51
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Hong SH, Wang X, Wood TK. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol 2010; 3:344-56. [PMID: 21255333 PMCID: PMC3158429 DOI: 10.1111/j.1751-7915.2010.00164.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 11/29/2022] Open
Abstract
The global regulator H-NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H-NS to control biofilm formation using protein engineering; H-NS variant K57N was obtained that reduces biofilm formation 10-fold compared with wild-type H-NS (wild-type H-NS increases biofilm formation whereas H-NS K57N reduces it). Whole-transcriptome analysis revealed that H-NS K57N represses biofilm formation through its interaction with the nucleoid-associated proteins Cnu and StpA and in the absence of these proteins, H-NS K57N was unable to reduce biofilm formation. Significantly, H-NS K57N enhanced the excision of defective prophage Rac while wild-type H-NS represses excision, and H-NS controlled only Rac excision among the nine resident E. coli K-12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H-NS regulatory system may be evolved through a single-amino-acid change in its N-terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis.
Collapse
Affiliation(s)
| | | | - Thomas K. Wood
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843‐3122, USA
| |
Collapse
|
53
|
Shokeen S, Johnson CM, Greenfield TJ, Manias DA, Dunny GM, Weaver KE. Structural analysis of the Anti-Q-Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid 2010; 64:26-35. [PMID: 20332003 DOI: 10.1016/j.plasmid.2010.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/08/2010] [Accepted: 03/17/2010] [Indexed: 11/18/2022]
Abstract
Conjugation of the E. faecalis plasmid pCF10 is triggered in response to peptide sex pheromone cCF10 produced by potential recipients. Regulation of this response is complex and multi-layered and includes a small regulatory RNA, Anti-Q that participates in a termination/antitermination decision controlling transcription of the conjugation structural genes. In this study, the secondary structure of the Anti-Q transcript and its sites of interaction with its target, Qs, were determined. The primary site of interaction occurred at a centrally-located loop whose sequence showed high variability in analogous molecules on other pheromone-responsive plasmids. This loop, designated the specificity loop, was demonstrated to be important but not sufficient for distinguishing between Qs molecules from pCF10 and another pheromone-responsive plasmid pAD1. A loop 5' from the specificity loop which carries a U-turn motif played no demonstrable role in Anti-Q-Qs interaction or regulation of the termination/antitermination decision. These results provide direct evidence for a critical role of Anti-Q-Qs interactions in posttranscriptional regulation of pCF10 transfer functions.
Collapse
Affiliation(s)
- Sonia Shokeen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E Clark St. Vermillion, SD 57069, USA
| | | | | | | | | | | |
Collapse
|
54
|
Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 2010; 12:1105-21. [PMID: 20105222 DOI: 10.1111/j.1462-2920.2009.02147.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously we identified that the Escherichia coli protein MqsR (YgiU) functions as a toxin and that it is involved in the regulation of motility by quorum sensing signal autoinducer-2 (AI-2). Furthermore, MqsR is directly associated with biofilm development and is linked to the development of persister cells. Here we show that MqsR and MqsA (YgiT) are a toxin/antitoxin (TA) pair, which, in significant difference to other TA pairs, regulates additional loci besides its own. We have recently identified that MqsR functions as an RNase. However, using three sets of whole-transcriptome studies and two nickel-enrichment DNA binding microarrays coupled with cell survival studies in which MqsR was overproduced in isogenic mutants, we identified eight genes (cspD, clpX, clpP, lon, yfjZ, relB, relE and hokA) that are involved in a mode of MqsR toxicity in addition to its RNase activity. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) showed that (i) the MqsR/MqsA complex (and MqsA alone) represses the toxin gene cspD, (ii) MqsR overproduction induces cspD, (iii) stress induces cspD, and (iv) stress fails to induce cspD when MqsR/MqsA are overproduced or when mqsRA is deleted. Electrophoretic mobility shift assays show that the MqsA/MqsR complex binds the promoter of cspD. In addition, proteases Lon and ClpXP are necessary for MqsR toxicity. Together, these results indicate the MqsR/MqsA complex represses cspD which may be derepressed by titrating MqsA with MqsR or by degrading MqsA via stress conditions through proteases Lon and ClpXP. Hence, we demonstrate that the MqsR/MqsA TA system controls cell physiology via its own toxicity as well as through its regulation of another toxin, CspD.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Dotu I, Lorenz WA, Van Hentenryck P, Clote P. Computing folding pathways between RNA secondary structures. Nucleic Acids Res 2009; 38:1711-22. [PMID: 20044352 PMCID: PMC2836545 DOI: 10.1093/nar/gkp1054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.
Collapse
Affiliation(s)
- Ivan Dotu
- Department of Computer Science, Brown University, PO Box 1910 Providence, RI 02912, USA
| | | | | | | |
Collapse
|
56
|
Tunca S, Barreiro C, Coque JJR, Martín JF. Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control sidephore and antibiotic biosynthesis in Streptomyces coelicolor A3(2). FEBS J 2009; 276:4814-27. [DOI: 10.1111/j.1742-4658.2009.07182.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Isambert H. The jerky and knotty dynamics of RNA. Methods 2009; 49:189-96. [PMID: 19563894 DOI: 10.1016/j.ymeth.2009.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/15/2009] [Accepted: 06/19/2009] [Indexed: 11/16/2022] Open
Abstract
RNA is known to exhibit a jerky dynamics, as intramolecular thermal motion, on <0.1 micros time scales, is punctuated by infrequent structural rearrangements on much longer time scales, i.e. from >10 micros up to a few minutes or even hours. These rare stochastic events correspond to the formation or dissociation of entire stems through cooperative base pairing/unpairing transitions. Such a clear separation of time scales in RNA dynamics has made it possible to implement coarse grained RNA simulations, which predict RNA folding and unfolding pathways including kinetically trapped structures on biologically relevant time scales of seconds to minutes. RNA folding simulations also enable to predict the formation of pseudoknots, that is, helices interior to loops, which mechanically restrain the relative orientations of other non-nested helices. But beyond static structural constraints, pseudoknots can also strongly affect the folding and unfolding dynamics of RNA, as the order by which successive helices are formed and dissociated can lead to topologically blocked transition intermediates. The resulting knotty dynamics can enhance the stability of RNA switches, improve the efficacy of co-transcriptional folding pathways and lead to unusual self-assembly properties of RNA.
