51
|
Herrera SC, Bach EA. JNK signaling triggers spermatogonial dedifferentiation during chronic stress to maintain the germline stem cell pool in the Drosophila testis. eLife 2018; 7:e36095. [PMID: 29985130 PMCID: PMC6070334 DOI: 10.7554/elife.36095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Exhaustion of stem cells is a hallmark of aging. In the Drosophila testis, dedifferentiated germline stem cells (GSCs) derived from spermatogonia increase during lifespan, leading to the model that dedifferentiation counteracts the decline of GSCs in aged males. To test this, we blocked dedifferentiation by mis-expressing the differentiation factor bag of marbles (bam) in spermatogonia while lineage-labeling these cells. Strikingly, blocking bam-lineage dedifferentiation under normal conditions in virgin males has no impact on the GSC pool. However, in mated males or challenging conditions, inhibiting bam-lineage dedifferentiation markedly reduces the number of GSCs and their ability to proliferate and differentiate. We find that bam-lineage derived GSCs have significantly higher proliferation rates than sibling GSCs in the same testis. We determined that Jun N-terminal kinase (JNK) activity is autonomously required for bam-lineage dedifferentiation. Overall, we show that dedifferentiation provides a mechanism to maintain the germline and ensure fertility under chronically stressful conditions.
Collapse
Affiliation(s)
| | - Erika A Bach
- New York University School of MedicineNew YorkUnited States
- Helen L. and Martin S. Kimmel Center for Stem Cell BiologyNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
52
|
Urbisz AZ, Chajec Ł, Ito M, Ito K. The ovary organization in the marine limnodriloidin Thalassodrilides cf. briani (Annelida: Clitellata: Naididae) resembles the ovary of freshwater tubificins. ZOOLOGY 2018; 128:16-26. [DOI: 10.1016/j.zool.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 01/05/2023]
|
53
|
Morita S, Ota R, Kobayashi S. Downregulation of NHP2 promotes proper cyst formation in Drosophila ovary. Dev Growth Differ 2018; 60:248-259. [PMID: 29845608 DOI: 10.1111/dgd.12539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 01/21/2023]
Abstract
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries. Thus, it is reasonable to conclude that Sxl represses NHP2 activity at the post-transcriptional level to promote proper cyst formation. Because NHP2 knockdown did not affect global protein synthesis in the germarium, we speculate that changes in NHP2-dependent pseudouridylation, which is involved in translation of specific mRNAs, must be intact in order to promote proper cyst formation.
Collapse
Affiliation(s)
- Shumpei Morita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoma Ota
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kobayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
54
|
Pleiotropic Functions of the Chromodomain-Containing Protein Hat-trick During Oogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1067-1077. [PMID: 29367451 PMCID: PMC5844294 DOI: 10.1534/g3.117.300526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromatin-remodeling proteins have a profound role in the transcriptional regulation of gene expression during development. Here, we have shown that the chromodomain-containing protein Hat-trick is predominantly expressed within the oocyte nucleus, specifically within the heterochromatinized karyosome, and that a mild expression is observed in follicle cells. Colocalization of Hat-trick with Heterochromatin Protein 1 and synaptonemal complex component C(3)G along with the diffused karyosome after hat-trick downregulation shows the role of this protein in heterochromatin clustering and karyosome maintenance. Germline mosaic analysis reveals that hat-trick is required for maintaining the dorso-ventral patterning of eggs by regulating the expression of Gurken. The increased incidence of double-strand breaks (DSBs), delayed DSB repair, defects in karyosome formation, altered Vasa mobility, and, consequently, misexpression and altered localization of Gurken in hat-trick mutant egg chambers clearly suggest a putative involvement of Hat-trick in the early stages of oogenesis. In addition, based on phenotypic observations in hat-trick mutant egg chambers, we speculate a substantial role of hat-trick in cystoblast proliferation, oocyte determination, nurse cell endoreplication, germ cell positioning, cyst encapsulation, and nurse cell migration. Our results demonstrate that hat-trick has profound pleiotropic functions during oogenesis in Drosophila melanogaster.
Collapse
|
55
|
Małota K, Student S, Świątek P. Low mitochondrial activity within developing earthworm male germ-line cysts revealed by JC-1. Mitochondrion 2018; 44:111-121. [PMID: 29398303 DOI: 10.1016/j.mito.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
Abstract
The male germ-line cysts that occur in annelids appear to be a very convenient model for spermatogenesis studies. Germ-line cysts in the studied earthworm are composed of two compartments: (1) germ cells, where each cell is connected via one intercellular bridge to (2) an anuclear central cytoplasmic mass, the cytophore. In the present paper, confocal and transmission electron microscopy were used to follow the changes in the mitochondrial activity and ultrastructure within the cysts during spermatogenesis. JC-1 was used to visualize the populations of mitochondria with a high and low membrane potential. We used the spot detection Imaris software module to obtain the quantitative data. We counted and compared the 'mitochondrial spots' - the smallest detectable signals from mitochondria. It was found that in all of the stages of cyst development, the majority of mitochondria spots showed a green fluorescence, thus indicating a low mitochondrial membrane potential (MMP). Moreover, the number of active mitochondria spots that were visualized by red JC-1 fluorescence (high MMP) drastically decreased as spermatogenesis progressed. As much as 26% of the total number of mitochondrial spots in the spermatogonial cysts showed a high MMP - 19% in the spermatocytes, 24% in the isodiametric spermatids and 3% and 6%, respectively, in the cysts that were holding early and late elongate spermatids. The mitochondria were usually thread-like and had an electron-dense matrix and lamellar cristae. Then, during spermiogenesis, the mitochondria within both the spermatids and the cytophore had a tendency to form aggregates in which the mitochondria were cemented by an electron-dense material.
