51
|
Reis M, Fassani E, Júnior AG, Rodrigues P, Bertechini A, Barrett N, Persia M, Schmidt C. Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
52
|
Awasthi D, Wang L, Rhee MS, Wang Q, Chauliac D, Ingram LO, Shanmugam KT. Metabolic engineering of
Bacillus subtilis
for production of D‐lactic acid. Biotechnol Bioeng 2017; 115:453-463. [DOI: 10.1002/bit.26472] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Deepika Awasthi
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFlorida
| | - Liang Wang
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFlorida
| | - Mun S. Rhee
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFlorida
| | - Qingzhao Wang
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFlorida
| | - Diane Chauliac
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFlorida
| | - Lonnie O. Ingram
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFlorida
| | | |
Collapse
|
53
|
Hu J, Lei P, Mohsin A, Liu X, Huang M, Li L, Hu J, Hang H, Zhuang Y, Guo M. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb Cell Fact 2017; 16:150. [PMID: 28899391 PMCID: PMC5596917 DOI: 10.1186/s12934-017-0764-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Background Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. Results In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden–Meyerhof–Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD+ ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. Conclusions This study shows that integration of transcriptomics, 13C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin’s regulatory mechanisms in B. subtilis grown under different dissolved oxygen tension conditions. The two-component system, ResD–ResE, was considered as the signal receiver of DO tension and gene regulator that led to differences between biomass and riboflavin production after triggering the shifts in gene expression, metabolic flux distributions and metabolite pool sizes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0764-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junlang Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Pan Lei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Xiaoyun Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China.
| | - Liang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Jianhua Hu
- Shanghai Acebright Pharmaceuticals Group Co., Ltd, Shanghai, 201203, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
54
|
Draft Genome Sequences of Bacillus subtilis Strain DKU_NT_01 Isolated from Traditional Korean Food Containing Soybean (Chung-gook-jang). GENOME ANNOUNCEMENTS 2017; 5:5/31/e00769-17. [PMID: 28774991 PMCID: PMC5543653 DOI: 10.1128/genomea.00769-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we report the whole-genome sequence of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang). The de novo genome of Bacillus subtilis strain DKU_NT_01 has one contig and G+C content of 55.4%, is 4,954,264 bp in length, and contains 5,011 coding sequences (CDSs).
Collapse
|
55
|
Manandhar M, Cronan JE. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis. Mol Microbiol 2017; 104:595-607. [PMID: 28196402 PMCID: PMC5426962 DOI: 10.1111/mmi.13648] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
56
|
Understanding aerobic/anaerobic metabolism in Caldibacillus debilis through a comparison with model organisms. Syst Appl Microbiol 2017; 40:245-253. [PMID: 28527624 DOI: 10.1016/j.syapm.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
Abstract
Caldibacillus debilis GB1 is a facultative anaerobe isolated from a thermophilic aero-tolerant cellulolytic enrichment culture. There is a lack of representative proteomes of facultative anaerobic thermophilic Bacillaceae, exploring aerobic/anaerobic expression. The C. debilis GB1 genome was sequenced and annotated, and the proteome characterized under aerobic and anaerobic conditions while grown on cellobiose. The draft sequence of C. debilis GB1 contains a 3,340,752 bp chromosome and a 5,386 bp plasmid distributed over 49 contigs. Two-dimensional liquid chromatography mass spectrometry/mass spectrometry was used with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) to compare protein expression profiles, focusing on energy production and conversion pathways. Under aerobic conditions, proteins in glycolysis and pyruvate fermentation pathways were down-regulated. Simultaneously, proteins within the tricarboxylic acid cycle, pyruvate dehydrogenase, the electron transport chain, and oxygen scavenging pathways showed increased amounts. Under anaerobic conditions, protein levels in fermentation pathways were consistent with the generated end-products: formate, acetate, ethanol, lactate, and CO2. Under aerobic conditions CO2 and acetate production was consistent with incomplete respiration. Through a direct comparison with gene expression profiles from Escherichia coli, we show that global regulation of core metabolism pathways is similar in thermophilic and mesophilic facultative anaerobes of the Phylum Proteobacteria and Firmicutes.
Collapse
|
57
|
Menolascina F, Rusconi R, Fernandez VI, Smriga S, Aminzare Z, Sontag ED, Stocker R. Logarithmic sensing in Bacillus subtilis aerotaxis. NPJ Syst Biol Appl 2017; 3:16036. [PMID: 28725484 PMCID: PMC5516866 DOI: 10.1038/npjsba.2016.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Collapse
Affiliation(s)
- Filippo Menolascina
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Scotland, UK.,SynthSys-Centre for Synthetic and Systems Biology, The University of Edinburgh, Scotland, UK
| | - Roberto Rusconi
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| | - Vicente I Fernandez
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| | - Steven Smriga
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| | - Zahra Aminzare
- The Program in Applied and Computational Mathematics, Princeton, NJ, USA
| | - Eduardo D Sontag
- Department of Mathematics, Hill Center Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Roman Stocker
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| |
Collapse
|
58
|
Lim JY, Jang GM, Garcia CV, Lee SP. Fortification of Bioactive Compounds in Roasted Wheat Bran by Solid-State Fermentation Using Bacillus subtilis HA. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ji-Yeon Lim
- Department of Food Science and Technology, Keimyung University
| | - Geun-Min Jang
- Department of Food Science and Technology, Keimyung University
| | | | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University
| |
Collapse
|
59
|
Bohn J, Yüksel-Dadak A, Dröge S, König H. Isolation of lactic acid-forming bacteria from biogas plants. J Biotechnol 2016; 244:4-15. [PMID: 28011128 DOI: 10.1016/j.jbiotec.2016.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023]
Abstract
Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.