Collapse
Affiliation(s)
- Hervé Isambert
- RNA Dynamics and Biomolecular Systems, Institut Curie, Centre de Recherche, CNRS UMR168, Paris, France.
| |
Collapse
|
58
|
Hemm MR, Paul BJ, Schneider TD, Storz G, Rudd KE. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol Microbiol 2009; 70:1487-501. [PMID: 19121005 DOI: 10.1111/j.1365-2958.2008.06495.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The correct annotation of genes encoding the smallest proteins is one of the biggest challenges of genome annotation, and perhaps more importantly, few annotated short open reading frames have been confirmed to correspond to synthesized proteins. We used sequence conservation and ribosome binding site models to predict genes encoding small proteins, defined as having 16-50 amino acids, in the intergenic regions of the Escherichia coli genome. We tested expression of these predicted as well as previously annotated genes by integrating the sequential peptide affinity tag directly upstream of the stop codon on the chromosome and assaying for synthesis using immunoblot assays. This approach confirmed that 20 previously annotated and 18 newly discovered proteins of 16-50 amino acids are synthesized. We summarize the properties of these small proteins; remarkably more than half of the proteins are predicted to be single-transmembrane proteins, nine of which we show co-fractionate with cell membranes.
Collapse
Affiliation(s)
- Matthew R Hemm
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
59
|
Levine E, Hwa T. Small RNAs establish gene expression thresholds. Curr Opin Microbiol 2008; 11:574-9. [PMID: 18935980 DOI: 10.1016/j.mib.2008.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 02/01/2023]
Abstract
The central role of small RNAs in regulating bacterial gene expression has been elucidated in the past years. Typically, small RNAs act via specific basepairing with target mRNAs, leading to modulation of translation initiation and mRNA stability. Quantitative studies suggest that small RNA regulation is characterized by unique features, which allow it to complement regulation at the transcriptional level. In particular, small RNAs are shown to establish a threshold for the expression of their target, providing safety mechanism against random fluctuations and transient signals. The threshold level is set by the transcription rate of the small RNA and can thus be modulated dynamically to reflect changing environmental conditions.
Collapse
Affiliation(s)
- Erel Levine
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, CA 92093, United States.
| | | |
Collapse
|
60
|
Bally MB, Lim H, Cullis PR, Mayer LD. Controlling the Drug Delivery Attributes of Lipid-Based Drug Formulations. J Liposome Res 2008. [DOI: 10.3109/08982109809035537] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
61
|
Unoson C, Wagner EGH. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 2008; 70:258-70. [PMID: 18761622 DOI: 10.1111/j.1365-2958.2008.06416.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported on an SOS-induced toxin, TisB, in Escherichia coli and its regulation by the RNA antitoxin IstR-1. Here, we addressed the mode of action of TisB. By placing the tisB reading frame downstream of a controllable promoter on a plasmid, toxicity could be analysed in the absence of the global SOS response. Upon induction of TisB, cell growth was inhibited and plating efficiency decreased rapidly. The onset of toxicity correlated with a drastic decrease in transcription, translation and replication rates. Cellular RNA was degraded, but in vitro experiments showed that TisB did not affect translation or transcription directly. Thus, these effects are downstream consequences of membrane damage: TisB is predicted to be hydrophobic and membrane spanning, and Western analyses demonstrated that this peptide was strictly localized to the cytoplasmic membrane fraction. Membrane damage and cell killing under tisB multicopy expression are also seen by live/death staining and the formation of ghost cells. This is reminiscent of another toxin, Hok of plasmid R1, which also targets the membrane. The biological significance of the istR/tisB locus is still elusive; deletion of the entire locus gave no fitness phenotype in competition experiments.
Collapse
Affiliation(s)
- Cecilia Unoson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | | |
Collapse
|
62
|
Florek P, Muchová K, Pavelcíková P, Barák I. Expression of functional Bacillus SpoIISAB toxin-antitoxin modules in Escherichia coli. FEMS Microbiol Lett 2008; 278:177-84. [PMID: 18096016 DOI: 10.1111/j.1574-6968.2007.00984.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SpoIISA and SpoIISB proteins from Bacillus subtilis belong to a recently described bacterial programmed-cell death system. The current work demonstrates that the toxin-antitoxin module is also functional in Escherichia coli cells, where the expression of SpoIISA toxin leads to transient growth arrest coupled with cell lysis, and SpoIISA-induced death can be prevented by coexpression of its cognate antitoxin, SpoIISB. Escherichia coli cells appear to be able to escape the SpoIISA killing by activation of a specific, as yet unidentified protease that cleaves out the cytosolic part of the protein. Analysis of the toxic effects of the transmembrane and cytosolic portions of SpoIISA showed that neither of them separately can function as a toxin; therefore, both parts of the protein have to act in concert to exert the killing. This work also identifies genes encoding putative homologues of SpoIISA and SpoIISB proteins on chromosomes of other Bacilli species. The SpoIISA-like proteins from Bacillus anthracis and Bacillus cereus were shown to manifest the same effect on the viability of E. coli as their homologue from B. subtilis. Moreover, expression of the proposed spoIISB-like gene rescues E. coli cells from death induced by the SpoIISA homologue.
Collapse
|
63
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
64
|
Ohno S, Handa N, Watanabe-Matsui M, Takahashi N, Kobayashi I. Maintenance forced by a restriction-modification system can be modulated by a region in its modification enzyme not essential for methyltransferase activity. J Bacteriol 2008; 190:2039-49. [PMID: 18192396 PMCID: PMC2258900 DOI: 10.1128/jb.01319-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 01/02/2008] [Indexed: 11/20/2022] Open
Abstract
Several type II restriction-modification gene complexes can force their maintenance on their host bacteria by killing cells that have lost them in a process called postsegregational killing or genetic addiction. It is likely to proceed by dilution of the modification enzyme molecule during rounds of cell division following the gene loss, which exposes unmethylated recognition sites on the newly replicated chromosomes to lethal attack by the remaining restriction enzyme molecules. This process is in apparent contrast to the process of the classical types of postsegregational killing systems, in which built-in metabolic instability of the antitoxin allows release of the toxin for lethal action after the gene loss. In the present study, we characterize a mutant form of the EcoRII gene complex that shows stronger capacity in such maintenance. This phenotype is conferred by an L80P amino acid substitution (T239C nucleotide substitution) mutation in the modification enzyme. This mutant enzyme showed decreased DNA methyltransferase activity at a higher temperature in vivo and in vitro than the nonmutated enzyme, although a deletion mutant lacking the N-terminal 83 amino acids did not lose activity at either of the temperatures tested. Under a condition of inhibited protein synthesis, the activity of the L80P mutant was completely lost at a high temperature. In parallel, the L80P mutant protein disappeared more rapidly than the wild-type protein. These results demonstrate that the capability of a restriction-modification system in forcing maintenance on its host can be modulated by a region of its antitoxin, the modification enzyme, as in the classical postsegregational killing systems.