Collapse
Affiliation(s)
- Karol Małota
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
56
|
Świątek P, de Wit P, Jarosz N, Chajec Ł, Urbisz AZ. Micromorphology of ovaries and oogenesis in Grania postclitellochaeta (Clitellata: Enchytraeidae). ZOOLOGY 2018; 126:119-127. [DOI: 10.1016/j.zool.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
|
57
|
Bilinski SM, Halajian A, Tworzydlo W. Ovaries and oogenesis in an epizoic dermapteran, Hemimerus talpoides (Dermaptera, Hemimeridae): Structural and functional adaptations to viviparity and matrotrophy. ZOOLOGY 2017; 125:32-40. [PMID: 28869120 DOI: 10.1016/j.zool.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/27/2022]
Abstract
The Dermaptera are traditionally classified in three taxa: the free living Forficulina and two viviparous (matrotrophic) groups, the Hemimerina and Arixeniina. Recent molecular and histological analyses suggest that both matrotrophic groups should be nested among the most derived taxon of the Forficulina, the Eudermaptera. We present results of ultrastructural analyses of ovary/ovariole morphology and oogenesis in a representative of the Hemimerina, Hemimerus talpoides (Walker, 1871). Our results strongly reinforce the idea that the Hemimerina should be classified within the Eudermaptera. We show additionally that the ovaries of the studied species are characterized by two peculiar modifications, i.e. the presence of numerous tracheoles in contact with the basement lamina covering the ovarioles, and an unusual development of the ovariole stalks. We believe that both characters are related to viviparity and unconventional "intra-ovariolar" embryo development. Finally, our study also indicates that the oocytes of H. talpoides reveal characters apparently associated with a matrotrophic type of embryo nourishment. They are completely yolkless and devoid of the typical, multilayered egg envelopes; instead, they comprise unconventional organelles (para-crystalline stacks of endoplasmic reticulum cisternae and translucent vacuoles) that seem to function after initiation of embryonic development. Thus, the ovaries as well as the oocytes of H. talpoides are characterized by an exceptional mixture of features shared with derived dermapterans and adaptations to matrotrophy.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, Sovenga 0727, South Africa
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
58
|
Lu KL, Yamashita YM. Germ cell connectivity enhances cell death in response to DNA damage in the Drosophila testis. eLife 2017; 6:27960. [PMID: 28809158 PMCID: PMC5577909 DOI: 10.7554/elife.27960] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 12/25/2022] Open
Abstract
Two broadly known characteristics of germ cells in many organisms are their development as a ‘cyst’ of interconnected cells and their high sensitivity to DNA damage. Here we provide evidence that in the Drosophila testis, connectivity serves as a mechanism that confers to spermatogonia a high sensitivity to DNA damage. We show that all spermatogonia within a cyst die synchronously even when only a subset of them exhibit detectable DNA damage. Mutants of the fusome, an organelle that is known to facilitate intracyst communication, compromise synchronous spermatogonial death and reduces overall germ cell death. Our data indicate that a death-promoting signal is shared within the cyst, leading to death of the entire cyst. Taken together, we propose that intercellular connectivity supported by the fusome uniquely increases the sensitivity of the germline to DNA damage, thereby protecting the integrity of gamete genomes that are passed on to the next generation.
Collapse
Affiliation(s)
- Kevin L Lu
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
59
|
Bilinski SM, Jaglarz MK, Tworzydlo W. The Pole (Germ) Plasm in Insect Oocytes. Results Probl Cell Differ 2017; 63:103-126. [PMID: 28779315 DOI: 10.1007/978-3-319-60855-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Animal germline cells are specified either through zygotic induction or cytoplasmic inheritance. Zygotic induction takes place in mid- or late embryogenesis and requires cell-to-cell signaling leading to the acquisition of germline fate de novo. In contrast, cytoplasmic inheritance involves formation of a specific, asymmetrically localized oocyte region, termed the germ (pole) plasm. This region contains maternally provided germline determinants (mRNAs, proteins) that are capable of inducing germline fate in a subset of embryonic cells. Recent data indicate that among insects, the zygotic induction represents an ancestral condition, while the cytoplasmic inheritance evolved at the base of Holometabola or in the last common ancestor of Holometabola and its sister taxon, Paraneoptera.In this chapter, we first describe subsequent stages of morphogenesis of the pole plasm and polar granules in the model organism, Drosophila melanogaster. Then, we present an overview of morphology and cytoarchitecture of the pole plasm in various holometabolan and paraneopteran insect species. Finally, we focus on phylogenetic hypotheses explaining the known distribution of two different strategies of germline specification among insects.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
60
|
Hinnant TD, Alvarez AA, Ables ET. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Dev Biol 2017; 429:118-131. [PMID: 28711427 DOI: 10.1016/j.ydbio.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Arturo A Alvarez
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
61
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
62
|
Ovaries of the white worm ( Enchytraeus albidus , Annelida, Clitellata) are composed of 16-celled meroistic germ-line cysts. Dev Biol 2017; 426:28-42. [DOI: 10.1016/j.ydbio.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
|
63
|
Rosario R, Childs AJ, Anderson RA. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline. Stem Cell Res 2017; 21:193-201. [PMID: 28434825 PMCID: PMC5446320 DOI: 10.1016/j.scr.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool. RNA-binding proteins (RBPs) are key regulators of gene expression during oogenesis. RBPs LIN28, DAZL, BOLL and FMRP display stage-specific expression in fetal oocytes. LIN28 and DAZL may regulate self-renewal and progression into meiosis respectively. BOLL and FMRP may be involved in the later stages of prophase I and oocyte growth. RBPs may have critical roles in establishing the ovarian reserve during fetal life.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew J Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