Collapse
Affiliation(s)
- Jelena Bohn
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany.
| | - Aytül Yüksel-Dadak
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany
| | - Stefan Dröge
- Test and Research Institute Pirmasens (PFI), Marie-Curie-Straße 19, 66953 Pirmasens, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany
| |
Collapse
|
60
|
Giatsis C, Sipkema D, Ramiro-Garcia J, Bacanu GM, Abernathy J, Verreth J, Smidt H, Verdegem M. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci Rep 2016; 6:33965. [PMID: 27670882 PMCID: PMC5037425 DOI: 10.1038/srep33965] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023] Open
Abstract
The exposure of fish to environmental free-living microbes and its effect on early colonization in the gut have been studied in recent years. However, little is known regarding how the host and environment interact to shape gut communities during early life. Here, we tested whether the early microbial exposure of tilapia larvae affects the gut microbiota at later life stages. The experimental period was divided into three stages: axenic, probiotic and active suspension. Axenic tilapia larvae were reared either under conventional conditions (active suspension systems) or exposed to a single strain probiotic (Bacillus subtilis) added to the water. Microbial characterization by Illumina HiSeq sequencing of 16S rRNA gene amplicons showed the presence of B. subtilis in the gut during the seven days of probiotic application. Although B. subtilis was no longer detected in the guts of fish exposed to the probiotic after day 7, gut microbiota of the exposed tilapia larvae remained significantly different from that of the control treatment. Compared with the control, fish gut microbiota under probiotic treatment was less affected by spatial differences resulting from tank replication, suggesting that the early probiotic contact contributed to the subsequent observation of low inter-individual variation.
Collapse
Affiliation(s)
- Christos Giatsis
- Aquaculture and Fisheries Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Javier Ramiro-Garcia
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of System and Synthetic Biology, Stippeneng 4, Wageningen 6708 WE, The Netherlands
- TI Food and Nutrition (TIFN) P.O. Box 557, 6700 AN, Wageningen 6703 HB, The Netherlands
| | - Gianina M. Bacanu
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jason Abernathy
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Road, Hagerman, Idaho 83332, USA
| | - Johan Verreth
- Aquaculture and Fisheries Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marc Verdegem
- Aquaculture and Fisheries Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
61
|
van Beilen JWA, Hellingwerf KJ. All Three Endogenous Quinone Species of Escherichia coli Are Involved in Controlling the Activity of the Aerobic/Anaerobic Response Regulator ArcA. Front Microbiol 2016; 7:1339. [PMID: 27656164 PMCID: PMC5013052 DOI: 10.3389/fmicb.2016.01339] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022] Open
Abstract
The enteron Escherichia coli is equipped with a branched electron transfer chain that mediates chemiosmotic electron transfer, that drives ATP synthesis. The components of this electron transfer chain couple the oxidation of available electron donors from cellular metabolism (e.g., NADH, succinate, lactate, formate, etc.) to the reduction of electron acceptors like oxygen, nitrate, fumarate, di-methyl-sulfoxide, etc. Three different quinones, i.e., ubiquinone, demethyl-menaquinone and menaquinone, couple the transfer of electrons between the dehydrogenases and reductases/oxidases that constitute this electron transfer chain, whereas, the two-component regulation system ArcB/A regulates gene expression, to allow the organism to adapt itself to the ambient conditions of available electron donors and acceptors. Here, we report that E. coli can grow and adjust well to transitions in the availability of oxygen, with any of the three quinones as its single quinone. In all three ‘single-quinone’ E. coli strains transitions in the activity of ArcB are observed, as evidenced by changes in the level of phosphorylation of the response regulator ArcA, upon depletion/readmission of oxygen. These results lead us to conclude that all quinol species of E. coli can reduce (i.e., activate) the sensor ArcB and all three quinones oxidize (i.e., de-activate) it. These results also confirm our earlier conclusion that demethyl-menaquinone can function in aerobic respiration.
Collapse
Affiliation(s)
- Johan W A van Beilen
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
62
|
Schofield BJ, Skarshewski A, Lachner N, Ouwerkerk D, Klieve AV, Dart P, Hugenholtz P. Near complete genome sequence of the animal feed probiotic, Bacillus amyloliquefaciens H57. Stand Genomic Sci 2016; 11:60. [PMID: 27602182 PMCID: PMC5012032 DOI: 10.1186/s40793-016-0189-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens H57 is a bacterium isolated from lucerne for its ability to prevent feed spoilage. Further interest developed when ruminants fed with H57-inoculated hay showed increased weight gain and nitrogen retention relative to controls, suggesting a probiotic effect. The near complete genome of H57 is ~3.96 Mb comprising 16 contigs. Within the genome there are 3,836 protein coding genes, an estimated sixteen rRNA genes and 69 tRNA genes. H57 has the potential to synthesise four different lipopeptides and four polyketide compounds, which are known antimicrobials. This antimicrobial capacity may facilitate the observed probiotic effect.