Collapse
Affiliation(s)
- Satona Ohno
- Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
65
|
Sevin EW, Barloy-Hubler F. RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 2008; 8:R155. [PMID: 17678530 PMCID: PMC2374986 DOI: 10.1186/gb-2007-8-8-r155] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/14/2007] [Accepted: 08/01/2007] [Indexed: 11/22/2022] Open
Abstract
RASTA-Bacteria is an automated method that allows quick and reliable identification of toxin/antitoxin loci in sequenced prokaryotic genomes, whether they are annotated Open Reading Frames or not. Toxin/antitoxin (TA) systems, viewed as essential regulators of growth arrest and programmed cell death, are widespread among prokaryotes, but remain sparsely annotated. We present RASTA-Bacteria, an automated method allowing quick and reliable identification of TA loci in sequenced prokaryotic genomes, whether they are annotated open reading frames or not. The tool successfully confirmed all reported TA systems, and spotted new putative loci upon screening of sequenced genomes. RASTA-Bacteria is publicly available at .
Collapse
Affiliation(s)
- Emeric W Sevin
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR 140, Av. du Prof. Léon Bernard, CS 34317, 35043 Rennes, France
| | - Frédérique Barloy-Hubler
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR 140, Av. du Prof. Léon Bernard, CS 34317, 35043 Rennes, France
- CNRS UMR6026 Interactions Cellulaires et Moléculaires, Groupe DUALS, Université de Rennes 1, IFR140, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| |
Collapse
|
66
|
Win MN, Smolke CD. RNA as a versatile and powerful platform for engineering genetic regulatory tools. Biotechnol Genet Eng Rev 2008; 24:311-46. [PMID: 18059640 DOI: 10.1080/02648725.2007.10648106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maung Nyan Win
- Department of Chemical Engineering, MC 210-41, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
67
|
Levine E, Zhang Z, Kuhlman T, Hwa T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol 2007; 5:e229. [PMID: 17713988 PMCID: PMC1994261 DOI: 10.1371/journal.pbio.0050229] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 06/26/2007] [Indexed: 11/18/2022] Open
Abstract
An increasing number of small RNAs (sRNAs) have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone. The activation of stress response programs, while crucial for the survival of a bacterial cell under stressful conditions, is costly in terms of energy and substrates and risky to the normal functions of the cell. Stress response is therefore tightly regulated. A recently discovered layer of regulation involves small RNA molecules, which bind the mRNA transcripts of their targets, inhibit their translation, and promote their cleavage. To understand the role that small RNA plays in regulation, we have studied the quantitative aspects of small RNA regulation by integrating mathematical modeling and quantitative experiments in Escherichia coli. We have demonstrated that small RNAs can tightly repress their target genes when their synthesis rate is smaller than some threshold, but have little or no effect when the synthesis rate is much larger than that threshold. Importantly, the threshold level is set by the synthesis rate of the small RNA itself and can be dynamically tuned. The effect of biochemical properties—such as the binding affinity of the two RNA molecules, which can only be altered on evolutionary time scales—is limited to setting a hierarchical order among different targets of a small RNA, facilitating in principle a global coordination of stress response. In bacteria, small RNAs can regulate the expression of genes at the translational level. The many advantages of this type of control include a tuneable threshold response and resistance to biochemical noise.
Collapse
Affiliation(s)
- Erel Levine
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thomas Kuhlman
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Terence Hwa
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
68
|
Abstract
Only few small, regulatory RNAs encoded opposite another gene have been identified in bacteria. Here, we report the characterization of a locus where a small RNA (SymR) is encoded in cis to an SOS-induced gene whose product shows homology to the antitoxin MazE (SymE). Synthesis of the SymE protein is tightly repressed at multiple levels by the LexA repressor, the SymR RNA and the Lon protease. SymE co-purifies with ribosomes and overproduction of the protein leads to cell growth inhibition, decreased protein synthesis and increased RNA degradation. These properties are shared with several RNA endonuclease toxins of the toxin-antitoxin modules, and we show that the SymE protein represents evolution of a toxin from the AbrB fold, whose representatives are typically antitoxins. We suggest that SymE promotion of RNA cleavage may be important for the recycling of RNAs damaged under SOS-inducing conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Antitoxins/chemistry
- Antitoxins/genetics
- Antitoxins/metabolism
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Base Sequence
- Blotting, Northern
- Electrophoresis, Polyacrylamide Gel
- Evolution, Molecular
- Immunoblotting
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- Protease La/metabolism
- Protein Biosynthesis/genetics
- Protein Conformation
- Protein Folding
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/metabolism
- SOS Response, Genetics/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Mitsuoki Kawano
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Institutes of HealthBethesda, MD 20892, USA.
| | - Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA.
- * For correspondence. E-mail ; Tel. (+1) 301 402 0968; Fax (+1) 301 402 0078
| |
Collapse
|
69
|
Rasmussen LCV, Sperling-Petersen HU, Mortensen KK. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 2007; 6:24. [PMID: 17692125 PMCID: PMC1995221 DOI: 10.1186/1475-2859-6-24] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 08/10/2007] [Indexed: 12/16/2022] Open
Abstract
An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.
Collapse
Affiliation(s)
| | - Hans Uffe Sperling-Petersen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Kim Kusk Mortensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
70
|
Liu Y, Kobayashi I. Negative regulation of the EcoRI restriction enzyme gene is associated with intragenic reverse promoters. J Bacteriol 2007; 189:6928-35. [PMID: 17616602 PMCID: PMC2045195 DOI: 10.1128/jb.00127-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II restriction-modification systems are expected to possess mechanisms for tight regulation of their expression to suppress the potential of lethal attack on their host bacteria when they establish and maintain themselves within them. Although the EcoRI restriction enzyme has been well characterized, regulation of its expression is still poorly understood. In this study, mutational analysis with lacZ gene fusion and primer extension assay identified a promoter for the transcription of the ecoRIR gene. Further analyses revealed that an intragenic region containing two overlapping reverse promoter-like elements acted as a negative regulator for ecoRIR gene expression. The activity of these putative reverse promoters was verified by transcriptional gene fusion, primer extension and in vitro transcription. Mutations in these reverse promoters resulted in increased gene expression in both translational and transcriptional gene fusions. An RNase protection assay revealed that the transcript level of the wild type relative to that of the reverse promoter mutant at the downstream regions was much lower than the level at the upstream regions. This suggests that these reverse promoter-like elements affect their downstream transcript level. The possible mechanisms of this kind of negative regulation, in addition to their possible biological roles, are discussed.