64
|
Sun YC, Sun XF, Dyce PW, Shen W, Chen H. The role of germ cell loss during primordial follicle assembly: a review of current advances. Int J Biol Sci 2017; 13:449-457. [PMID: 28529453 PMCID: PMC5436565 DOI: 10.7150/ijbs.18836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
In most female mammals, early germline development begins with the appearance of primordial germ cells (PGCs), and develops to form mature oocytes following several vital processes. It remains well accepted that significant germ cell apoptosis and oocyte loss takes place around the time of birth. The transition of the ovarian environment from fetal to neonatal, coincides with the loss of germ cells and the timing of follicle formation. All told it is common to lose approximately two thirds of germ cells during this transition period. The current consensus is that germ cell loss can be attributed, at least in part, to programmed cell death (PCD). Recently, autophagy has been implicated as playing a part in germ cell loss during the time of parturition. In this review, we discuss the major opinions and mechanisms of mammalian ovarian PCD during the process of germ cell loss. We also pay close attention to the function of autophagy in germ cell loss, and speculate that autophagy may also serve as a critical and necessary process during the establishment of primordial follicle pool.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| |
Collapse
|
65
|
Tworzydlo W, Marek M, Kisiel E, Bilinski SM. Meiosis, Balbiani body and early asymmetry of Thermobia oocyte. PROTOPLASMA 2017; 254:649-655. [PMID: 27180195 PMCID: PMC5309285 DOI: 10.1007/s00709-016-0978-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The meiotic division guarantees maintenance of a genetic diversity; it consists of several stages, with prophase I being the longest and the most complex. We decided to follow the course of initial stages of meiotic division in ovaries of Thermobia domestica using modified techniques of squash preparations, semithin sections, and electron microscopy. We show that germaria contain numerous germline cells that can be classified into three categories: cystoblasts, meiotic oocytes, and growing previtellogenic oocytes. The cystoblasts are located most apically. The meiotic oocytes occupy the middle part of the germarium, and the previtellogenic oocytes can be found in the most basal part, near the vitellarium. Analyses of the semithin sections and squash preparations show that post leptotene meiotic chromosomes gather in one region of the nucleoplasm where they form the so-called bouquet. The telomeres of the bouquet chromosomes are attached to a relatively small area (segment) of the nuclear envelope. Next to this envelope segment, the nucleolar organizers are also located. We show that in concert to sequential changes inside the oocyte nuclei, rearrangement of organelles within the ooplasm (oocyte cytoplasm) takes place. This leads to the formation of the Balbiani body and consequent asymmetry of the ooplasm. These early nuclear and cytoplasmic asymmetries, however, are transient. During diplotene, the chromosome bouquet disappears, while the Balbiani body gradually disperses throughout the ooplasm. Finally, our observations indicate the presence of lampbrush chromosomes in the nuclei of previtellogenic oocytes. In the close vicinity to lampbrush chromosomes, characteristic spherical nuclear bodies are present.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | - Magdalena Marek
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kisiel
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
66
|
Histone H1 defect in escort cells triggers germline tumor in Drosophila ovary. Dev Biol 2017; 424:40-49. [PMID: 28232075 DOI: 10.1016/j.ydbio.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022]
Abstract
Drosophila ovary is recognized as one of the best model systems to study stem cell biology in vivo. We had previously identified an autonomous role of the histone H1 in germline stem cell (GSC) maintenance. Here, we found that histone H1 depletion in escort cells (ECs) resulted in an increase of spectrosome-containing cells (SCCs), an ovary tumor-like phenotype. Further analysis showed that the Dpp pathway is excessively activated in these SCC cells, while the expression of bam is attenuated. In the H1-depleted ECs, both transposon activity and DNA damage had increased dramatically, followed by EC apoptosis, which is consistent with the role of H1 in other somatic cells. Surprisingly, H1-depleted ECs acquired cap cell characteristics including dpp expression, and the resulting abnormal Dpp level inhibits SCC further differentiation. Most interestingly, double knockdown of H1 and dpp in ECs can reduce the number of SCCs to the normal level, indicating that the additional Dpp secreted by ECs contributes to the germline tumor. Taken together, our findings indicate that histone H1 is an important epigenetic factor in controlling EC characteristics and a key suppressor of germline tumor.
Collapse
|
67
|
Ikami K, Nuzhat N, Lei L. Organelle transport during mouse oocyte differentiation in germline cysts. Curr Opin Cell Biol 2017; 44:14-19. [PMID: 28038435 DOI: 10.1016/j.ceb.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
During mammalian oogenesis, germ cells undergo oocyte differentiation and oocyte development to form mature oocytes that contain essential components for supporting early embryogenesis. However, only a small fraction of germ cells become mature oocytes and the mechanism of this massive germ cell loss has been unclear. Our recent studies suggested that the formation of functional oocytes and germ cell loss are interlinked by a 'nursing' process in germline cysts during oocyte differentiation in mouse fetal ovaries. 80% of the fetal germ cells sacrifice themselves by donating their cytoplasmic contents to the remaining sister germ cells that differentiate into primary oocytes with augmented developmental potential. In this review, we will summarize the process of mouse oocyte differentiation with a particular focus on organelle transport in germline cysts.
