fold increase in affinity over the full-length aptamer. The observed binding energies correlated well with relative energies calculated by molecular dynamics simulations. The effect of the truncated aptamer on PDGF-BB-stimulated fibroblasts was found to be equivalent to that of the full-length aptamer.
Collapse
Affiliation(s)
- Cong Quang Vu
- Division
of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Pichayanoot Rotkrua
- Division
of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Yuthana Tantirungrotechai
- Division
of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Boonchoy Soontornworajit
- Division
of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
55
|
Drescher DG, Selvakumar D, Drescher MJ. Analysis of Protein Interactions by Surface Plasmon Resonance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:1-30. [PMID: 29412994 DOI: 10.1016/bs.apcsb.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions, such as interactions that occur between proteins or other classes of molecules. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. In this chapter, we review essential SPR methodology and present applications to basic science and human disease.
Collapse
Affiliation(s)
- Dennis G Drescher
- Wayne State University School of Medicine, Detroit, MI, United States.
| | | | - Marian J Drescher
- Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
56
|
Chaturvedi SK, Ma J, Zhao H, Schuck P. Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nat Protoc 2017; 12:1777-1791. [PMID: 28771239 PMCID: PMC7466938 DOI: 10.1038/nprot.2017.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sedimentation velocity (SV) analytical ultracentrifugation (AUC) is a classic technique for the real-time observation of free macromolecular migration in solution driven by centrifugal force. This enables the analysis of macromolecular mass, shape, size distribution, and interactions. Although traditionally limited to determination of the sedimentation coefficient and binding affinity of proteins in the micromolar range, the implementation of modern detection and data analysis techniques has resulted in marked improvements in detection sensitivity and size resolution during the past decades. Fluorescence optical detection now permits the detection of recombinant proteins with fluorescence excitation at 488 or 561 nm at low picomolar concentrations, allowing for the study of high-affinity protein self-association and hetero-association. Compared with other popular techniques for measuring high-affinity protein-protein interactions, such as biosensing or calorimetry, the high size resolution of complexes at picomolar concentrations obtained with SV offers a distinct advantage in sensitivity and flexibility of the application. Here, we present a basic protocol for carrying out fluorescence-detected SV experiments and the determination of the size distribution and affinity of protein-antibody complexes with picomolar KD values. Using an EGFP-nanobody interaction as a model, this protocol describes sample preparation, ultracentrifugation, data acquisition, and data analysis. A variation of the protocol applying traditional absorbance or an interference optical system can be used for protein-protein interactions in the micromolar KD value range. Sedimentation experiments typically take ∼3 h of preparation and 6-12 h of run time, followed by data analysis (typically taking 1-3 h).
Collapse
Affiliation(s)
- Sumit K. Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
57
|
|
58
|
Evans RM, Edwards DA. Receptor heterogeneity in optical biosensors. J Math Biol 2017; 76:795-816. [PMID: 28707032 DOI: 10.1007/s00285-017-1158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/30/2017] [Indexed: 11/29/2022]
Abstract
Scientists measure rate constants associated with biochemical reactions in an optical biosensor-an instrument in which ligand molecules are convected through a flow cell over a surface to which receptors are immobilized. We quantify transport effects on such reactions by modeling the associated convection-diffusion equation with a reaction boundary condition. In experimental situations, the full PDE model reduces to a set of unwieldy integrodifferential equations (IDEs). Employing common physical assumptions, we may reduce the system to an ODE model, which is more useful in practice, and which can be easily adapted to the inverse problem of finding rate constants. The results from the ODE model compare favorably with numerical simulations of the IDEs, even outside its range of validity.
Collapse
Affiliation(s)
- Ryan M Evans
- Applied and Computational Mathematics Division, Information and Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - David A Edwards
- Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
59
|
Grundmann M. Label-Free Dynamic Mass Redistribution and Bio-Impedance Methods for Drug Discovery. ACTA ACUST UNITED AC 2017. [PMID: 28640952 DOI: 10.1002/cpph.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Label-free biosensors are increasingly employed in drug discovery. Cell-based biosensors provide valuable insights into the biological consequences of exposing cells and tissues to chemical agents and the underlying molecular mechanisms associated with these effects. Optical biosensors based on the detection of dynamic mass redistribution (DMR) and impedance biosensors using cellular dielectric spectroscopy (CDS) capture changes of the cytoskeleton of living cells in real time. Because signal transduction correlates with changes in cell morphology, DMR and CDS biosensors are exquisitely suited for recording integrated cell responses in an unbiased, yet pathway-specific manner without the use of labels that may interfere with cell function. Described in this unit are several experimental approaches utilizing optical label-free system capturing dynamic mass redistribution (DMR) in living cells (Epic System) and an impedance-based CDS technology (CellKey). In addition, potential pitfalls associated with these assays and alternative approaches for overcoming such technical challenges are discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Manuel Grundmann
- Section Cellular, Molecular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
60
|
Abstract
The density and distribution pattern of epitopes at the surface of pathogens have a profound impact on immune responses. Although multiple lines of evidence highlight the significance of antigen surface density for antibody binding, a quantitative description of its effect on recognition mechanisms is missing. Here, we analyzed binding kinetics and thermodynamics of six HIV-1 neutralizing antibodies as a function of the surface density of envelope glycoprotein gp120. Antibodies that recognize gp120 with low to moderate binding affinity displayed the most pronounced sensitivity to variation in antigen density, with qualitative and substantial quantitative changes in the energetics of the binding process as revealed by non-equilibrium and equilibrium thermodynamic analyses. In contrast, the recognition of gp120 by the antibodies with the highest affinity was considerably less influenced by variations in antigen density. These data suggest that a lower affinity of antibodies permits higher dynamics during the antigen recognition process, which may have considerable functional repercussions. These findings contribute to a better understanding of the mechanisms of antigen recognition by antibodies. They are also of importance for apprehending the impact of antigen topology on immune-defense functions of antibodies.