Collapse
Affiliation(s)
- Yaoping Liu
- Department of Medical Genome Sciences, Graduate Schol of Frontier Science, University of Tokyo, Tokyo 108-8639, Japan
| | | |
Collapse
|
71
|
Darfeuille F, Unoson C, Vogel J, Wagner EGH. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 2007; 26:381-92. [PMID: 17499044 DOI: 10.1016/j.molcel.2007.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/25/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
Most antisense RNAs in bacteria inhibit translation by competing with ribosomes for translation initiation regions (TIRs) on nascent mRNA. We propose a mechanism by which an antisense RNA inhibits translation without binding directly to a TIR. The tisAB locus encodes an SOS-induced toxin, and IstR-1 is the antisense RNA that counteracts toxicity. We show that full-length tisAB mRNA (+1) is translationally inactive and endonucleolytic processing produces an active mRNA (+42). IstR-1 binding inhibits translation of this mRNA, and subsequent RNase III cleavage generates a truncated, inactive mRNA (+106). In vitro translation, toeprinting, and structure mapping suggest that active, but not inactive, tisAB mRNAs contain an upstream ribosome loading or "standby" site. Standby binding is required for initiation at the highly structured tisB TIR. This may involve ribosome sliding to a transiently open tisB TIR. IstR-1 competes with ribosomes by base pairing to the standby site located approximately 100 nucleotides upstream.
Collapse
MESH Headings
- Bacterial Toxins/biosynthesis
- Bacterial Toxins/genetics
- Base Sequence
- Binding, Competitive
- Escherichia coli/genetics
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/genetics
- Protein Biosynthesis/genetics
- RNA, Antisense/chemistry
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomes/metabolism
- SOS Response, Genetics/genetics
- SOS Response, Genetics/physiology
- Trans-Activators
Collapse
Affiliation(s)
- Fabien Darfeuille
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|
72
|
Abstract
Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).
Collapse
Affiliation(s)
- Kenn Gerdes
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE2 4HH, UK.
| | | |
Collapse
|
73
|
Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 2007; 63:1588-605. [PMID: 17367382 DOI: 10.1111/j.1365-2958.2007.05613.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Superintegrons (SIs) are chromosomal genetic elements containing assemblies of genes, each flanked by a recombination sequence (attC site) targeted by the integron integrase. SIs may contain hundreds of attC sites and intrinsic instability is anticipated; yet SIs are remarkably stable. This implies that either selective pressure maintains the genes or mechanisms exist which favour their persistence in the absence of selection. Toxin/antitoxin (TA) systems encode a stable toxin and a specific, unstable antitoxin. Once activated, the continued synthesis of the unstable antitoxin is necessary for cell survival. A bioinformatic search of accessible microbial genomes for SIs and TA systems revealed that large SIs harboured TA gene cassettes while smaller SIs did not. We demonstrated the function of TA loci in different genomic contexts where large-scale deletions can occur; in SIs and in a 165 kb dispensable region of the Escherichia coli genome. When devoid of TA loci, large-scale genome loss was evident in both environments. The inclusion of two TA loci, relBE1 and parDE1, which we identified in the Vibrio vulnificus SI rendered these environments refractory to gene loss. Thus, chromosomal TA loci can stabilize massive SI arrays and limit the extensive gene loss that is a hallmark of reductive evolution.
Collapse
Affiliation(s)
- Silvia Szekeres
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario, M4N 3N5, Canada
| | | | | | | | | |
Collapse
|
74
|
Abstract
RNA co-transcriptional folding has long been suspected to play an active role in helping proper native folding of ribozymes and structured regulatory motifs in mRNA untranslated regions (UTRs). Yet, the underlying mechanisms and coding requirements for efficient co-transcriptional folding remain unclear. Traditional approaches have intrinsic limitations to dissect RNA folding paths, as they rely on sequence mutations or circular permutations that typically perturb both RNA folding paths and equilibrium structures. Here, we show that exploiting sequence symmetries instead of mutations can circumvent this problem by essentially decoupling folding paths from equilibrium structures of designed RNA sequences. Using bistable RNA switches with symmetrical helices conserved under sequence reversal, we demonstrate experimentally that native and transiently formed helices can guide efficient co-transcriptional folding into either long-lived structure of these RNA switches. Their folding path is controlled by the order of helix nucleations and subsequent exchanges during transcription, and may also be redirected by transient antisense interactions. Hence, transient intra- and inter-molecular base pair interactions can effectively regulate the folding of nascent RNA molecules into different native structures, provided limited coding requirements, as discussed from an information theory perspective. This constitutive coupling between RNA synthesis and RNA folding regulation may have enabled the early emergence of autonomous RNA-based regulation networks.
Collapse
Affiliation(s)
- A. Xayaphoummine
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
| | - V. Viasnoff
- RNA Dynamics and Biomolecular Systems, Physico-chimie CurieCNRS UMR168, Institut Curie, Section de Recherche, 11 rue P. & M. Curie, 75005 Paris, France
| | - S. Harlepp
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
| | - H. Isambert
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
- RNA Dynamics and Biomolecular Systems, Physico-chimie CurieCNRS UMR168, Institut Curie, Section de Recherche, 11 rue P. & M. Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 1 42 34 64 74;
| |
Collapse
|
75
|
Chen H, Schifferli DM. Comparison of a fimbrial versus an autotransporter display system for viral epitopes on an attenuated Salmonella vaccine vector. Vaccine 2006; 25:1626-33. [PMID: 17169467 PMCID: PMC7115504 DOI: 10.1016/j.vaccine.2006.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/25/2006] [Accepted: 11/02/2006] [Indexed: 11/02/2022]
Abstract
Attenuated Salmonella have been used as vectors to deliver foreign antigens as live vaccines. We have previously developed an efficient surface-display system by genetically engineering 987P fimbriae to present transmissible gastroenteritis virus (TGEV) C and A epitopes for the induction of anti-TGEV antibodies with a Salmonella vaccine vector. Here, this system was compared with an autotransporter protein surface display system. The TGEV C and A epitopes were fused to the passenger domain of the MisL autotransporter of Salmonella. Expression of both the MisL- and 987P subunit FasA-fusions to the TGEV epitopes were under the control of in vivo-induced promoters. Expression of the TGEV epitopes from the Salmonella typhimurium CS4552 (crp cya asd pgtE) vaccine strain was greater when the epitopes were fused to MisL than when they were fused to the 987P FasA subunit. However, when BALB/c mice were orally immunized with the Salmonella vector expressing the TGEV epitopes from either one of the fusion constructs or both together, the highest level of anti-TGEV antibody was obtained with the 987P-TGEV immunogen-displaying vector. This result suggested that better immune responses towards specific epitopes could be obtained by using a polymeric display system such as fimbriae.