Collapse
Affiliation(s)
- Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States
| | - Nafisa Nuzhat
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States.
| |
Collapse
|
68
|
Singh R, Hansen D. Regulation of the Balance Between Proliferation and Differentiation in Germ Line Stem Cells. Results Probl Cell Differ 2017; 59:31-66. [PMID: 28247045 DOI: 10.1007/978-3-319-44820-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In many animals, reproductive fitness is dependent upon the production of large numbers of gametes over an extended period of time. This level of gamete production is possible due to the continued presence of germ line stem cells. These cells can produce two types of daughter cells, self-renewing daughter cells that will maintain the stem cell population and differentiating daughter cells that will become gametes. A balance must be maintained between the proliferating self-renewing cells and those that differentiate for long-term gamete production to be maintained. Too little proliferation can result in depletion of the stem cell population, while too little differentiation can lead to a lack of gamete formation and possible tumor formation. In this chapter, we discuss our current understanding of how the balance between proliferation and differentiation is achieved in three well-studied germ line model systems: the Drosophila female, the mouse male, and the C. elegans hermaphrodite. While these three systems have significant differences in how this balance is regulated, including differences in stem cell population size, signaling pathways utilized, and the use of symmetric and/or asymmetric cell divisions, there are also similarities found between them. These similarities include the reliance on a predominant signaling pathway to promote proliferation, negative feedback loops to rapidly shutoff proliferation-promoting cues, close association of the germ line stem cells with a somatic niche, cytoplasmic connections between cells, projections emanating from the niche cell, and multiple mechanisms to limit the spatial influence of the niche. A comparison between different systems may help to identify elements that are essential for a proper balance between proliferation and differentiation to be achieved and elements that may be achieved through various mechanisms.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
69
|
Abstract
In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.
Collapse
|
70
|
Celik O, Aygun BK, Celik N, Aydin S, Haberal ET, Sahin L, Yavuz Y, Celik S. Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve. Horm Mol Biol Clin Investig 2016; 25:45-63. [PMID: 26677904 DOI: 10.1515/hmbci-2015-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/30/2015] [Indexed: 11/15/2022]
Abstract
Emigration is defined as a synchronized movement of germ cells between the yolk sack and genital ridges. The miraculous migration of germ cells resembles the remigration of salmon traveling from one habitat to other. This migration of germ cells is indispensible for the development of new generations. It is not, however, clear why germ cells differentiate during migration but not at the place of origin. In order to escape harmful somatic signals which might disturb the proper establishment of germ cells forced germ cell migration may be necessary. Another reason may be to benefit from the opportunities of new habitats. Therefore, emigration may have powerful effects on the population dynamics of the immigrant germ cells. While some of these cells do reach their target, some others die or reach to wrong targets. Only germ cell precursors with genetically, and structurally powerful can reach their target. Likewise, epigenetic reprogramming in both migratory and post-migratory germ cells is essential for the establishment of totipotency. During this journey some germ cells may sacrifice themselves for the goodness of the others. The number and quality of germ cells reaching the genital ridge may vary depending on the problems encountered during migration. If the aim in germ cell specification is to provide an optimal ovarian reserve for the continuity of the generation, then this cascade of events cannot be only accomplished at the same level for every one but also are manifested by several outcomes. This is significant evidence supporting the possibility of unique individual ovarian reserve.
Collapse
|
71
|
Wei Y, Reveal B, Cai W, Lilly MA. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:3859-3867. [PMID: 27672113 PMCID: PMC5144957 DOI: 10.1534/g3.116.035337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
TORC1 regulates metabolism and growth in response to a large array of upstream inputs. The evolutionarily conserved trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation. In humans, the GATOR1 complex has been implicated in a wide array of pathologies including cancer and hereditary forms of epilepsy. However, the precise role of GATOR1 in animal physiology remains largely undefined. Here, we characterize null mutants of the GATOR1 components nprl2, nprl3, and iml1 in Drosophila melanogaster We demonstrate that all three mutants have inappropriately high baseline levels of TORC1 activity and decreased adult viability. Consistent with increased TORC1 activity, GATOR1 mutants exhibit a cell autonomous increase in cell growth. Notably, escaper nprl2 and nprl3 mutant adults have a profound locomotion defect. In line with a nonautonomous role in the regulation of systemic metabolism, expressing the Nprl3 protein in the fat body, a nutrient storage organ, and hemocytes but not muscles and neurons rescues the motility of nprl3 mutants. Finally, we show that nprl2 and nprl3 mutants fail to activate autophagy in response to amino acid limitation and are extremely sensitive to both amino acid and complete starvation. Thus, in Drosophila, in addition to maintaining baseline levels of TORC1 activity, the GATOR1 complex has retained a critical role in the response to nutrient stress. In summary, the TORC1 inhibitor GATOR1 contributes to multiple aspects of the development and physiology of Drosophila.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Brad Reveal
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Weili Cai
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mary A Lilly
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
72
|
Kot M, Büning J, Jankowska W, Drohojowska J, Szklarzewicz T. Development of ovary structures in the last larval and adult stages of psyllids (Insecta, Hemiptera, Sternorrhyncha: Psylloidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:389-398. [PMID: 27140505 DOI: 10.1016/j.asd.2016.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
The development and organization of the ovaries of ten species from four Psylloidea families (Psyllidae, Triozidae, Aphalaridae and Liviidae) have been investigated. The ovaries of the last larval stage (i.e. fifth instar) of all examined species are filled with numerous clusters of cystocytes which undergo synchronous incomplete mitotic division. Cystocytes of the given cluster are arranged into a rosette with polyfusome in the centre. These clusters are associated with single somatic cells. At the end of the fifth instar, the clusters begin to separate from each other, forming spherical ovarioles which are surrounded by a single layer of somatic cells. In the ovarioles of very young females all cystocytes enter the prophase of meiosis and differentiate shortly thereafter into oocytes and trophocytes (nurse cells). Meanwhile, somatic cells differentiate into cells of the inner epithelial sheath surrounding the trophocytes and into the prefollicular cells that encompass the oocytes. During this final differentiation, the trophocytes lose their cell membranes and become syncytial. Oocytes remain cellular and most of them (termed arrested oocytes) do not grow. In the ovarioles of older females, one oocyte encompassed by its follicle cells starts growing, still connected to the syncytial tropharium by a nutritive cord. After the short phase of previtellogenesis alone, the oocyte enters its vitellogenic the growth phase in the vitellarium. At that time, the second oocyte may enter the vitellarium and start its previtellogenic growth. In the light of the obtained results, the phylogeny of psyllids, as well as phylogenetic relationships between taxa of Hemiptera: Sternorrhyncha are discussed.