Collapse
|
61
|
Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, Lo SC, Tan JS, Hani H, Rasedee A. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnol Appl Biochem 2017; 64:735-744. [PMID: 27506960 DOI: 10.1002/bab.1528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
Collapse
Affiliation(s)
- Yew Joon Tam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nazariah Allaudin Zeenathul
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Morvarid Akhavan Rezaei
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nor Hidayah Mustafa
- Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Lila Mohd Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sewn Cen Lo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Homayoun Hani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
62
|
Zhao H, Boyd LF, Schuck P. Measuring Protein Interactions by Optical Biosensors. ACTA ACUST UNITED AC 2017; 88:20.2.1-20.2.25. [PMID: 28369667 DOI: 10.1002/cpps.31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This unit gives an introduction to the basic techniques of optical biosensing for measuring equilibrium and kinetics of reversible protein interactions. Emphasis is placed on description of robust approaches that will provide reliable results with few assumptions. How to avoid the most commonly encountered problems and artifacts is also discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Huaying Zhao
- National Institutes of Health, Bethesda, Maryland
| | - Lisa F Boyd
- National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
63
|
Wang X, Li Z, Ly N, Zhou F. One-Step Ligand Immobilization and Single Sample Injection for Regeneration-Free Surface Plasmon Resonance Measurements of Biomolecular Interactions. Anal Chem 2017; 89:3261-3265. [PMID: 28225259 DOI: 10.1021/acs.analchem.7b00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surface plasmon resonance (SPR) has been well established as a method of choice for label-free kinetic measurements of biomolecular interactions. The conventional approach involves multiple injections of an analyte of different concentrations into a fluidic channel covered with a fixed ligand density. Optimization of the experimental conditions and assessment of the data quality can be complicated by issues such as disruption of the ligand structure by the regeneration step and the limited availability of the sample solution. By sequentially closing fluidic channels on a five-channel SPR instrument, different densities of a ligand can be immobilized and determined in one step. With a subsequent injection of a single sample solution, SPR sensorgrams can be simultaneously collected to yield binding and dissociation rate constants (ka and kd) and dissociation constant (KD) between the ligand and analyte. For biomolecular interactions that obey the Langmuir isotherm, we show that the fidelity of the kinetic data can only be reliably confirmed when there exists a strong linear correlation between the SPR signals and the ligand densities. The use of a multichannel SPR instrument also obviates the regeneration step, allowing the binding kinetics between the green fluorescent protein and its antibody to be measured. In comparison to the conventional approach, the method simplifies the experimental procedure, reduces costs associated with sensor chips and biological samples, expedites kinetic measurements, and allows affinity constants to be determined more straightforwardly.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan, P. R. China , 410083.,Department of Chemistry and Biochemistry, California State University, Los Angeles , Los Angeles, California 90032, United States
| | - Zhiqiang Li
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan, P. R. China , 410083.,Department of Chemistry and Biochemistry, California State University, Los Angeles , Los Angeles, California 90032, United States
| | - Nguyen Ly
- Biosensing Instrument Inc. , Tempe, Arizona 85284, United States
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles , Los Angeles, California 90032, United States
| |
Collapse
|
64
|
Surface Plasmon Resonance: A Useful Strategy for the Identification of Small Molecule Argonaute 2 Protein Binders. Methods Mol Biol 2017; 1517:223-237. [PMID: 27924486 DOI: 10.1007/978-1-4939-6563-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface plasmon resonance (SPR) is one of the most important techniques for the detection and the characterization of molecular interactions. SPR technology is a label-free approach for monitoring biomolecular interactions in real time. The binding of analytes to molecules immobilized on a thin metal film (ligand) determines a change in the refractive index and, therefore in the angle of extinction of light, is reflected when polarized light hits the film, monitored in real time as a change in the position of the dip in reflected intensity. Since SPR detects mass, the technique is label-free.Here, we describe the use of SPR techniques to study the interaction between Argonaute 2 and small molecular compounds selected by means of high-throughput docking screening.
Collapse
|
65
|
Nehilla BJ, Hill JJ, Srinivasan S, Chen YC, Schulte TH, Stayton PS, Lai JJ. A Stimuli-Responsive, Binary Reagent System for Rapid Isolation of Protein Biomarkers. Anal Chem 2016; 88:10404-10410. [PMID: 27686335 PMCID: PMC6750004 DOI: 10.1021/acs.analchem.6b01961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Magnetic microbeads exhibit rapid separation characteristics and are widely employed for biomolecule and cell isolations in research laboratories, clinical diagnostics assays, and cell therapy manufacturing. However, micrometer particle diameters compromise biomarker recognition, which leads to long incubation times and significant reagent demands. Here, a stimuli-responsive binary reagent system is presented that combines the nanoscale benefits of efficient biomarker recognition and the microscale benefits of rapid magnetic separation. This system comprises magnetic nanoparticles and polymer-antibody (Ab) conjugates that transition from hydrophilic nanoscale reagents to microscale aggregates in response to temperature stimuli. The binary reagent system was benchmarked against Ab-labeled Dynabeads in terms of biomarker isolation kinetics, assay speed, and reagent needs. Surface plasmon resonance (SPR) measurements showed that polymer conjugation did not significantly alter the Ab's binding affinity or kinetics. ELISA analysis showed that the unconjugated Ab, polymer-Ab conjugates, and Ab-labeled Dynabeads exhibited similar equilibrium dissociation constants (Kd), ∼2 nM. However, the binary reagent system isolated HIV p24 antigen from spiked serum specimens (150 pg/mL) much more quickly than Dynabeads, which resulted in shorter binding times by tens of minutes, or about 30-50% shorter overall assay times. The binary reagent system showed improved performance because the Ab molecules were not conjugated to large, solid microparticle surfaces. This stimuli-responsive binary reagent system illustrates the potential advantages of nanoscale reagents in molecule and cell isolations for both research and clinical applications.