Collapse
Affiliation(s)
- Benjamin J Schofield
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD Australia
| | - Adam Skarshewski
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD Australia
| | - Diane Ouwerkerk
- Department of Agriculture and Fisheries, Dutton Park, QLD Australia ; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD Australia
| | - Athol V Klieve
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD Australia ; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD Australia
| | - Peter Dart
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD Australia
| |
Collapse
|
63
|
Edirisinghe JN, Weisenhorn P, Conrad N, Xia F, Overbeek R, Stevens RL, Henry CS. Modeling central metabolism and energy biosynthesis across microbial life. BMC Genomics 2016; 17:568. [PMID: 27502787 PMCID: PMC4977884 DOI: 10.1186/s12864-016-2887-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Background Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. Results To overcome this challenge, we developed methods and tools (http://coremodels.mcs.anl.gov) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. Conclusions We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2887-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janaka N Edirisinghe
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA.,Computer Science Department and Computation Institute, University of Chicago, 5640, South Ellis Avenue, Chicago, IL, 60637, USA
| | - Pamela Weisenhorn
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA
| | - Neal Conrad
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA
| | - Fangfang Xia
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA.,Computer Science Department and Computation Institute, University of Chicago, 5640, South Ellis Avenue, Chicago, IL, 60637, USA
| | - Ross Overbeek
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA
| | - Rick L Stevens
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA.,Computer Science Department and Computation Institute, University of Chicago, 5640, South Ellis Avenue, Chicago, IL, 60637, USA
| | - Christopher S Henry
- Mathematics and Computer Science Department, Argonne National Laboratory, S. Cass Avenue, Argonne, IL, 60439, USA. .,Computer Science Department and Computation Institute, University of Chicago, 5640, South Ellis Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
64
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
65
|
Antibacterial Activity of Extracellular Protease Isolated From an Algicolous Fungus Xylaria psidii KT30 Against Gram-Positive Bacteria. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
66
|
Sawers RG, Falke D, Fischer M. Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2). Adv Microb Physiol 2016; 68:1-40. [PMID: 27134020 DOI: 10.1016/bs.ampbs.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptomyces species belong to the phylum Actinobacteria and can only grow with oxygen as a terminal electron acceptor. Like other members of this phylum, such as corynebacteria and mycobacteria, the aerobic respiratory chain lacks a soluble cytochrome c. It is therefore implicit that direct electron transfer between the cytochrome bc1 and the cytochrome aa3 oxidase complexes occurs. The complex developmental cycle of streptomycetes manifests itself in the production of spores, which germinate in the presence of oxygen into a substrate mycelium that greatly facilitates acquisition of nutrients necessary to support their saprophytic lifestyle in soils. Due to the highly variable oxygen levels in soils, streptomycetes have developed means of surviving long periods of hypoxia or even anaerobiosis but they fail to grow under these conditions. Little to nothing is understood about how they maintain viability under conditions of oxygen limitation. It is assumed that they can utilise a number of different electron acceptors to help them maintain a membrane potential, one of which is nitrate. The model streptomycete remains Streptomyces coelicolor A3(2), and it synthesises three nonredundant respiratory nitrate reductases (Nar). These Nar enzymes are synthesised during different phases of the developmental cycle and they are functional only under oxygen-limiting (<5% oxygen in air) conditions. Nevertheless, the regulation of their synthesis does not appear to be responsive to nitrate and in the case of Nar1, it appears to be developmentally regulated. This review highlights some of the novel aspects of our current, but somewhat limited, knowledge of respiration in these fascinating bacteria.
Collapse
Affiliation(s)
- R G Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - D Falke
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - M Fischer
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
67
|
He J, Du S, Tan X, Arefin A, Han CS. Improved lysis of single bacterial cells by a modified alkaline-thermal shock procedure. Biotechniques 2016; 60:129-35. [PMID: 26956090 DOI: 10.2144/000114389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/22/2015] [Indexed: 11/23/2022] Open
Abstract
Single-cell genomics (SCG) is a recently developed tool to study the genomes of unculturable bacterial species. SCG relies on multiple-strand displacement amplification (MDA), PCR, and next-generation sequencing (NGS); however, obtaining sufficient amounts of high-quality DNA from samples is a major challenge when performing this technique. Here we present an improved bacterial cell lysing procedure that combines incubation in an alkaline buffer with a thermal shock (freezing/heating) treatment to yield highly intact genomic DNA with high efficiency. This procedure is more efficient in lysing Bacillus subtilis and Synechocystis cells compared with two other frequently used lysis methods. Furthermore, 16S ribosomal RNA gene and overall genome recovery were found to be improved by this method using single cells from a Utah desert soil community or Escherichia coli single cells, respectively. The efficiency of genome recovery for E. coli single cells using our procedure is comparable with that of the REPLI-g Single Cell (sc) Kit, but our method is much more economical. By providing high-quality genome templates suitable for downstream applications, our procedure will be a promising improvement for SCG research.