Collapse
|
76
|
Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res 2006; 34:5915-22. [PMID: 17065468 PMCID: PMC1635323 DOI: 10.1093/nar/gkl750] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Short regulatory RNAs are widespread in bacteria, and many function through antisense recognition of mRNA. Among the best studied antisense transcripts are RNA antitoxins that repress toxin mRNA translation. The hok/sok locus of plasmid R1 from Escherichia coli is an established model for RNA antitoxin action. Base-pairing between hok mRNA and Sok-antisense-RNA increases plasmid maintenance through post-segregational-killing of plasmid-free progeny cells. To test the model and the idea that sequestration of Sok-RNA activity could provide a novel antimicrobial strategy, we designed anti Sok peptide nucleic acid (PNA) oligomers that, according to the model, would act as competitive inhibitors of hok mRNA::Sok-RNA interactions. In hok/sok-carrying cells, anti Sok PNAs were more bactericidal than rifampicin. Also, anti Sok PNAs induced ghost cell morphology and an accumulation of mature hok mRNA, consistent with cell killing through synthesis of Hok protein. The results support the sense/antisense model for hok mRNA repression by Sok-RNA and demonstrate that antisense agents can be used to out-compete RNA::RNA interactions in bacteria. Finally, BLAST analyses of approximately 200 prokaryotic genomes revealed that many enteric bacteria have multiple hok/sok homologous and analogous RNA-regulated toxin-antitoxin loci. Therefore, it is possible to activate suicide in bacteria by targeting antitoxins.
Collapse
Affiliation(s)
| | | | - Deo Prakash Pandey
- Département de Biologie Cellulaire Université de GenèveSciences III 30 Quai Ernest-Ansermet 1211 Genève 4, Switzerland
| | - Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern DenmarkDK-5230 Odense M, Denmark
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle, NE2 4HH, UK
| | - Liam Good
- To whom correspondence should be addressed. Tel: +46 8 5248 6385; Fax: +46 8 32 39 50;
| |
Collapse
|
77
|
Abstract
Studies in pro- and eukaryotes have revealed that translation can determine the stability of a given messenger RNA. In bacteria, intrinsic mRNA signals can confer efficient ribosome binding, whereas translational feedback inhibition or environmental cues can interfere with this process. Such regulatory mechanisms are often controlled by RNA-binding proteins, small noncoding RNAs and structural rearrangements within the 5' untranslated region. Here, we review molecular events occurring in the 5' untranslated region of primarily Escherichia coli mRNAs with regard to their effects on mRNA stability.
Collapse
Affiliation(s)
- Vladimir R Kaberdin
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at Vienna Biocenter, Vienna, Austria.
| | | |
Collapse
|
78
|
Lioy VS, Martín MT, Camacho AG, Lurz R, Antelmann H, Hecker M, Hitchin E, Ridge Y, Wells JM, Alonso JC. pSM19035-encoded zeta toxin induces stasis followed by death in a subpopulation of cells. MICROBIOLOGY-SGM 2006; 152:2365-2379. [PMID: 16849801 DOI: 10.1099/mic.0.28950-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The toxin-antitoxin operon of pSM19035 encodes three proteins: the omega global regulator, the epsilon labile antitoxin and the stable zeta toxin. Accumulation of zeta toxin free of epsilon antitoxin induced loss of cell proliferation in both Bacillus subtilis and Escherichia coli cells. Induction of a zeta variant (zetaY83C) triggered stasis, in which B. subtilis cells were viable but unable to proliferate, without selectively affecting protein translation. In E. coli cells, accumulation of free zeta toxin induced stasis, but this was fully reversed by expression of the epsilon antitoxin within a defined time window. The time window for reversion of zeta toxicity by expression of epsilon antitoxin was dependent on the initial cellular level of zeta. After 240 min of constitutive expression, or inducible expression of high levels of zeta toxin for 30 min, expression of epsilon failed to reverse the toxic effect exerted by zeta in cells growing in minimal medium. Under the latter conditions, zeta inhibited replication, transcription and translation and finally induced death in a fraction (approximately 50 %) of the cell population. These results support the view that zeta interacts with its specific target and reversibly inhibits cell proliferation, but accumulation of zeta might lead to cell death due to pleiotropic effects.
Collapse
Affiliation(s)
- Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - M Teresa Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ana G Camacho
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Rudi Lurz
- Max-Planck-Institut für molekulare Genetik, D-14195 Berlin, Germany
| | - Haike Antelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Greifswald, Germany
| | - Ed Hitchin
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Yvonne Ridge
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Jerry M Wells
- University of Amsterdam, Swammerdam Institute of Life Sciences, 1018 WV Amsterdam, The Netherlands
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| |
Collapse
|
79
|
Nagel JHA, Flamm C, Hofacker IL, Franke K, de Smit MH, Schuster P, Pleij CWA. Structural parameters affecting the kinetics of RNA hairpin formation. Nucleic Acids Res 2006; 34:3568-76. [PMID: 16855293 PMCID: PMC1524914 DOI: 10.1093/nar/gkl445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine- to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program ‘Kinfold’. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem–loop structures.
Collapse
Affiliation(s)
| | - C. Flamm
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität WienA-1090 Vienna, Austria
| | - I. L. Hofacker
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität WienA-1090 Vienna, Austria
| | - K. Franke
- IBA NAPS GmbH Rudolf-Wissell-Strasse 28 D-37079 GöttingenGermany
| | | | - P. Schuster
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität WienA-1090 Vienna, Austria
| | - C. W. A. Pleij
- To whom correspondence should be addressed. Tel: +31-71-5274769; Fax: +31-71-5274340;
| |
Collapse
|
80
|
Chen CY, Nace GW, Solow B, Fratamico P. Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. Plasmid 2006; 57:29-43. [PMID: 16828159 DOI: 10.1016/j.plasmid.2006.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 01/09/2023]
Abstract
The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Eastern Regional Research Center, Agriculture Research Service, US Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
81
|
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006; 1:7. [PMID: 16545108 PMCID: PMC1462988 DOI: 10.1186/1745-6150-1-7] [Citation(s) in RCA: 821] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis. Results The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly. Conclusion We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids. This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen. Open peer review Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Nick V Grishin
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
82
|
Abstract
Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
83
|
Abstract
The fundamental problems in duplicating and transmitting genetic information posed by the geometric and topological features of DNA, combined with its large size, are qualitatively similar for prokaryotic and eukaryotic chromosomes. The evolutionary solutions to these problems reveal common themes. However, depending on differences in their organization, ploidy, and copy number, chromosomes and plasmids display distinct segregation strategies as well. In bacteria, chromosome duplication, likely mediated by a stationary replication factory, is accompanied by rapid, directed migration of the daughter duplexes with assistance from DNA-compacting and perhaps translocating proteins. The segregation of unit-copy or low-copy bacterial plasmids is also regulated spatially and temporally by their respective partitioning systems. Eukaryotic chromosomes utilize variations of a basic pairing and unpairing mechanism for faithful segregation during mitosis and meiosis. Rather surprisingly, the yeast plasmid 2-micron circle also resorts to a similar scheme for equal partitioning during mitosis.