Collapse
Affiliation(s)
| | - John J. Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Yen-Chi Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Thomas H. Schulte
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| |
Collapse
|
66
|
Xu GK, Hu J, Lipowsky R, Weikl TR. Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations. J Chem Phys 2016; 143:243136. [PMID: 26723621 DOI: 10.1063/1.4936134] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points.
Collapse
Affiliation(s)
- Guang-Kui Xu
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jinglei Hu
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
67
|
Weikl TR, Hu J, Xu GK, Lipowsky R. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory. Cell Adh Migr 2016; 10:576-589. [PMID: 27294442 PMCID: PMC5079412 DOI: 10.1080/19336918.2016.1180487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022] Open
Abstract
The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).
Collapse
Affiliation(s)
- Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| | - Jinglei Hu
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Guang-Kui Xu
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| |
Collapse
|
68
|
Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications. SENSORS 2016; 16:s16081175. [PMID: 27472340 PMCID: PMC5017341 DOI: 10.3390/s16081175] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed.
Collapse
|
69
|
Geng L, Wang Z, Jia X, Han Q, Xiang Z, Li D, Yang X, Zhang D, Bu X, Wang W, Hu Z, Fang Q. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery. Am J Cancer Res 2016; 6:1261-73. [PMID: 27279916 PMCID: PMC4893650 DOI: 10.7150/thno.14302] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/14/2016] [Indexed: 01/22/2023] Open
Abstract
Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery.
Collapse
|
70
|
Kitamura S, Hvorecny KL, Niu J, Hammock BD, Madden DR, Morisseau C. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa. J Med Chem 2016; 59:4790-9. [PMID: 27120257 DOI: 10.1021/acs.jmedchem.6b00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Kelli L Hvorecny
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , 7200 Vail Building, Hanover, New Hampshire 03755, United States
| | - Jun Niu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Dean R Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , 7200 Vail Building, Hanover, New Hampshire 03755, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
71
|
Mishra S, Lahiri H, Banerjee S, Mukhopadhyay R. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes. Nucleic Acids Res 2016; 44:3739-49. [PMID: 27025649 PMCID: PMC4856997 DOI: 10.1093/nar/gkw197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 01/29/2023] Open
Abstract
So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored.
Collapse
Affiliation(s)
- Sourav Mishra
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Hiya Lahiri
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Siddhartha Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| |
Collapse
|
72
|
Pandya DN, Hantgan R, Budzevich MM, Kock ND, Morse DL, Batista I, Mintz A, Li KC, Wadas TJ. Preliminary Therapy Evaluation of (225)Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from (225)Ac Daughter Decay Can Be Detected by Optical Imaging for In Vivo Tumor Visualization. Theranostics 2016; 6:698-709. [PMID: 27022417 PMCID: PMC4805664 DOI: 10.7150/thno.14338] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022] Open
Abstract
The theranostic potential of 225Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of 225Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La3+ ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare 225Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other 225Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3+ tumors in live animals using the daughter products derived from 225Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy.
Collapse
|
73
|
Quérard J, Le Saux T, Gautier A, Alcor D, Croquette V, Lemarchand A, Gosse C, Jullien L. Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. Chemphyschem 2016; 17:1396-413. [PMID: 26833808 DOI: 10.1002/cphc.201500987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Living cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants. This review explores the various facets of this promising strategy. We first emphasize the singularity of the content of a living cell as a chemical mixture and suggest that its multiplexed observation is significant and timely. Then, we show that exploiting the kinetics of analytical processes is relevant to selectively detect a given analyte: upon perturbing the system, the kinetic window associated to response read-out has to be matched with that of the targeted reactive module. Eventually, we introduce the state-of-the-art of cell imaging exploiting protocols based on reaction kinetics and draw some promising perspectives.
Collapse
Affiliation(s)
- Jérôme Quérard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Damien Alcor
- INSERM U1065, C3M; 151 route Saint Antoine de Ginestière, BP 2 3194 F-06204 Nice Cedex 3 France
| | - Vincent Croquette
- Ecole Normale Supérieure; Département de Physique and Département de Biologie, Laboratoire de Physique Statistique UMR CNRS-ENS 8550; 24 rue Lhomond F-75005 Paris France
| | - Annie Lemarchand
- Sorbonne Universités; UPMC Univ Paris 06, Laboratoire de Physique Théorique de la Matière Condensée; 4 place Jussieu, case courrier 121 75252 Paris cedex 05 France
- CNRS, UMR 7600 LPTMC; 75005 Paris France
| | - Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS; route de Nozay 91460 Marcoussis France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| |
Collapse
|
74
|
Drescher DG, Dakshnamurthy S, Drescher MJ, Ramakrishnan NA. Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins. Methods Mol Biol 2016; 1427:165-187. [PMID: 27259927 DOI: 10.1007/978-1-4939-3615-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered, and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. We have utilized surface plasmon resonance to study interaction of proteins of inner-ear sensory epithelia.