Collapse
Affiliation(s)
- Jian He
- Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.,Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xiaohua Tan
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ayesha Arefin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM
| | - Cliff S Han
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM
| |
Collapse
|
68
|
Sun Y, De Vos P, Heylen K. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis. BMC Genomics 2016; 17:68. [PMID: 26786044 PMCID: PMC4719734 DOI: 10.1186/s12864-016-2382-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Background Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. Results B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Conclusions Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O production in DNRA bacteria and its relevance in situ. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2382-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Sun
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, (LM-UGent), University of Ghent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
| | - Paul De Vos
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, (LM-UGent), University of Ghent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium. .,BCCM/LMG Bacteria Collection, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
| | - Kim Heylen
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, (LM-UGent), University of Ghent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
| |
Collapse
|
69
|
Metabolic potential of Bacillus subtilis 168 for the direct conversion of xylans to fermentation products. Appl Microbiol Biotechnol 2015; 100:1501-1510. [PMID: 26559526 DOI: 10.1007/s00253-015-7124-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn) respectively comprise most of the hemicellulose fractions in dicots and monocots and, next to cellulose, are the major resources for the production of fuels and chemicals from lignocellulosics. With either MeGXn or MeGAXn as a substrate, Bacillus subtilis 168 accumulates acidic methylglucuronoxylotriose as a limit product following the uptake and metabolism of neutral xylooligosaccharides. Secreted GH11 endoxylanase (Xyn11A), GH30 endoxylanase (Xyn30C), and GH43 arabinoxylan arabinofuranohydrolase (Axh43) respectively encoded by the xynA, xynC, and xynD genes collectively contribute to the depolymerization of MeGAXn. Studies here demonstrate the complementary roles of these enzymes in the digestion of MeGAXn. Coordinate expression of the xynD and xynC genes defines an operon accounting for the Axh43-catalyzed release of arabinose followed by Xyn30C and Xyn11A-catalyzed depolymerization of MeGAXn. Both sources generate acetate and lactate as the principal fermentation products, with yields of 26 % acetate and 32 % lactate from MeGXn compared to 22 % acetate and 21 % lactate from MeGAXn. These studies of the GH43/GH30/GH11 system in B. subtilis 168 provide a basis for the further development of B. subtilis and related species as biocatalysts for direct conversion of hemicellulose derived from energy crops as well as agricultural and forest residues to chemical feedstocks.
Collapse
|
70
|
Decleyre H, Heylen K, Van Colen C, Willems A. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers. Front Microbiol 2015; 6:1124. [PMID: 26528270 PMCID: PMC4604302 DOI: 10.3389/fmicb.2015.01124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.
Collapse
Affiliation(s)
- Helen Decleyre
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Kim Heylen
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Carl Van Colen
- Marine Biology Research Group, Department of Biology, Ghent University Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
71
|
de Oliveira RR, Nicholson WL. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. Appl Microbiol Biotechnol 2015; 100:719-28. [PMID: 26454865 DOI: 10.1007/s00253-015-7030-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 10/22/2022]
Abstract
To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals.
Collapse
Affiliation(s)
- Rafael R de Oliveira
- Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Exploration Park at Kennedy Space Center, Merritt Island, FL, 32953, USA. .,IPR-PUCRS, Av. Ipiranga, 6681-Prédio 96 J, 90619-900, Porto Alegre, RS, Brazil.
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Exploration Park at Kennedy Space Center, Merritt Island, FL, 32953, USA.
| |
Collapse
|
72
|
Duong T, Balaban M, Perera C, Bi X. Microbial and Sensory Effects of Combined High Hydrostatic Pressure and Dense Phase Carbon Dioxide Process on Feijoa Puree. J Food Sci 2015; 80:E2478-85. [DOI: 10.1111/1750-3841.13083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Trang Duong
- School of Chemical Sciences; The Univ. of Auckland; Auckland New Zealand
| | - Murat Balaban
- Dept. of Chemical and Materials Engineering; The Univ. of Auckland; Auckland New Zealand
| | - Conrad Perera
- School of Chemical Sciences; The Univ. of Auckland; Auckland New Zealand
| | - Xiufang Bi
- College of Food Science and Nutritional Engineering; China Agricultural Univ; Beijing China
| |
Collapse
|
73
|
Bjork SM, Sjostrom SL, Andersson-Svahn H, Joensson HN. Metabolite profiling of microfluidic cell culture conditions for droplet based screening. BIOMICROFLUIDICS 2015; 9:044128. [PMID: 26392830 PMCID: PMC4560712 DOI: 10.1063/1.4929520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/12/2015] [Indexed: 05/04/2023]
Abstract
We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.
Collapse
|
74
|
Berthold-Pluta A, Pluta A, Garbowska M. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb Pathog 2015; 82:7-14. [PMID: 25794697 DOI: 10.1016/j.micpath.2015.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably.