Collapse
Affiliation(s)
- Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712-0612, USA.
| | | | | | | |
Collapse
|
84
|
Mochizuki A, Yahara K, Kobayashi I, Iwasa Y. Genetic addiction: selfish gene's strategy for symbiosis in the genome. Genetics 2005; 172:1309-23. [PMID: 16299387 PMCID: PMC1456228 DOI: 10.1534/genetics.105.042895] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution and maintenance of the phenomenon of postsegregational host killing or genetic addiction are paradoxical. In this phenomenon, a gene complex, once established in a genome, programs death of a host cell that has eliminated it. The intact form of the gene complex would survive in other members of the host population. It is controversial as to why these genetic elements are maintained, due to the lethal effects of host killing, or perhaps some other properties are beneficial to the host. We analyzed their population dynamics by analytical methods and computer simulations. Genetic addiction turned out to be advantageous to the gene complex in the presence of a competitor genetic element. The advantage is, however, limited in a population without spatial structure, such as that in a well-mixed liquid culture. In contrast, in a structured habitat, such as the surface of a solid medium, the addiction gene complex can increase in frequency, irrespective of its initial density. Our demonstration that genomes can evolve through acquisition of addiction genes has implications for the general question of how a genome can evolve as a community of potentially selfish genes.
Collapse
|
85
|
Abstract
pSM19035 of the pathogenic bacterium Streptococcus pyogenes is a low-copy-number plasmid carrying erythromycin resistance, stably maintained in a broad range of gram-positive bacteria. We show here that the omega-epsilon-zeta operon of this plasmid constitutes a novel proteic plasmid addiction system in which the epsilon and zeta genes encode an antitoxin and toxin, respectively, while omega plays an autoregulatory function. Expression of toxin Zeta is bactericidal for the gram-positive Bacillus subtilis and bacteriostatic for the gram-negative Escherichia coli. The toxic effects of zeta gene expression in both bacterial species are counteracted by proper expression of epsilon. The epsilon-zeta toxin-antitoxin cassette stabilizes plasmids in E. coli less efficiently than in B. subtilis.
Collapse
Affiliation(s)
- Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | | |
Collapse
|
86
|
Abstract
Toxin-antitoxin (TA) modules are pairs of genes in which one member encodes a toxin that is neutralized or whose synthesis is prevented by the action of the product of the second gene, an antitoxin, which is either protein or RNA. We now report the identification of a TA module in the chromosome of Bacillus subtilis in which the antitoxin is an antisense RNA. The antitoxin, which is called RatA (for RNA antitoxin A), is a small (222 nucleotides), untranslated RNA that blocks the accumulation of the mRNA for a toxic peptide TxpA (for toxic peptide A; formerly YqdB). The txpA and ratA genes are in convergent orientation and overlap by ca. 75 nucleotides, such that the 3' region of ratA is complementary to the 3' region of txpA. Deletion of ratA led to increased levels of txpA mRNA and lysis of the cells. Overexpression of txpA also caused cell lysis and death, a phenotype that was prevented by simultaneous overexpression of ratA. We propose that the ratA transcript is an antisense RNA that anneals to the 3' end of the txpA mRNA, thereby triggering its degradation.
Collapse
Affiliation(s)
- Jessica M Silvaggi
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Ave., Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
87
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
88
|
Ichige A, Kobayashi I. Stability of EcoRI restriction-modification enzymes in vivo differentiates the EcoRI restriction-modification system from other postsegregational cell killing systems. J Bacteriol 2005; 187:6612-21. [PMID: 16166522 PMCID: PMC1251573 DOI: 10.1128/jb.187.19.6612-6621.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022] Open
Abstract
Certain type II restriction modification gene systems can kill host cells when these gene systems are eliminated from the host cells. Such ability to cause postsegregational killing of host cells is the feature of bacterial addiction modules, each of which consists of toxin and antitoxin genes. With these addiction modules, the differential stability of toxin and antitoxin molecules in cells plays an essential role in the execution of postsegregational killing. We here examined in vivo stability of the EcoRI restriction enzyme (toxin) and modification enzyme (antitoxin), the gene system of which has previously been shown to cause postsegregational host killing in Escherichia coli. Using two different methods, namely, quantitative Western blot analysis and pulse-chase immunoprecipitation analysis, we demonstrated that both the EcoRI restriction enzyme and modification enzyme are as stable as bulk cellular proteins and that there is no marked difference in their stability. The numbers of EcoRI restriction and modification enzyme molecules present in a host cell during the steady-state growth were estimated. We monitored changes in cellular levels of the EcoRI restriction and modification enzymes during the postsegregational killing. Results from these analyses together suggest that the EcoRI gene system does not rely on differential stability between the toxin and the antitoxin molecules for execution of postsegregational cell killing. Our results provide insights into the mechanism of postsegregational killing by restriction-modification systems, which seems to be distinct from mechanisms of postsegregational killing by other bacterial addiction modules.
Collapse
Affiliation(s)
- Asao Ichige
- Department of Medical Genome Sciences, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
89
|
Nordström K. Plasmid R1--replication and its control. Plasmid 2005; 55:1-26. [PMID: 16199086 DOI: 10.1016/j.plasmid.2005.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/04/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Plasmid R1 is a low-copy-number plasmid belonging to the IncFII group. The genetics, biochemistry, molecular biology, and physiology of R1 replication and its control are summarised and discussed in the present communication. Replication of R1 starts at a unique origin, oriR1, and proceeds unidirectionally according to the Theta mode. Plasmid R1 replicates during the entire cell cycle and the R1 copies in the cell are members of a pool from which a plasmid copy at random is selected for replication. However, there is an eclipse period during which a newly replicated copy does not belong to this pool. Replication of R1 is controlled by an antisense RNA, CopA, that is unstable and formed constitutively; hence, its concentration is a measure of the concentration of the plasmid. CopA-RNA interacts with its complementary target, CopT-RNA, that is located upstream of the RepA message on the repA-mRNA. CopA-RNA post-transcriptionally inhibits translation of the repA-mRNA. CopA- and CopT-RNA interact in a bimolecular reaction which results in an inverse proportionality between the relative rate of replication (replications per plasmid copy and cell cycle) and the copy number; the number of replications per cell and cell cycle, n, is independent of the actual copy number in the individual cells, the so-called +n mode of control. Single base-pair substitutions in the copA/copT region of the plasmid genome may result in mutants that are compatible with the wild type. Loss of CopA activity results in (uncontrolled) so-called runaway replication, which is lethal to the host but useful for the production of proteins from cloned genes. Plasmid R1 also has an ancillary control system, CopB, that derepresses the synthesis of repA-mRNA in cells that happen to contain lower than normal number of copies. Plasmid R1, as other plasmids, form clusters in the cell and plasmid replication is assumed to take place in the centre of the cells; this requires traffic from the cluster to the replication factories and back to the clusters. The clusters are plasmid-specific and presumably based on sequence homology.