Collapse
Affiliation(s)
- Dennis G Drescher
- Departments of Otolaryngology and Biochemistry-Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| | - Selvakumar Dakshnamurthy
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Marian J Drescher
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Neeliyath A Ramakrishnan
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
75
|
Scheuermann TH, Padrick SB, Gardner KH, Brautigam CA. On the acquisition and analysis of microscale thermophoresis data. Anal Biochem 2015; 496:79-93. [PMID: 26739938 DOI: 10.1016/j.ab.2015.12.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 01/30/2023]
Abstract
A comprehensive understanding of the molecular mechanisms underpinning cellular functions is dependent on a detailed characterization of the energetics of macromolecular binding, often quantified by the equilibrium dissociation constant, KD. While many biophysical methods may be used to obtain KD, the focus of this report is a relatively new method called microscale thermophoresis (MST). In an MST experiment, a capillary tube filled with a solution containing a dye-labeled solute is illuminated with an infrared laser, rapidly creating a temperature gradient. Molecules will migrate along this gradient, causing changes in the observed fluorescence. Because the net migration of the labeled molecules will depend on their liganded state, a binding curve as a function of ligand concentration can be constructed from MST data and analyzed to determine KD. Herein, simulations demonstrate the limits of KD that can be measured in current instrumentation. They also show that binding kinetics is a major concern in planning and executing MST experiments. Additionally, studies of two protein-protein interactions illustrate challenges encountered in acquiring and analyzing MST data. Combined, these approaches indicate a set of best practices for performing and analyzing MST experiments. Software for rigorous data analysis is also introduced.
Collapse
Affiliation(s)
- Thomas H Scheuermann
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8816, USA
| | - Shae B Padrick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8816, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
| | - Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8816, USA.
| |
Collapse
|
76
|
Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins. PLoS One 2015; 10:e0144621. [PMID: 26657544 PMCID: PMC4691197 DOI: 10.1371/journal.pone.0144621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant’s large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Sangeetha Purushotham
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Champion Deivanayagam
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Om Srivastava
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
77
|
Tóth J, Bollins J, Szczelkun MD. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes. Nucleic Acids Res 2015; 43:10870-81. [PMID: 26538601 PMCID: PMC4678819 DOI: 10.1093/nar/gkv1154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/19/2015] [Indexed: 01/05/2023] Open
Abstract
DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding.
Collapse
Affiliation(s)
- Júlia Tóth
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Jack Bollins
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
78
|
Stebunov YV, Aftenieva OA, Arsenin AV, Volkov VS. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21727-21734. [PMID: 26358000 DOI: 10.1021/acsami.5b04427] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of sensing interfaces can significantly improve the performance of biological sensors. Graphene oxide provides a remarkable immobilization platform for surface plasmon resonance (SPR) biosensors due to its excellent optical and biochemical properties. Here, we describe a novel sensor chip for SPR biosensors based on graphene-oxide linking layers. The biosensing assay model was based on a graphene oxide film containing streptavidin. The proposed sensor chip has three times higher sensitivity than the carboxymethylated dextran surface of a commercial sensor chip. Moreover, the demonstrated sensor chips are bioselective with more than 25 times reduced binding for nonspecific interaction and can be used multiple times. We consider the results presented here of importance for any future applications of highly sensitive SPR biosensing.
Collapse
Affiliation(s)
- Yury V Stebunov
- Laboratory of Nanooptics and Plasmonics, Moscow Institute of Physics and Technology , 9 Institutsky Lane, Dolgoprudny 141700, Russian Federation
| | - Olga A Aftenieva
- Laboratory of Nanooptics and Plasmonics, Moscow Institute of Physics and Technology , 9 Institutsky Lane, Dolgoprudny 141700, Russian Federation
| | - Aleksey V Arsenin
- Laboratory of Nanooptics and Plasmonics, Moscow Institute of Physics and Technology , 9 Institutsky Lane, Dolgoprudny 141700, Russian Federation
| | - Valentyn S Volkov
- Laboratory of Nanooptics and Plasmonics, Moscow Institute of Physics and Technology , 9 Institutsky Lane, Dolgoprudny 141700, Russian Federation
- Institute of Technology and Innovation, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
79
|
Schneider CS, Bhargav AG, Perez JG, Wadajkar AS, Winkles JA, Woodworth GF, Kim AJ. Surface plasmon resonance as a high throughput method to evaluate specific and non-specific binding of nanotherapeutics. J Control Release 2015; 219:331-344. [PMID: 26415854 DOI: 10.1016/j.jconrel.2015.09.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
Abstract
Surface plasmon resonance (SPR) is a powerful analytical technique used to quantitatively examine the interactions between various biomolecules, such as proteins and nucleic acids. The technique has been particularly useful in screening and evaluating binding affinity of novel small molecule and biomolecule-derived therapeutics for various diseases and applications including lupus medications, thrombin inhibitors, HIV protease inhibitors, DNA gyrase inhibitors and many others. Recently, there has been increasing interest in nanotherapeutics (nanoRx), due to their unique properties and potential for controlled release of encapsulated drugs and structure-specific targeting to diseased tissues. NanoRx offer the potential to solve many drug delivery challenges by enabling, specific interactions between molecules on the surface of the nanoparticle and molecules in the diseased tissue, while minimizing off-target interactions toward non-diseased tissues. These properties are largely dependent upon careful control and balance of nanoRx interactions and binding properties with tissues in vivo. Given the great promise of nanoRx with regard to engineering specific molecular interactions, SPR can rapidly quantify small aliquots of nanoRx formulations for desired and undesired molecular interactions. Moving forward, we believe that utilization of SPR in the screening and design of nanoRx has the potential to greatly improve the development of targeted nanoRx formulations and eventually lead to improved therapeutic efficacy. In this review, we discuss (1) the fundamental principles of SPR and basic quantitative analysis of SPR data, (2) previous applications of SPR in the study of non-particulate therapeutics and nanoRx, and (3) future opportunities for the use of SPR in the evaluation of nanoRx.