Collapse
Affiliation(s)
- Anna Berthold-Pluta
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St, 02-787 Warsaw, Poland.
| | - Antoni Pluta
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St, 02-787 Warsaw, Poland
| | - Monika Garbowska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Inter-Department Problem Group for Dairy Industries, Rakowiecka St 36, 02-532 Warsaw, Poland
| |
Collapse
|
75
|
French CE, Horsfall L, Barnard DK, Duedu K, Fletcher E, Joshi N, Kane SD, Lakhundi SS, Liu CK, Oltmanns J, Radford D, Salinas A, White J, Elfick A. Beyond Genetic Engineering: Technical Capabilities in the Application Fields of Biocatalysis and Biosensors. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
76
|
Sharma A, Trivedi S. Evaluation ofin vitroprobiotic potential of phytase-producing bacterial strain as a new probiotic candidate. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana Sharma
- Bacteriology Laboratory; Department of P. G. Studies and Research in Biological Science; Rani Durgavati University; Pachpedi Jabalpur Madhya Pradesh 482001 India
| | - Shraddha Trivedi
- Bacteriology Laboratory; Department of P. G. Studies and Research in Biological Science; Rani Durgavati University; Pachpedi Jabalpur Madhya Pradesh 482001 India
| |
Collapse
|
77
|
Guarino C, Conte B, Spada V, Arena S, Sciarrillo R, Scaloni A. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11487-11496. [PMID: 25203592 DOI: 10.1021/es502070m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report on the growth, accumulation performances of, and leaf proteomic changes in Eucalyptus camaldulensis plants harvested for different periods of time in an industrial, heavy metals (HMs)-contaminated site in the presence or absence of soil microorganism (AMs/PGPRs) additives. Data were compared to those of control counterparts grown in a neighboring nonpolluted district. Plants harvested in the contaminated areas grew well and accumulated HMs in their leaves. The addition of AMs/PGPRs to the polluted soil determined plant growth and metal accumulation performances that surpassed those observed in the control. Comparative proteomics suggested molecular mechanisms underlying plant adaptation to the HMs challenge. Similarly to what was observed in laboratory-scale investigations on other metal hyperaccumulators but not on HMs-sensitive plants, eucalyptus grown in the contaminated areas showed an over-representation of enzymes involved in photosynthesis and the Calvin cycle. AMs/PGPRs addition to the soil increased the activation of these energetic pathways, suggesting the existence of signaling mechanisms that address the energy/reductive power requirement associated with augmented growth performances. HMs-exposed plants presented an over-representation of antioxidant enzymes, chaperones, and proteins involved in glutathione metabolism. While some antioxidant enzymes/chaperones returned to almost normal expression values in the presence of AMs/PGPRs or in plants exposed to HMs for prolonged periods, proteins guaranteeing elevated glutathione levels were constantly over-represented. These data suggest that glutathione (and related phytochelatins) could act as key molecules for ensuring the effective formation of HMs-chelating complexes that are possibly responsible for the observed plant tolerance to metal stresses. Overall, these results suggest potential genetic traits for further selection of phytoremediating plants based on dedicated cloning or breeding programs.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Sciences and Technologies, University of Sannio , 82100 Benevento, Italy
| | | | | | | | | | | |
Collapse
|
78
|
Contribution of Lactococcus lactis reducing properties to the downregulation of a major virulence regulator in Staphylococcus aureus, the agr system. Appl Environ Microbiol 2014; 80:7028-35. [PMID: 25192992 DOI: 10.1128/aem.02287-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major cause of food poisoning outbreaks associated with dairy products, because of the ingestion of preformed enterotoxins. The biocontrol of S. aureus using lactic acid bacteria (LAB) offers a promising opportunity to fight this pathogen while respecting the product ecosystem. We had previously established the ability of Lactococcus lactis, a lactic acid bacterium widely used in the dairy industry, to downregulate a major staphylococcal virulence regulator, the accessory gene regulator (agr) system, and, as a consequence, agr-controlled enterotoxins. In the present paper, we have shown that the oxygen-independent reducing properties of L. lactis contribute to agr downregulation. Neutralizing lactococcal reduction by adding potassium ferricyanide or maintaining the oxygen pressure constant at 50% released agr downregulation in the presence of L. lactis. This downregulation still occurred in an S. aureus srrA mutant, indicating that the staphylococcal respiratory response regulator SrrAB was not the only component in the signaling pathway. Therefore, this study clearly demonstrates the ability of L. lactis reducing properties to interfere with the expression of S. aureus virulence, thus highlighting this general property of LAB as a lever to control the virulence expression of this major pathogen in a food context and beyond.