Collapse
Affiliation(s)
- Marta Kot
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jürgen Büning
- Friedrich-Alexander University of Erlangen-Nuremberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jowita Drohojowska
- Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
73
|
Varadarajan R, Ayeni J, Jin Z, Homola E, Campbell SD. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes. Mol Biol Cell 2016; 27:2051-63. [PMID: 27170181 PMCID: PMC4927279 DOI: 10.1091/mbc.e16-02-0104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
Drosophila Myt1 is essential for male fertility. Loss of Myt1 activity causes defective fusomes and premature centriole disengagement during premeiotic G2 phase due to lack of Myt1 inhibition of Cyclin A/Cdk1. These functions are distinct from known roles for Myt1 inhibition of Cyclin B/Cdk1 used to regulate G2/MI timing. Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing.
Collapse
Affiliation(s)
- Ramya Varadarajan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Joseph Ayeni
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zhigang Jin
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Ellen Homola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
74
|
Barr J, Yakovlev KV, Shidlovskii Y, Schedl P. Establishing and maintaining cell polarity with mRNA localization in Drosophila. Bioessays 2016; 38:244-53. [PMID: 26773560 DOI: 10.1002/bies.201500088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Konstantin V Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia.,A.V. Zhirmunsky Institute of Marine Biology, FEB RAS Laboratory of Cytotechnology, Vladivostok, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| |
Collapse
|
75
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
76
|
Abstract
The adult mammalian ovary is devoid of definitive germline stem cells. As such, female reproductive senescence largely results from the depletion of a finite ovarian follicle pool that is produced during embryonic development. Remarkably, the crucial nature and regulation of follicle assembly and survival during embryogenesis is just coming into focus. This developmental pathway involves the coordination of meiotic progression and the breakdown of germ cell cysts into individual oocytes housed within primordial follicles. Recent evidence also indicates that genetic and environmental factors can specifically perturb primordial follicle assembly. Here, we review the cellular and molecular mechanisms by which the mammalian ovarian reserve is established, highlighting the presence of a crucial checkpoint that allows survival of only the highest-quality oocytes.
Collapse
Affiliation(s)
- Kathryn J Grive
- Brown University, MCB Graduate Program, Providence, RI 02912, USA
| | | |
Collapse
|
77
|
Wang S, Gao Y, Song X, Ma X, Zhu X, Mao Y, Yang Z, Ni J, Li H, Malanowski KE, Anoja P, Park J, Haug J, Xie T. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche. eLife 2015; 4:e08174. [PMID: 26452202 PMCID: PMC4598714 DOI: 10.7554/elife.08174] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/12/2015] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI:http://dx.doi.org/10.7554/eLife.08174.001 An animal or plant has many different types of cells that have specific roles in the life of the organism. These cells are organized into tissues. In most tissues in adult animals, small groups of cells called stem cells are responsible for replacing the other cells that have been lost due to disease, injury, or as part of normal body maintenance. The ‘germ line’ stem cells of female fruit flies—which produce female sex cells (or eggs)—are an effective system for studying how stem cells are regulated. These cells live in an area of the ovary called a stem cell niche. Each time a stem cell divides, it produces one stem cell and one other daughter cell. This daughter cell then moves into another niche called the ‘differentiation’ niche and undergoes a series of divisions that produce the egg cells. The differentiation niche is formed by escort cells and is crucial for producing the egg cells, but it is not clear how the escort cells promote this process, or how the niche is maintained. Wang et al. have now studied the differentiation niche in more detail. The experiments show that a cell communication system called Wnt signaling maintains the differentiation niche by controlling the ability of the escort cells to grow and divide. If Wnt signaling is defective, the differentiation niche is lost, which disrupts the formation of egg cells. Further experiments show that two proteins called Wnt2 and Wnt4 in the differentiation niche—which activate Wnt signaling—act as signals to regulate the niche, mainly by controlling the expression of four particular genes. These four genes encode enzymes that remove ‘reactive oxygen species’ from cells. Wang et al.'s findings have revealed an important role for Wnt signaling in maintaining the differentiation niche. The next step is to figure out the details of how this works. DOI:http://dx.doi.org/10.7554/eLife.08174.002
Collapse
Affiliation(s)
- Su Wang
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, United States
| | - Yuan Gao
- Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing, China
| | - Xiaoqing Song
- Stowers Institute for Medical Research, Kansas City, United States
| | - Xing Ma
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, United States
| | - Xiujuan Zhu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Ying Mao
- Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing, China
| | - Zhihao Yang
- Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing, China
| | - Jianquan Ni
- Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing, China
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Perera Anoja
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jungeun Park
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, United States
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, United States
| |
Collapse
|
78
|
Luo L, Wang H, Fan C, Liu S, Cai Y. Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche. ACTA ACUST UNITED AC 2015; 209:595-608. [PMID: 26008746 PMCID: PMC4442805 DOI: 10.1083/jcb.201409142] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple Wnt ligands produced by cap cells regulate the expression of Tkv, which acts as a receptor sink to remove excess cap cell–expressed Dpp and to restrict niche-associated Dpp activity, in escort cells. Stem cell self-renewal versus differentiation is regulated by the niche, which provides localized molecules that favor self-renewal. In the Drosophila melanogaster female germline stem cell (GSC) niche, Decapentaplegic (Dpp), a fly transforming growth factor β molecule and well-established long-range morphogen, acts over one cell diameter to maintain the GSCs. Here, we show that Thickveins (Tkv; a type I receptor of Dpp) is highly expressed in stromal cells next to Dpp-producing cells and functions to remove excess Dpp outside the niche, thereby spatially restricting its activity. Interestingly, Tkv expression in these stromal cells is regulated by multiple Wnt ligands that are produced by the niche. Our data demonstrate a self-restraining mechanism by which the Drosophila ovarian GSC niche acts to define its own boundary.