Collapse
Affiliation(s)
- Craig S Schneider
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adip G Bhargav
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jimena G Perez
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
80
|
Godzwon M, Levin M, Säll A, Ohlin M. A microarray-based reaction rate analysis platform. Is there evidence of validity? J Immunol Methods 2015; 426:144-6. [PMID: 26168708 DOI: 10.1016/j.jim.2015.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Anna Säll
- Dept. of Immunotechnology, Lund University, Sweden
| | - Mats Ohlin
- Dept. of Immunotechnology, Lund University, Sweden.
| |
Collapse
|
81
|
Shalaly ND, Aneiros E, Blank M, Mueller J, Nyman E, Blind M, Dabrowski MA, Andersson CV, Sandberg K. Positive Modulation of the Glycine Receptor by Means of Glycine Receptor-Binding Aptamers. ACTA ACUST UNITED AC 2015; 20:1112-23. [PMID: 26071243 PMCID: PMC4576506 DOI: 10.1177/1087057115590575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022]
Abstract
According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl− channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl− currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators.
Collapse
Affiliation(s)
- Nancy Dekki Shalaly
- Department of Neuroscience, AstraZeneca R&D, Södertälje, Sweden and Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Eduardo Aneiros
- Department of Neuroscience, AstraZeneca R&D, Södertälje, Sweden and Lead Discovery Technologies, Merck Serono SA, Geneva, Switzerland
| | | | - Johan Mueller
- Department of Structural Chemistry Laboratory, AstraZeneca R&D, Mölndal, Sweden
| | - Eva Nyman
- Department of Neuroscience, AstraZeneca R&D, Södertälje, Sweden
| | | | | | | | - Kristian Sandberg
- Department of Translational Science, Respiratory, AstraZeneca R&D, Mölndal, Sweden and Department of Medicinal Chemistry, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
82
|
Closa F, Gosse C, Jullien L, Lemarchand A. Identification of two-step chemical mechanisms using small temperature oscillations and a single tagged species. J Chem Phys 2015; 142:174108. [PMID: 25956091 DOI: 10.1063/1.4919632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to identify two-step chemical mechanisms, we propose a method based on a small temperature modulation and on the analysis of the concentration oscillations of a single tagged species involved in the first step. The thermokinetic parameters of the first reaction step are first determined. Then, we build test functions that are constant only if the chemical system actually possesses some assumed two-step mechanism. Next, if the test functions plotted using experimental data are actually even, the mechanism is attributed and the obtained constant values provide the rate constants and enthalpy of reaction of the second step. The advantage of the protocol is to use the first step as a probe reaction to reveal the dynamics of the second step, which can hence be relieved of any tagging. The protocol is anticipated to apply to many mechanisms of biological relevance. As far as ligand binding is considered, our approach can address receptor conformational changes or dimerization as well as competition with or modulation by a second partner. The method can also be used to screen libraries of untagged compounds, relying on a tracer whose concentration can be spectroscopically monitored.
Collapse
Affiliation(s)
- F Closa
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Physique Théorique de la Matière Condensée, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| | - C Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, route de Nozay, 91460 Marcoussis, France
| | - L Jullien
- Department of Chemistry, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005 Paris, France
| | - A Lemarchand
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Physique Théorique de la Matière Condensée, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| |
Collapse
|
83
|
Hadjar Y, Renault M, Blaize S, Bruyant A, Vincent R, Hmima A. Compact interferometer transducer based on surface plasmon phase resonance. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:771-777. [PMID: 26366899 DOI: 10.1364/josaa.32.000771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a new monolithic interferometric configuration and implement a novel method for spectroscopic phase shift detection of surface plasmon resonance (SPR) sensors. The interference pattern is obtained using a nonpolarizing beam splitter cube with two attached right angle prisms in such a way that each interference field undergoes two total internal reflections (TIR) at prisms/air interface and one attenuated total reflection (ATR) through surface plasmon interaction. The evanescent part of the interferogram around the Zero optical path difference (ZOPD) is sampled and detected in the far field, thanks to a bidimensional array of scattering optical near-field probes deposited on the corresponding prism surface. A Fourier transform of the sampled interferogram is performed to measure the input light wavelength, while a direct comparison of the interferogram in TM and TE polarization modes allows us to determine the differential phase shift induced by the SPR layer. The phase shift measurement is made possible thanks to a remarkable time stability of the interferogram in the glass bulk. By tuning the input laser wavelength around the resonance, we show a good agreement between experimental and theoretical calculations for both amplitude and phase spectral responses.
Collapse
|
84
|
Petrone L, Aldred N, Emami K, Enander K, Ederth T, Clare AS. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex. Interface Focus 2015; 5:20140047. [PMID: 25657832 DOI: 10.1098/rsfs.2014.0047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gregarious settlement in barnacle larvae (cyprids) is induced by a contact pheromone, the settlement-inducing protein complex (SIPC). The SIPC has been identified both in the cuticle of adult barnacles and in the temporary adhesive secretion (footprint) of cyprids. Besides acting as a settlement inducer, the presence of the SIPC in footprints points to its additional involvement in the adhesion process. SIPC adsorption behaviour was therefore investigated on a series of self-assembled monolayers (SAMs) by surface plasmon resonance at the pH of seawater (8.3). Fibrinogen and α2-macroglobulin (A2M) (blood complement protease inhibitors with which the SIPC shares 29% sequence homology) were used in the adsorption experiments as positive and negative standards, respectively. The mass uptake of the SIPC was comparable to that of fibrinogen, with adsorption observed even on the protein-resistant oligo(ethylene glycol) surface. Notably, on the positively charged SAM the SIPC showed a kinetic overshoot, indicating a metastable configuration causing the amount of adsorbed protein to temporarily exceed its equilibrium value. A2M adsorption was low or negligible on all SAMs tested, except for the positively charged surface, indicating that A2M adsorption is mainly driven by electrostatics. Evaluation of SIPC non-specific adsorption kinetics revealed that it adsorbed irreversibly and non-cooperatively on all surfaces tested.