Collapse
|
79
|
Li X, Gou X, Long D, Ji Z, Hu L, Xu D, Liu J, Chen S. Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02. Arch Microbiol 2014; 196:791-9. [PMID: 25085616 DOI: 10.1007/s00203-014-1014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
Abstract
Nitrate is an important nitrogen source for organism, but whether and how nitrate improves poly-γ-glutamic acid (γ-PGA) production of bacterial is not clear. The effect of nitrate on γ-PGA production of Bacillus licheniformis WX-02 was investigated. By addition of 50 mmol/L nitrate, the γ-PGA yield reached 12.3 ± 0.21 g/L, which increased 2.3-fold compared to the control. The mechanism of enhanced γ-PGA production was further investigated by analysis of nitrate reduction, physiology, pyruvate overflow metabolism and energy synthesis. Nitrate reduction was only carried out in the middle stage of γ-PGA fermentation. The result of consumption of nutrients showed that glucose uptake was not effected and the L-glutamic acid utilization efficiency increased from 48.3 to 77.0 %. The date of overflow metabolism obtained from high-performance liquid chromatography showed that the metabolism of pyruvate, formate, lactate and acetoin was both heightened by nitrate reduction, while the 2,3-butanediol biosynthesis was decreased. Meanwhile, the change of energy indicated that more ATP was synthesized during nitrate reduction. In summary, nitrate was a positive effector of γ-PGA biosynthesis in B. licheniformis WX-02 and nitrate reduction affected multi-metabolism pathways, including glycolysis, overflow metabolism and energy metabolism.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Identification of hypoxia-inducible target genes of Aspergillus fumigatus by transcriptome analysis reveals cellular respiration as an important contributor to hypoxic survival. EUKARYOTIC CELL 2014; 13:1241-53. [PMID: 25084861 DOI: 10.1128/ec.00084-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aspergillus fumigatus is an opportunistic, airborne pathogen that causes invasive aspergillosis in immunocompromised patients. During the infection process, A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase in transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism, and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein-coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts, we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD(+) regeneration (frdA and osmA), nitrogen metabolism (niaD and niiA), and respiration (rcfB). We show that the nitric oxygen (NO)-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA, and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors, such as nitrate and fumarate, do not have a significant impact on growth of A. fumigatus during hypoxia, but functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complexes III and IV play a crucial role in the hypoxic growth of A. fumigatus.
Collapse
|
81
|
Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 2014; 69:185-91. [DOI: 10.1016/j.ijbiomac.2014.05.047] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/04/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
|
82
|
Hu Y, Dun Y, Li S, Zhao S, Peng N, Liang Y. Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1131-40. [PMID: 25083107 PMCID: PMC4109869 DOI: 10.5713/ajas.2013.13737] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight 7.14±0.63 kg) weaned at 26±2 days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen) for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC), basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC) and basal diet supplemented with 2×109 (L), 4×109 (M) and 20×109 (H) CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05), and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05). The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05), and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05). These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets.
Collapse
Affiliation(s)
- Yuanliang Hu
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Yaohao Dun
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Shenao Li
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Shumiao Zhao
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Nan Peng
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Yunxiang Liang
- College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| |
Collapse
|
83
|
Hämmerle H, Amman F, Večerek B, Stülke J, Hofacker I, Bläsi U. Impact of Hfq on the Bacillus subtilis transcriptome. PLoS One 2014; 9:e98661. [PMID: 24932523 PMCID: PMC4059632 DOI: 10.1371/journal.pone.0098661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Abstract
The RNA chaperone Hfq acts as a central player in post-transcriptional gene regulation in several Gram-negative Bacteria, whereas comparatively little is known about its role in Gram-positive Bacteria. Here, we studied the function of Hfq in Bacillus subtilis, and show that it confers a survival advantage. A comparative transcriptome analysis revealed mRNAs with a differential abundance that are governed by the ResD-ResE system required for aerobic and anaerobic respiration. Expression of resD was found to be up-regulated in the hfq- strain. Furthermore, several genes of the GerE and ComK regulons were de-regulated in the hfq- background. Surprisingly, only six out of >100 known and predicted small RNAs (sRNAs) showed altered abundance in the absence of Hfq. Moreover, Hfq positively affected the transcript abundance of genes encoding type I toxin-antitoxin systems. Taken the moderate effect on sRNA levels and mRNAs together, it seems rather unlikely that Hfq plays a central role in RNA transactions in Bacillus subtilis.
Collapse
Affiliation(s)
- Hermann Hämmerle
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Branislav Večerek
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
84
|
De Smet L, De Koker D, Hawley AK, Foster LJ, De Vos P, de Graaf DC. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae). PLoS One 2014; 9:e89175. [PMID: 24586572 PMCID: PMC3930689 DOI: 10.1371/journal.pone.0089175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed.