Collapse
Affiliation(s)
- Kurt Nordström
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, P.O. Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
90
|
Abstract
The importance of small, noncoding RNAs that act as regulators of transcription, of RNA modification or stability, and of mRNA translation is becoming increasingly apparent. Here we discuss current knowledge of regulatory RNA function and review how the RNAs have been identified in a variety of organisms. Many of the regulatory RNAs act through base-pairing interactions with target RNAs. The base-pairing RNAs can be grouped into two general classes: those that are encoded on the opposite strand of their target RNAs such that they contain perfect complementarity with their targets, and those that are encoded at separate locations on the chromosome and have imperfect base-pairing potential with their targets. Other regulatory RNAs act by modifying protein activity, in some cases by mimicking the structures of other RNA or DNA molecules.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Gene Expression
- Humans
- Mice
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA Stability
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
91
|
Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 2005; 3:700-10. [PMID: 16138098 DOI: 10.1038/nrmicro1232] [Citation(s) in RCA: 475] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have identified certain hot spots, and many of these involve biofilms. Biofilms are uniquely suited for HGT, as they sustain high bacterial density and metabolic activity, even in the harshest environments. Single-cell detection of donor, recipient and transconjugant bacteria in various natural environments, combined with individual-based mathematical models, has provided a new platform for HGT studies.
Collapse
Affiliation(s)
- Søren J Sørensen
- Department of Microbiology, Institute of Biology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark.
| | | | | | | | | |
Collapse
|
92
|
Steigele S, Nieselt K. Open reading frames provide a rich pool of potential natural antisense transcripts in fungal genomes. Nucleic Acids Res 2005; 33:5034-44. [PMID: 16147987 PMCID: PMC1201330 DOI: 10.1093/nar/gki804] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 12/28/2022] Open
Abstract
Natural antisense transcripts are reported from all kingdoms of life and several recent reports of genomewide screens indicate that they are widely distributed. These transcripts seem to be involved in various biological functions and may govern the expression of their respective sense partner. Very little, however, is known about the degree of evolutionary conservation of antisense transcripts. Furthermore, none of the earlier analyses has studied whether antisense relationships are solely dual or involved in more complex relationships. Here we present a systematic screen for cis- and trans-located antisense transcripts based on open reading frames (ORFs) from five fungal species. The relative number of ORFs involved in antisense relationships varies greatly between the five species. In addition, other significant differences are found between the species, such as the mean length of the antisense region. The majority of trans-located antisense transcripts is found to be involved in complex relationships, resulting in highly connected networks. The analysis of the degree of evolutionary conservation of antisense transcripts shows that most antisense transcripts have no ortholog in any other species. An annotation of antisense transcripts based on Gene Ontology directs to common terms and shows that proteins of genes involved in antisense relationships preferentially localize to the nucleus with common functions in the regulation or maintenance of nucleic acids.
Collapse
MESH Headings
- Evolution, Molecular
- Genome, Fungal
- Genomics
- Models, Genetic
- Open Reading Frames
- RNA, Antisense/chemistry
- RNA, Antisense/classification
- RNA, Antisense/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/classification
- RNA, Fungal/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Stephan Steigele
- Wilhelm-Schickard-Institut f. Informatik, ZBIT–Center for Bioinformatics, Tübingen, University of TübingenGermany
| | - Kay Nieselt
- Wilhelm-Schickard-Institut f. Informatik, ZBIT–Center for Bioinformatics, Tübingen, University of TübingenGermany
| |
Collapse
|
93
|
Abstract
Small regulatory RNAs can modify the activity of proteins and the stability and translation of mRNAs. They have now been found in a wide range of organisms, and can play previously unsuspected critical regulatory roles. The bacterial small RNAs include two major classes. The largest family(with at least 20 members in Escherichia coli K12) acts by base pairing with target mRNAs to modify mRNA translation or stability; this class of RNAs also uses an RNA chaperone protein, Hfq. DsrA is the best-studied example of this family of RNAs. It has been shown to positively regulate translation of the transcription factor RpoS by opening an inhibitory hairpin in the mRNA, and to negatively regulate translation of hns by pairing just beyond the translation initiation codon. The class of RNAs that modify activity of proteins is exemplified by CsrB and CsrC of E. coli, two RNAs that bind to and inhibit CsrA, a protein translational regulator. Homologs of CsrA and related regulatory RNAs have been implicated in the regulation of gluconeogenesis, biofilm formation,and virulence factor expression in plant and human pathogens.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
94
|
Abstract
RNA has long been a favoured medium for in vitro evolution and engineering. Functional RNAs produced in vitro can bind small molecules (aptamers), possess catalytic activity (ribozymes) or do both (aptazymes). A plethora of recent work has shown similar strategies used naturally for gene regulation in bacteria. Interest in these natural systems has inspired an effort to engineer and evolve this activity in vivo. A recent paper by Isaacs et al. describes the engineering and in vivo activity of a small RNA that removes translation inhibition by binding the 5' untranslated region of its target mRNA and making the ribosome-binding site accessible.
Collapse
Affiliation(s)
- Eric A Davidson
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
95
|
Kawano M, Reynolds AA, Miranda-Rios J, Storz G. Detection of 5'- and 3'-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res 2005; 33:1040-50. [PMID: 15718303 PMCID: PMC549416 DOI: 10.1093/nar/gki256] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence is accumulating that small, noncoding RNAs are important regulatory molecules. Computational and experimental searches have led to the identification of approximately 60 small RNA genes in Escherichia coli. However, most of these studies focused on the intergenic regions and assumed that small RNAs were >50 nt. Thus, the previous screens missed small RNAs encoded on the antisense strand of protein-coding genes and small RNAs of <50 nt. To identify additional small RNAs, we carried out a cloning-based screen focused on RNAs of 30-65 nt. In this screen, we identified RNA species corresponding to fragments of rRNAs, tRNAs and known small RNAs. Several of the small RNAs also corresponded to 5'- and 3'-untranslated regions (UTRs) and internal fragments of mRNAs. Four of the 3'-UTR-derived RNAs were highly abundant and two showed expression patterns that differed from the corresponding mRNAs, suggesting independent functions for the 3'-UTR-derived small RNAs. We also detected three previously unidentified RNAs encoded in intergenic regions and RNAs from the long direct repeat and hok/sok elements. In addition, we identified a few small RNAs that are expressed opposite protein-coding genes and could base pair with 5' or 3' ends of the mRNAs with perfect complementarity.