Collapse
Affiliation(s)
- Luigi Petrone
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM) , Linköping University , 58183 Linköping , Sweden
| | - Nick Aldred
- School of Marine Science and Technology , Newcastle University , Newcastle NE1 7RU , UK
| | - Kaveh Emami
- School of Marine Science and Technology , Newcastle University , Newcastle NE1 7RU , UK
| | - Karin Enander
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM) , Linköping University , 58183 Linköping , Sweden
| | - Thomas Ederth
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM) , Linköping University , 58183 Linköping , Sweden
| | - Anthony S Clare
- School of Marine Science and Technology , Newcastle University , Newcastle NE1 7RU , UK
| |
Collapse
|
85
|
Gassner C, Lipsmeier F, Metzger P, Beck H, Schnueriger A, Regula J, Moelleken J. Development and validation of a novel SPR-based assay principle for bispecific molecules. J Pharm Biomed Anal 2015; 102:144-9. [DOI: 10.1016/j.jpba.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
86
|
Zhao H, Schuck P. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:3-14. [PMID: 25615855 PMCID: PMC4304681 DOI: 10.1107/s1399004714010372] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/07/2014] [Indexed: 12/29/2022]
Abstract
Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
87
|
Wu P, Yu Y, McGhee CE, Tan LH, Lu Y. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7849-72. [PMID: 25205057 PMCID: PMC4275547 DOI: 10.1002/adma.201304891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 06/02/2014] [Indexed: 05/22/2023]
Abstract
In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Yu
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
88
|
Ahijado-Guzmán R, Prasad J, Rosman C, Henkel A, Tome L, Schneider D, Rivas G, Sönnichsen C. Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities. NANO LETTERS 2014; 14:5528-32. [PMID: 25153997 DOI: 10.1021/nl501865p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most of current techniques used for the quantification of protein-protein interactions require the analysis of one pair of binding partners at a time. Herein we present a label-free, simple, fast, and cost-effective route to characterize binding affinities between multiple macromolecular partners simultaneously, using optical dark-field spectroscopy and individual protein-functionalized gold nanorods as sensing elements. Our NanoSPR method could easily become a simple and standard tool in biological, biochemical, and medical laboratories.
Collapse
Affiliation(s)
- Rubén Ahijado-Guzmán
- Institute of Physical Chemistry, University of Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Wang J, Smith RJ, Light RA, Richens JL, Zhang J, O'Shea P, See C, Somekh MG. Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras. Biosens Bioelectron 2014; 58:157-64. [PMID: 24632461 PMCID: PMC4009403 DOI: 10.1016/j.bios.2014.02.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/27/2022]
Abstract
Phase sensitive Surface Plasmon Resonance (SPR) techniques are a popular means of characterizing biomolecular interactions. However, limitations due to the narrow dynamic range and difficulty in adapting the method for multi-point sensing have restricted its range of applications. This paper presents a compact phase sensitive SPR technology using a custom CMOS camera. The system is exceptionally versatile enabling one to trade dynamic range for sensitivity without altering the optical system. We present results showing sensitivity over the array of better than 10(-6) Refractive Index Units (RIU) over a refractive index range of 2×10(-2)RIU, with peak sensitivity of 3×10(-7)RIU at the center of this range. We also explain how simply altering the settings of polarization components can give sensitivity on the order of 10(-8)RIU albeit at the cost of lower dynamic range. The consistent response of the custom CMOS camera in the system also allowed us to demonstrate precise quantitative detection of two Fibrinogen antibody-protein binding sites. Moreover, we use the system to determine reaction kinetics and argue how the multipoint detection gives useful insight into the molecular binding mechanisms.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - Richard J Smith
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom.
| | - Roger A Light
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - Joanna L Richens
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - Jing Zhang
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - Paul O'Shea
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - Chung See
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - Michael G Somekh
- Institute of Biophysics, Imaging and Optical Science, Department of Electrical and Electronic Engineering, University of Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| |
Collapse
|
90
|
Purushotham S, Deivanayagam C. The calcium-induced conformation and glycosylation of scavenger-rich cysteine repeat (SRCR) domains of glycoprotein 340 influence the high affinity interaction with antigen I/II homologs. J Biol Chem 2014; 289:21877-87. [PMID: 24923446 PMCID: PMC4139206 DOI: 10.1074/jbc.m114.565507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.