Collapse
Affiliation(s)
- Lina De Smet
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Dieter De Koker
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Alyse K. Hawley
- University of British Columbia, Department of Microbiology & Immunology, Vancouver, Canada
| | - Leonard J. Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Vancouver, Canada
| | - Paul De Vos
- Ghent University, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Dirk C. de Graaf
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
- * E-mail:
| |
Collapse
|
85
|
Runde S, Molière N, Heinz A, Maisonneuve E, Janczikowski A, Elsholz AKW, Gerth U, Hecker M, Turgay K. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis. Mol Microbiol 2014; 91:1036-52. [PMID: 24417481 DOI: 10.1111/mmi.12521] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
Abstract
Using Bacillus subtilis as a model organism, we investigated thermotolerance development by analysing cell survival and in vivo protein aggregate formation in severely heat-shocked cells primed by a mild heat shock. We observed an increased survival during severe heat stress, accompanied by a strong reduction of heat-induced cellular protein aggregates in cells lacking the ClpXP protease. We could demonstrate that the transcription factor Spx, a regulatory substrate of ClpXP, is critical for the prevention of protein aggregate formation because its regulon encodes redox chaperones, such as thioredoxin, required for protection against thiol-specific oxidative stress. Consequently B. subtilis cells grown in the absence of oxygen were more protected against severe heat shock and much less protein aggregates were detected compared to aerobically grown cells. The presented results indicate that in B. subtilis Spx and its regulon plays not only an important role for oxidative but also for heat stress response and thermotolerance development. In addition, our experiments suggest that the protection of misfolded proteins from thiol oxidation during heat shock can be critical for the prevention of cellular protein aggregation in vivo.
Collapse
Affiliation(s)
- Stephanie Runde
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, D-14195, Berlin, Germany; Institut für Mikrobiologie, Leibniz Universität Hannover, D-30167, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Gao T, Ho KP. l-Lactic acid production by Bacillus subtilis MUR1 in continuous culture. J Biotechnol 2013; 168:646-51. [DOI: 10.1016/j.jbiotec.2013.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022]
|
87
|
Freyre-González JA, Manjarrez-Casas AM, Merino E, Martinez-Nuñez M, Perez-Rueda E, Gutiérrez-Ríos RM. Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC SYSTEMS BIOLOGY 2013; 7:127. [PMID: 24237659 PMCID: PMC4225672 DOI: 10.1186/1752-0509-7-127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022]
Abstract
Background The regulation of gene expression at the transcriptional level is a fundamental process in prokaryotes. Among the different kind of mechanisms modulating gene transcription, the one based on DNA binding transcription factors, is the most extensively studied and the results, for a great number of model organisms, have been compiled making it possible the in silico construction of their corresponding transcriptional regulatory networks and the analysis of the biological relationships of the components of these intricate networks, that allows to elucidate the significant aspects of their organization and evolution. Results We present a thorough review of each regulatory element that constitutes the transcriptional regulatory network of Bacillus subtilis. For facilitating the discussion, we organized the network in topological modules. Our study highlight the importance of σ factors, some of them acting as master regulators which characterize modules by inter- or intra-connecting them and play a key role in the cascades that define relevant cellular processes in this organism. We discussed that some particular functions were distributed in more than one module and that some modules contained more than one related function. We confirm that the presence of paralogous proteins confers advantages to B. subtilis to adapt and select strategies to successfully face the extreme and changing environmental conditions in which it lives. Conclusions The intricate organization is the product of a non-random network evolution that primarily follows a hierarchical organization based on the presence of transcription and σ factor, which is reflected in the connections that exist within and between modules.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Departamentos de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca, Morelos 62250, México.
| | | | | | | | | | | |
Collapse
|
88
|
Mackin KE, Carter GP, Howarth P, Rood JI, Lyras D. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. PLoS One 2013; 8:e79666. [PMID: 24236153 PMCID: PMC3827441 DOI: 10.1371/journal.pone.0079666] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility.
Collapse
Affiliation(s)
- Kate E. Mackin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Glen P. Carter
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Pauline Howarth
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Julian I. Rood
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
89
|
Zhou A, He Z, Qin Y, Lu Z, Deng Y, Tu Q, Hemme CL, Van Nostrand JD, Wu L, Hazen TC, Arkin AP, Zhou J. StressChip as a high-throughput tool for assessing microbial community responses to environmental stresses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9841-9849. [PMID: 23889170 DOI: 10.1021/es4018656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microbial community responses to environmental stresses are critical for microbial growth, survival, and adaptation. To fill major gaps in our ability to discern the influence of environmental changes on microbial communities from engineered and natural environments, a functional gene-based microarray, termed StressChip, has been developed. First, 46 functional genes involved in microbial responses to environmental stresses such as changes to temperature, osmolarity, oxidative status, nutrient limitation, or general stress response were selected and curated. A total of 22,855 probes were designed, covering 79,628 coding sequences from 985 bacterial, 76 archaeal, and 59 eukaryotic species/strains. Probe specificity was computationally verified. Second, the usefulness of functional genes as indicators of stress response was examined by surveying their distribution in metagenome data sets. The abundance of individual stress response genes is consistent with expected distributions based on respective habitats. Third, the StressChip was used to analyze marine microbial communities from the Deepwater Horizon oil spill. That functional stress response genes were detected in higher abundance (p < 0.05) in oil plume compared to nonplume samples indicated shifts in community composition and structure, consistent with previous results. In summary, StressChip provides a new tool for accessing microbial community functional structure and responses to environmental changes.