Collapse
MESH Headings
- 3' Untranslated Regions/chemistry
- 5' Untranslated Regions/chemistry
- Cloning, Molecular
- DNA, Intergenic
- Escherichia coli/genetics
- RNA, Antisense/analysis
- RNA, Antisense/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Ribosomal/chemistry
- RNA, Transfer/chemistry
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Mitsuoki Kawano
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human DevelopmentBuilding 18T, Room 101, Bethesda, MD 20892-5430, USA
| | - April A. Reynolds
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human DevelopmentBuilding 18T, Room 101, Bethesda, MD 20892-5430, USA
| | - Juan Miranda-Rios
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human DevelopmentBuilding 18T, Room 101, Bethesda, MD 20892-5430, USA
- Molecular Microbiology Department, Biotechnology Institute, National University of MexicoAv. Universidad #2001, Col. Chamilpa, CP. 62210, Cuernavaca, Morelos, Mexico
| | - Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human DevelopmentBuilding 18T, Room 101, Bethesda, MD 20892-5430, USA
- To whom correspondence should be addressed. Tel: +1 301 402 0968; Fax: +1 301 402 0078;
| |
Collapse
|
96
|
Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 2005; 24:824-35. [PMID: 15678100 PMCID: PMC549626 DOI: 10.1038/sj.emboj.7600572] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 01/10/2005] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus aureus RNAIII is one of the largest regulatory RNAs, which controls several virulence genes encoding exoproteins and cell-wall-associated proteins. One of the RNAIII effects is the repression of spa gene (coding for the surface protein A) expression. Here, we show that spa repression occurs not only at the transcriptional level but also by RNAIII-mediated inhibition of translation and degradation of the stable spa mRNA by the double-strand-specific endoribonuclease III (RNase III). The 3' end domain of RNAIII, partially complementary to the 5' part of spa mRNA, efficiently anneals to spa mRNA through an initial loop-loop interaction. Although this annealing is sufficient to inhibit in vitro the formation of the translation initiation complex, the coordinated action of RNase III is essential in vivo to degrade the mRNA and irreversibly arrest translation. Our results further suggest that RNase III is recruited for targeting the paired RNAs. These findings add further complexity to the expression of the S. aureus virulon.
Collapse
MESH Headings
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Gene Expression Regulation, Bacterial
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA Stability
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonuclease III/metabolism
- Ribosomes/metabolism
- Staphylococcal Protein A/genetics
- Staphylococcal Protein A/metabolism
- Staphylococcus aureus/enzymology
- Staphylococcus aureus/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Eric Huntzinger
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex, France
| | - Sandrine Boisset
- Faculté de Médecine Laennec, National Reference Center for Staphylococci, INSERM E0230, Lyon Cedex, France
| | - Cosmin Saveanu
- URA2171-CNRS-Génétique des Interactions Macromoléculaires, Paris Cedex, France
| | - Yvonne Benito
- Faculté de Médecine Laennec, National Reference Center for Staphylococci, INSERM E0230, Lyon Cedex, France
| | - Thomas Geissmann
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex, France
| | | | - Gérard Lina
- Faculté de Médecine Laennec, National Reference Center for Staphylococci, INSERM E0230, Lyon Cedex, France
| | - Jerome Etienne
- Faculté de Médecine Laennec, National Reference Center for Staphylococci, INSERM E0230, Lyon Cedex, France
| | - Bernard Ehresmann
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex, France
| | - Chantal Ehresmann
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex, France
| | - Alain Jacquier
- URA2171-CNRS-Génétique des Interactions Macromoléculaires, Paris Cedex, France
| | - François Vandenesch
- Faculté de Médecine Laennec, National Reference Center for Staphylococci, INSERM E0230, Lyon Cedex, France
- Faculté de Médecine Laennec, National Reference Center for Staphylococci, INSERM E0230, IFR62, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France. Tel.: +33 478 77 86 57; Fax: +33 478 77 86 58; E-mail:
| | - Pascale Romby
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex, France
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France. Tel.: +33 388 41 70 51; Fax: +33 388 60 22 18; E-mail:
| |
Collapse
|
97
|
Paul D, Pandey G, Jain RK. Suicidal genetically engineered microorganisms for bioremediation: Need and perspectives. Bioessays 2005; 27:563-73. [PMID: 15832375 DOI: 10.1002/bies.20220] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past few decades, increased awareness of environmental pollution has led to the exploitation of microbial metabolic potential in the construction of several genetically engineered microorganisms (GEMs) for bioremediation purposes. At the same time, environmental concerns and regulatory constraints have limited the in situ application of GEMs, the ultimate objective behind their development. In order to address the anticipated risks due to the uncontrolled survival/dispersal of GEMs or recombinant plasmids into the environment, some attempts have been made to construct systems that would contain the released organisms. This article discusses the designing of safer genetically engineered organisms for environmental release with specific emphasis on the use of bacterial plasmid addiction systems to limit their survival thus minimizing the anticipated risk. We also conceptualize a novel strategy to construct "Suicidal Genetically Engineered Microorganisms (SGEMs)" by exploring/combining the knowledge of different plasmid addiction systems (such as antisense RNA-regulated plasmid addiction, proteic plasmid addiction etc.) and inducible degradative operons of bacteria.
Collapse
Affiliation(s)
- Debarati Paul
- Institute of Microbial Technology, Chandigarh, India
| | | | | |
Collapse
|
98
|
DeNap JCB, Hergenrother PJ. Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 2005; 3:959-66. [PMID: 15750634 DOI: 10.1039/b500182j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.
Collapse
Affiliation(s)
- Johna C B DeNap
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
99
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
100
|
Abstract
Small noncoding RNAs have been found in all organisms, primarily as regulators of translation and message stability. The most exhaustive searches have taken place in E. coli, resulting in identification of more than 50 small RNAs, or 1%-2% of the number of protein-coding genes. One large class of these small RNAs uses the RNA chaperone Hfq; members of this class act by pairing to target messenger RNAs. Among the members of this class are DsrA and RprA, which positively regulate rpoS translation, OxyS, which negatively regulates rpoS translation and fhlA translation, RyhB, which reapportions iron use in the cell by downregulating translation of many genes that encode Fe-containing proteins, and Spot 42, which changes the polarity of translation in the gal operon. The promoters of these small RNAs are tightly regulated, frequently as part of well-understood regulons. Lessons learned from the study of small RNAs in E. coli can be applied to finding these important regulators in other organisms.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|