Collapse
Affiliation(s)
- Sangeetha Purushotham
- From the Department of Vision Sciences/Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400
| | - Champion Deivanayagam
- From the Department of Vision Sciences/Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400
| |
Collapse
|
91
|
Manera MG, Ferreiro-Vila E, Garcia-Martin JM, Garcia-Martin A, Rella R. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor. Biosens Bioelectron 2014; 58:114-20. [DOI: 10.1016/j.bios.2014.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
92
|
Sharma K, Mukherjee C, Roy S, De D, Bhattacharyya D. Human placental extract mediated inhibition of proteinase K: implications of heparin and glycoproteins in wound physiology. J Cell Physiol 2014; 229:1212-23. [PMID: 24435659 DOI: 10.1002/jcp.24555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/10/2014] [Indexed: 12/11/2022]
Abstract
Efficient debridement of the wound bed following the removal of microbial load prevents its progression into a chronic wound. Bacterial infection and excessive proteolysis characterize impaired healing and therefore, their inhibition might restore the disturbed equilibrium in the healing process. Human placental extract exhibits reversible, non-competitive inhibition towards Proteinase K, a microbial protease, by stabilizing it against auto-digestion. Scattering and fluorescence studies followed by biochemical analysis indicated the involvement of a glycan moiety. Surface plasmon resonance demonstrated specific interaction of heparin with Proteinase K having Kd in μM range. Further, Proteinase K contains sequence motifs similar to other heparin-binding proteins. Molecular docking revealed presence of clefts suitable for binding of heparin-derived oligosaccharides. Comprehensive analysis of this inhibitory property of placental extract partly explains its efficacy in curing wounds with common bacterial infections.
Collapse
Affiliation(s)
- Kanika Sharma
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | | | | | | | | |
Collapse
|
93
|
Lopes F, Cowan DA, Thevis M, Thomas A, Parkin MC. Quantification of intact human insulin-like growth factor-I in serum by nano-ultrahigh-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1426-1432. [PMID: 24861591 DOI: 10.1002/rcm.6908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Insulin-like growth factor-I is one of the biomarkers used to detect growth hormone administration prohibited in human sport. Current testing approaches for IGF-I rely on commercial immunoassays, which may change from time to time requiring complex revalidation. Mass spectrometry (MS)-based approaches often rely on enzymatically digesting the protein and measuring specific peptide concentrations. In order to reinforce the current available methodology for IGF-I testing, a reliable and equally sensitive MS method is required for the analysis of intact protein using small sample volumes (<25 μL). METHODS IGF-I was extracted from human serum samples by a simple protein precipitation procedure. Separation was achieved via nano-ultrahigh-performance liquid chromatography and MS analysis was conducted by nano-electrospray ionisation triple-quadrupole mass spectrometry in the selected reaction monitoring mode using a stable-isotope-labelled internal standard. RESULTS A six-point calibration curve ranging from 50 to 1000 ng/mL of human IGF-I in rat serum was used to establish instrument response. The method provided a limit of quantification of 50 ng/mL, with intra- and inter-day precision ≤5% and intra- and inter-day accuracy ≥95%. CONCLUSIONS A quantitative method was developed for the quantification of intact IGF-I in human serum samples. The data generated provided important information for the development of a new reference method for the growth hormone biomarker test and helped create a reliable system for monitoring peptide hormones in individual athletes, a possible extension to the athlete biological passport system. Nano-electrospray has here been shown to be sufficiently robust for routine use in an analytical laboratory, allowing for the analysis of minute sample volumes.
Collapse
Affiliation(s)
- Filipe Lopes
- King's College London, Analytical and Environmental Science Division, Drug Control Centre, 150 Stamford Street, London, SE1 9NH, UK
| | | | | | | | | |
Collapse
|
94
|
Kepsutlu B, Kizilel R, Kizilel S. Quantification of interactions among circadian clock proteins via surface plasmon resonance. J Mol Recognit 2014; 27:458-69. [PMID: 24895278 DOI: 10.1002/jmr.2367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/01/2013] [Accepted: 01/29/2014] [Indexed: 11/11/2022]
Abstract
Circadian clock is an internal time keeping system recurring 24 h daily rhythm in physiology and behavior of organisms. Circadian clock contains transcription and translation feedback loop involving CLOCK/NPAS2, BMAL1, Cry1/2, and Per1/2. In common, heterodimer of CLOCK/NPAS2 and BMAL1 binds to EBOX element in the promoter of Per and Cry genes in order to activate their transcription. CRY and PER making heterodimeric complexes enter the nucleus in order to inhibit their own BMAL1-CLOCK-activated transcription. The aim of this study was to investigate and quantify real-time binding affinities of clock proteins among each other on and off DNA modes using surface plasmon resonance. The pairwise interaction coefficients among clock proteins, as well as interaction of PER2, CRY2, and PER2 : CRY2 proteins with BMAL1 : CLOCK complex in the presence and absence of EBOX motif have been investigated via analysis of surface plasmon resonance data with pseudo first-order reaction kinetics approximation and via nonlinear regression curve fitting. The results indicated that CRY2 and PER2, BMAL1, and CLOCK proteins form complexes in vitro and that PER2, CRY2 and PER2 : CRY2 complex have similar affinities toward BMAL1 : CLOCK complex. CRY2 protein had the highest affinity toward EBOX complex, whereas PER2 and CRY2 : PER2 complexes displayed low affinity toward EBOX complex. The quantification of the interaction between clock proteins is critical to understand the operation mechanism of the biological clock and to address the behavioral and physiological disorders, and it will be useful for the design of new drugs toward clock-related diseases.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Chemical and Biological Engineering, Koc University, Sariyer, Istanbul, 34450, Turkey
| | | | | |
Collapse
|
95
|
Blanco MA, Perevozchikova T, Martorana V, Manno M, Roberts CJ. Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions. J Phys Chem B 2014; 118:5817-31. [PMID: 24810917 PMCID: PMC4051245 DOI: 10.1021/jp412301h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions were investigated for α-chymotrypsinogen by static and dynamic light scattering (SLS and DLS, respectively), as well as small-angle neutron scattering (SANS), as a function of protein and salt concentration at acidic conditions. Net protein-protein interactions were probed via the Kirkwood-Buff integral G22 and the static structure factor S(q) from SLS and SANS data. G22 was obtained by regressing the Rayleigh ratio versus protein concentration with a local Taylor series approach, which does not require one to assume the underlying form or nature of intermolecular interactions. In addition, G22 and S(q) were further analyzed by traditional methods involving fits to effective interaction potentials. Although the fitted model parameters were not always physically realistic, the numerical values for G22 and S(q → 0) were in good agreement from SLS and SANS as a function of protein concentration. In the dilute regime, fitted G22 values agreed with those obtained via the osmotic second virial coefficient B22 and showed that electrostatic interactions are the dominant contribution for colloidal interactions in α-chymotrypsinogen solutions. However, as protein concentration increases, the strength of protein-protein interactions decreases, with a more pronounced decrease at low salt concentrations. The results are consistent with an effective "crowding" or excluded volume contribution to G22 due to the long-ranged electrostatic repulsions that are prominent even at the moderate range of protein concentrations used here (<40 g/L). These apparent crowding effects were confirmed and quantified by assessing the hydrodynamic factor H(q → 0), which is obtained by combining measurements of the collective diffusion coefficient from DLS data with measurements of S(q → 0). H(q → 0) was significantly less than that for a corresponding hard-sphere system and showed that hydrodynamic nonidealities can lead to qualitatively incorrect conclusions regarding B22, G22, and static protein-protein interactions if one uses only DLS to assess protein interactions.