Collapse
Affiliation(s)
- Lichao Luo
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604 Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Huashan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Chao Fan
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Sen Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Yu Cai
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604 Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| |
Collapse
|
79
|
|
80
|
Poprawa I, Hyra M, Rost-Roszkowska MM. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae). PROTOPLASMA 2015; 252:1019-29. [PMID: 25433446 DOI: 10.1007/s00709-014-0737-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/22/2014] [Indexed: 05/19/2023]
Abstract
Germ cell cluster organization and the process of oogenesis in Dactylobiotus parthenogeneticus have been described using transmission electron microscopy and light microscopy. The reproductive system of D. parthenogeneticus is composed of a single, sac-like, meroistic ovary and a single oviduct that opens into the cloaca. Two zones can be distinguished in the ovary: a small germarium that is filled with oogonia and a vitellarium that is filled with germ cell clusters. The germ cell cluster, which has the form of a modified rosette, consists of eight cells that are interconnected by stable cytoplasmic bridges. The cell that has the highest number of stable cytoplasmic bridges (four bridges) finally develops into the oocyte, while the remaining cells become trophocytes. Vitellogenesis of a mixed type occurs in D. parthenogeneticus. One part of the yolk material is produced inside the oocyte (autosynthesis), while the second part is synthesized in the trophocytes and transported to the oocyte through the cytoplasmic bridges. The eggs are covered with two envelopes: a thin vitelline envelope and a three-layered chorion. The surface of the chorion forms small conical processes, the shape of which is characteristic for the species that was examined. In our paper, we present the first report on the rosette type of germ cell clusters in Parachela.
Collapse
Affiliation(s)
- Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007, Katowice, Poland,
| | | | | |
Collapse
|
81
|
Urbisz AZ, Chajec Ł, Świątek P. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components. PLoS One 2015; 10:e0126173. [PMID: 26001069 PMCID: PMC4441386 DOI: 10.1371/journal.pone.0126173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is also made.
Collapse
Affiliation(s)
- Anna Z. Urbisz
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland
| | - Łukasz Chajec
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland
| |
Collapse
|
82
|
Bang C, Cheng J. Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions. PLoS One 2015; 10:e0123294. [PMID: 25849996 PMCID: PMC4388834 DOI: 10.1371/journal.pone.0123294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/16/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells), that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs), one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrically, where centrosome plays an important role. Utilizing time-lapse live cell imaging, customized tracking, and image processing programs, we found that most acentrosomal GSCs have the spectrosomes reposition from the basal end (wild type) to the apical end close to hub-GSC interface (acentrosomal GSCs). In addition, these apically positioned spectrosomes were mostly stationary while the basally positioned spectrosomes were mobile. For acentrosomal GSCs, their mitotic spindles were still highly oriented and divided asymmetrically with longer mitosis duration, resulting in asymmetric divisions. Moreover, when the spectrosome was knocked out, the centrosomes velocity decreased and centrosomes located closer to hub-GSC interface. We propose that in male GSCs, the spectrosome recruited to the apical end plays a complimentary role in ensuring proper spindle orientation when centrosome function is compromised.
Collapse
Affiliation(s)
- Chi Bang
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jun Cheng
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
83
|
Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae). Micron 2015; 70:26-33. [DOI: 10.1016/j.micron.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/19/2022]
|
84
|
TORC1 regulators Iml1/GATOR1 and GATOR2 control meiotic entry and oocyte development in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E5670-7. [PMID: 25512509 DOI: 10.1073/pnas.1419156112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.