Collapse
Affiliation(s)
- Marco A Blanco
- Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| | | | | | | | | |
Collapse
|
96
|
Leney AC, Fan X, Kitova EN, Klassen JS. Nanodiscs and Electrospray Ionization Mass Spectrometry: A Tool for Screening Glycolipids Against Proteins. Anal Chem 2014; 86:5271-7. [DOI: 10.1021/ac4041179] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aneika C. Leney
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xuxin Fan
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
97
|
Zhao H, Mayer ML, Schuck P. Analysis of protein interactions with picomolar binding affinity by fluorescence-detected sedimentation velocity. Anal Chem 2014; 86:3181-7. [PMID: 24552356 PMCID: PMC3988680 DOI: 10.1021/ac500093m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The study of high-affinity
protein interactions with equilibrium
dissociation constants (KD) in the picomolar
range is of significant interest in many fields, but the characterization
of stoichiometry and free energy of such high-affinity binding can
be far from trivial. Analytical ultracentrifugation has long been
considered a gold standard in the study of protein interactions but
is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity
interactions using fluorescence detected sedimentation velocity analytical
ultracentrifugation (FDS-SV). Taking full advantage of the large data
sets in FDS-SV by direct boundary modeling with sedimentation coefficient
distributions c(s), we demonstrate detection and
hydrodynamic resolution of protein complexes at low picomolar concentrations.
We show how this permits the characterization of the antibody–antigen
interactions with low picomolar binding constants, 2 orders of magnitude
lower than previously achieved. The strongly size-dependent separation
and quantitation by concentration, size, and shape of free and complex
species in free solution by FDS-SV has significant potential for studying
high-affinity multistep and multicomponent protein assemblies.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
98
|
Kapil MA, Herr AE. Binding Kinetic Rates Measured via Electrophoretic Band Crossing in a Pseudohomogeneous Format. Anal Chem 2014; 86:2601-9. [DOI: 10.1021/ac403829z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Monica A. Kapil
- Department
of Bioengineering, University of California, Berkeley, California, 94706, United States
| | - Amy E. Herr
- Department
of Bioengineering, University of California, Berkeley, California, 94706, United States
| |
Collapse
|
99
|
Closa F, Gosse C, Jullien L, Lemarchand A. Identification of two-step chemical mechanisms and determination of thermokinetic parameters using frequency responses to small temperature oscillations. J Chem Phys 2014; 138:244109. [PMID: 23822229 DOI: 10.1063/1.4811288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased focus on kinetic signatures in biology, coupled with the lack of simple tools for chemical dynamics characterization, lead us to develop an efficient method for mechanism identification. A small thermal modulation is used to reveal chemical dynamics, which makes the technique compatible with in cellulo imaging. Then, the detection of concentration oscillations in an appropriate frequency range followed by a judicious analytical treatment of the data is sufficient to determine the number of chemical characteristic times, the reaction mechanism, and the full set of associated rate constants and enthalpies of reaction. To illustrate the scope of the method, dimeric protein folding is chosen as a biologically relevant example of nonlinear mechanism with one or two characteristic times.
Collapse
Affiliation(s)
- F Closa
- Université Pierre et Marie Curie-Paris 6, Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 LPTMC, 4 place Jussieu, case courrier 121, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
100
|
Haes AJ, Duyne RPV. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev Mol Diagn 2014; 4:527-37. [PMID: 15225100 DOI: 10.1586/14737159.4.4.527] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Miniature optical sensors that specifically identify low concentrations of environmental and biological substances are in high demand. Currently, there is no optical sensor that provides identification of the aforementioned species without amplification techniques at naturally occurring concentrations. Recently, it has been demonstrated that triangular silver nanoparticles have remarkable optical properties and that their enhanced sensitivity to their nanoenvironment has been used to develop a new class of optical sensors using localized surface plasmon resonance spectroscopy. The examination of both model and nonmodel biological assays using localized surface plasmon resonance spectroscopy will be presented in this review. It will be demonstrated that the use of a localized surface plasmon resonance nanosensor rivals the sensitivity and selectivity of, and provides a low-cost alternative to, commercially available sensors.
Collapse
Affiliation(s)
- Amanda J Haes
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | | |
Collapse
|