Collapse
|
85
|
Dosch R. Next generation mothers: Maternal control of germline development in zebrafish. Crit Rev Biochem Mol Biol 2014; 50:54-68. [DOI: 10.3109/10409238.2014.985816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
86
|
The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche. Dev Cell 2014; 31:474-86. [PMID: 25453558 DOI: 10.1016/j.devcel.2014.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/29/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022]
Abstract
Local signals maintain adult stem cells in many tissues. Whether the sexual identity of adult stem cells must also be maintained was not known. In the adult Drosophila testis niche, local Jak-STAT signaling promotes somatic cyst stem cell (CySC) renewal through several effectors, including the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo). Here, we find that Chinmo also prevents feminization of CySCs. Chinmo promotes expression of the canonical male sex determination factor DoublesexM (Dsx(M)) within CySCs and their progeny, and ectopic expression of DsxM in the CySC lineage partially rescues the chinmo sex transformation phenotype, placing Chinmo upstream of Dsx(M). The Dsx homolog DMRT1 prevents the male-to-female conversion of differentiated somatic cells in the adult mammalian testis, but its regulation is not well understood. Our work indicates that sex maintenance occurs in adult somatic stem cells and that this highly conserved process is governed by effectors of niche signals. PAPERCLIP:
Collapse
|
87
|
Haglund K, Nezis IP, Stenmark H. Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 2014. [DOI: 10.4161/cib.13550] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
88
|
Meijide FJ, Rey Vázquez G, Grier HJ, Lo Nostro FL, Guerrero GA. Development of the germinal epithelium and early folliculogenesis during ovarian morphogenesis in the cichlid fishCichlasoma dimerus(Teleostei, Perciformes). ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando J. Meijide
- Lab. de Embriología Animal-Ecotoxicología Acuática; DBBE; FCEN; UBA; Buenos Aires Argentina
- IBBEA; CONICET-UBA; Int. Güiraldes 2160, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
| | - Graciela Rey Vázquez
- Lab. de Embriología Animal-Ecotoxicología Acuática; DBBE; FCEN; UBA; Buenos Aires Argentina
| | - Harry J. Grier
- Florida Fish and Wildlife Research Institute; 100 8th Ave. SE St. Petersburg FL 33701 USA
| | - Fabiana L. Lo Nostro
- Lab. de Embriología Animal-Ecotoxicología Acuática; DBBE; FCEN; UBA; Buenos Aires Argentina
- IBBEA; CONICET-UBA; Int. Güiraldes 2160, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
| | - Graciela A. Guerrero
- Lab. de Embriología Animal-Ecotoxicología Acuática; DBBE; FCEN; UBA; Buenos Aires Argentina
| |
Collapse
|
89
|
Jaglarz MK, Kubrakiewicz J, Bilinski SM. The ovary structure and oogenesis in the basal crustaceans and hexapods. Possible phylogenetic significance. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:349-360. [PMID: 24858464 DOI: 10.1016/j.asd.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Janusz Kubrakiewicz
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
90
|
Jędrzejowska I, Szymusiak K, Mazurkiewicz-Kania M, Garbiec A. Differentiation of somatic cells in the ovariuteri of the apoikogenic scorpion Euscorpius italicus (Chelicerata, Scorpiones, Euscorpiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:361-370. [PMID: 24322052 DOI: 10.1016/j.asd.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 06/03/2023]
Abstract
In apoikogenic scorpions, growing oocytes protrude from the gonad (ovariuterus) and develop in follicles exposed to the mesosomal (i.e. hemocoelic) cavity. During subsequent stages of oogenesis (previtellogenesis and vitellogenesis), the follicles are connected to the gonad surface by prominent somatic stalks. The aim of our study was to analyze the origin, structure and functioning of somatic cells accompanying protruding oocytes. We show that these cells differentiate into two morphologically distinct subpopulations: the follicular cells and stalk cells. The follicular cells gather on the hemocoelic (i.e. facing the hemocoel) surface of the oocyte, where they constitute a cuboidal epithelium. The arrangement of the follicular cells on the oocyte surface is not uniform; moreover, the actin cytoskeleton of these cells undergoes significant modifications during oocyte growth. During initial stages of the stalk formation the stalk cells elongate and form F-actin rich cytoplasmic processes by which the stalk cells are tightly connected to each other. Additionally, the stalk cells develop microvilli directed towards the growing oocyte. Our findings indicate that the follicular cells covering hemocoelic surfaces of the oocyte and the stalk cells represent two distinct subpopulations of epithelial cells, which differ in morphology, behavior and function.
Collapse
Affiliation(s)
- Izabela Jędrzejowska
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Kamil Szymusiak
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Marta Mazurkiewicz-Kania
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Arnold Garbiec
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| |
Collapse
|
91
|
Tworzydlo W, Kisiel E, Jankowska W, Bilinski SM. Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygotous” insect, Thermobia domestica. ZOOLOGY 2014; 117:200-6. [DOI: 10.1016/j.zool.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
|
92
|
Majewska MM, Suszczynska A, Kotwica-Rolinska J, Czerwik T, Paterczyk B, Polanska MA, Bernatowicz P, Bebas P. Yolk proteins in the male reproductive system of the fruit fly Drosophila melanogaster: spatial and temporal patterns of expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 47:23-35. [PMID: 24556521 DOI: 10.1016/j.ibmb.2014.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of yolk proteins in the male reproductive system of D. melanogaster under physiological conditions, and show that somatic cells of the testes are the source of these proteins.
Collapse
Affiliation(s)
- Magdalena M Majewska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | - Agnieszka Suszczynska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | - Joanna Kotwica-Rolinska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | - Tomasz Czerwik
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | - Marta A Polanska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | - Piotr Bernatowicz
- Department of Paleobiology and Evolution, Faculty of Biology, University of Warsaw, CNBC (Cent 3), 101 Zwirki i Wigury Str., 02-089 Warsaw, Poland.
| | - Piotr Bebas
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| |
Collapse
|
93
|
Hill JH, Chen Z, Xu H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat Genet 2014; 46:389-92. [PMID: 24614072 PMCID: PMC3976679 DOI: 10.1038/ng.2920] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/14/2014] [Indexed: 11/09/2022]
Abstract
Although mitochondrial DNA (mtDNA) is prone to mutation and few mtDNA repair mechanisms exist, crippling mitochondrial mutations are exceedingly rare. Recent studies have demonstrated strong purifying selection in the mouse female germline. However, the mechanisms underlying positive selection of healthy mitochondria remain to be elucidated. We visualized mtDNA replication during Drosophila melanogaster oogenesis, finding that mtDNA replication commenced before oocyte determination during the late germarium stage and was dependent on mitochondrial fitness. We isolated a temperature-sensitive lethal mtDNA allele, mt:CoI(T300I), which resulted in reduced mtDNA replication in the germarium at the restrictive temperature. Additionally, the frequency of the mt:CoI(T300I) allele in heteroplasmic flies was decreased, both during oogenesis and over multiple generations, at the restrictive temperature. Furthermore, we determined that selection against mt:CoI(T300I) overlaps with the timing of selective replication of mtDNA in the germarium. These findings establish a previously uncharacterized developmental mechanism for the selective amplification of wild-type mtDNA, which may be evolutionarily conserved to limit the transmission of deleterious mutations.
Collapse
Affiliation(s)
- Jahda H Hill
- 1] Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Zhe Chen
- 1] Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Hong Xu
- Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
94
|
Morphology of the ovarioles and the mode of oogenesis of Arixenia esau support the inclusion of Arixeniina to the Eudermaptera. ZOOL ANZ 2013. [DOI: 10.1016/j.jcz.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Castor is required for Hedgehog-dependent cell-fate specification and follicle stem cell maintenance in Drosophila oogenesis. Proc Natl Acad Sci U S A 2013; 110:E1734-42. [PMID: 23610413 DOI: 10.1073/pnas.1300725110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Asymmetric division of stem cells results in both self-renewal and differentiation of daughters. Understanding the molecules and mechanisms that govern differentiation of specific cell types from adult tissue stem cells is a major challenge in developmental biology and regenerative medicine. Drosophila follicle stem cells (FSCs) represent an excellent model system to study adult stem cell behavior; however, the earliest stages of follicle cell differentiation remain largely mysterious. Here we identify Castor (Cas) as a nuclear protein that is expressed in FSCs and early follicle cell precursors and then is restricted to differentiated polar and stalk cells once egg chambers form. Cas is required for FSC maintenance and polar and stalk cell fate specification. Eyes absent (Eya) is excluded from polar and stalk cells and represses their fate by inhibiting Cas expression. Hedgehog signaling is essential to repress Eya to allow Cas expression in polar and stalk cells. Finally, we show that the complementary patterns of Cas and Eya reveal the gradual differentiation of polar and stalk precursor cells at the earliest stages of their development. Our studies provide a marker for cell fates in this model and insight into the molecular and cellular mechanisms by which FSC progeny diverge into distinct fates.
Collapse
|
96
|
Lei L, Spradling AC. Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development 2013; 140:2075-81. [PMID: 23578925 DOI: 10.1242/dev.093864] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian germ cells divide mitotically and form nests of associated cells just prior to entering meiosis. At least some nests contain germline cysts that arise by synchronous, incomplete mitotic divisions, but others may form by aggregation. To systematically investigate early murine germ cell development, we lineage marked the progeny of individual, newly arrived primordial germ cells in the E10.5 gonad. All the marked germ cells initially develop into clones containing two, four or eight cells, indicating cyst formation. Surprisingly, growing cysts in both sexes partially fragment into smaller cysts prior to completion and associate with cysts from unrelated progenitors. At the time divisions cease, female clones comprise five cysts on average that eventually give rise to about six primordial follicles. Male cyst cells break apart and probably become spermatogonial stem cells. Thus, cysts are invariant units of mouse germ cell development and cyst fragmentation provides insight into the amplification of spermatogonial stem cells and the origin of primordial follicles.
Collapse
Affiliation(s)
- Lei Lei
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
97
|
Urbisz AZ, Świątek P. Ovary organization and oogenesis in two species of Lumbriculida (Annelida, Clitellata). ZOOLOGY 2013; 116:118-28. [DOI: 10.1016/j.zool.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/16/2012] [Accepted: 10/10/2012] [Indexed: 01/19/2023]
|
98
|
Miyauchi C, Kitazawa D, Ando I, Hayashi D, Inoue YH. Orbit/CLASP is required for germline cyst formation through its developmental control of fusomes and ring canals in Drosophila males. PLoS One 2013; 8:e58220. [PMID: 23520495 PMCID: PMC3592921 DOI: 10.1371/journal.pone.0058220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/01/2013] [Indexed: 12/29/2022] Open
Abstract
Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the duplicated centrosomes onto the fusome. Moreover, Orbit is involved in the proper orientation of spindles towards fusomes during synchronous mitosis of spermatogonial cysts.
Collapse
Affiliation(s)
- Chie Miyauchi
- Insect Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Daishi Kitazawa
- Insect Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Itaru Ando
- Insect Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Daisuke Hayashi
- Insect Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H. Inoue
- Insect Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
- * E-mail:
| |
Collapse
|
99
|
A mosaic genetic screen for genes involved in the early steps of Drosophila oogenesis. G3-GENES GENOMES GENETICS 2013; 3:409-25. [PMID: 23450845 PMCID: PMC3583450 DOI: 10.1534/g3.112.004747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
The first hours of Drosophila embryogenesis rely exclusively on maternal information stored within the egg during oogenesis. The formation of the egg chamber is thus a crucial step for the development of the future adult. It has emerged that many key developmental decisions are made during the very first stages of oogenesis. We performed a clonal genetic screen on the left arm of chromosome 2 for mutations affecting early oogenesis. During the first round of screening, we scored for defects in egg chambers morphology as an easy read-out of early abnormalities. In a second round of screening, we analyzed the localization of centrosomes and Orb protein within the oocyte, the position of the oocyte within the egg chamber, and the progression through meiosis. We have generated a collection of 71 EMS-induced mutants that affect oocyte determination, polarization, or localization. We also recovered mutants affecting the number of germline cyst divisions or the differentiation of follicle cells. Here, we describe the analysis of nine complementation groups and eight single alleles. We mapped several mutations and identified alleles of Bicaudal-D, lethal(2) giant larvae, kuzbanian, GDP-mannose 4,6-dehydratase, tho2, and eiF4A. We further report the molecular identification of two alleles of the Drosophila homolog of Che-1/AATF and demonstrate its antiapoptotic activity in vivo. This collection of mutants will be useful to investigate further the early steps of Drosophila oogenesis at a genetic level.
Collapse
|
100
|
Female germ cell renewal during the annual reproductive cycle in Ostariophysians fish. Theriogenology 2013; 79:709-24. [DOI: 10.1016/j.theriogenology.2012.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 11/22/2022]
|