Collapse
Affiliation(s)
- Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: A megacomplex organization? Arch Biochem Biophys 2013; 537:153-60. [DOI: 10.1016/j.abb.2013.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
|
91
|
Winter T, Bernhardt J, Winter J, Mäder U, Schlüter R, Weltmann KD, Hecker M, Kusch H. Common versus noble Bacillus subtilis
differentially responds to air and argon gas plasma. Proteomics 2013; 13:2608-21. [DOI: 10.1002/pmic.201200343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 04/19/2013] [Accepted: 06/03/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa Winter
- Institute for Microbiology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Jörg Bernhardt
- Institute for Microbiology; Ernst-Moritz-Arndt-University; Greifswald Germany
- DECODON GmbH; Biotechnikum Greifswald; Greifswald Germany
| | - Jörn Winter
- Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.); Greifswald Germany
- Center for Innovation Competence plasmatis; Greifswald Germany
| | - Ulrike Mäder
- Institute for Microbiology; Ernst-Moritz-Arndt-University; Greifswald Germany
- Department for Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Rabea Schlüter
- Institute for Microbiology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.); Greifswald Germany
| | - Michael Hecker
- Institute for Microbiology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Harald Kusch
- Institute for Microbiology and Genetics; Georg-August-University Göttingen; Göttingen Germany
| |
Collapse
|
92
|
Ramanaidu K, Cutler GC. Different toxic and hormetic responses of Bombus impatiens to Beauveria bassiana, Bacillus subtilis and spirotetramat. PEST MANAGEMENT SCIENCE 2013; 69:949-954. [PMID: 23281229 DOI: 10.1002/ps.3456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/17/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Pollinator exposure to pesticides is a concern in agricultural systems that depend on pollinators for crop production. However, not all pesticides elicit toxic effects, and response to a pesticide will vary depending on dose and exposure route. The effects of biopesticide formulations of Bacillus subtilis and Beauveria bassiana and of the tetramic acid insecticide spirotetramat on the common eastern bumblebee, Bombus impatiens, were evaluated. Microcolonies of bees were exposed to field-rate or lower concentrations, and data were collected over 60 days. RESULTS When ingested, field rates of spirotetramat caused high mortality after 10 days, and B. subtilis significantly reduced drone production, number of days to oviposition and number of days to drone emergence. Converse to effects observed following ingestion, topical applications of B. subtilis at concentrations less than the recommended field rate resulted in a hormetic response, with significantly increased drone production. Topical application of spirotetramat and oral or topical application of B. bassiana had no effects on bees. CONCLUSIONS Spirotetramat and B. subtilis can induce adverse effects on B. impatiens, but hormetic effects following B. subtilis treatment can also occur, depending on exposure route. Additional experiments are required to determine whether similar toxic or hormetic effects occur under more realistic field conditions.
Collapse
Affiliation(s)
- Krilen Ramanaidu
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | | |
Collapse
|
93
|
Yuan J, Chen Y, Zhou G, Chen H, Gao H. Investigation of roles of divalent cations in Shewanella oneidensis pellicle formation reveals unique impacts of insoluble iron. Biochim Biophys Acta Gen Subj 2013; 1830:5248-57. [PMID: 23911985 DOI: 10.1016/j.bbagen.2013.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacteria adopt a variety of lifestyles in their natural habitats and can alternate among different lifestyles in response to environmental changes. At high cell densities, bacteria can form extracellular matrix encased cell population on submerged tangible surfaces (biofilms), or at the air-liquid interface (pellicles). Compared to biofilm, pellicle lifestyle allows for better oxygen access, but is metabolically more costly to maintain. Further understanding of pellicle formation and environmental cues that influence cellular choices between these lifestyles will definitely improve our appreciation of bacterial interaction with their environments. METHODS Shewanella oneidensis cells were cultured in 24-well plates with supplementation of varied divalent cations, and pellicles formed under such conditions were evaluated. Mutants defective in respiration of divalent cations were used to further characterize and confirm unique impacts of iron. RESULTS AND CONCLUSIONS Small amount of Fe(2+) was essential for pellicle formation, but presence of over-abundant iron (0.3mM Fe(2+) or Fe(3+)) led to pellicle disassociation without impairing growth. Such impacts were found due to S. oneidensis-mediated formation of insoluble alternative electron acceptors (i.e., Fe3O4) under physiologically relevant conditions. Furthermore, we demonstrated that cells preferred a lifestyle of forming biofilm and respiring on such insoluble electron acceptors under tested conditions, even to living in pellicles. GENERAL SIGNIFICANCE Our finding suggests that bacterial lifestyle choice involves balanced evaluation of multiple aspects of environmental conditions, and yet-to-be-characterized signaling mechanism is very likely underlying such processes.
Collapse
Affiliation(s)
- Jie Yuan
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
94
|
Price RE, Lesniewski R, Nitzsche KS, Meyerdierks A, Saltikov C, Pichler T, Amend JP. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front Microbiol 2013; 4:158. [PMID: 23847597 PMCID: PMC3705188 DOI: 10.3389/fmicb.2013.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Phase separation is a ubiquitous process in seafloor hydrothermal vents, creating a large range of salinities. Toxic elements (e.g., arsenic) partition into the vapor phase, and thus can be enriched in both high and low salinity fluids. However, investigations of microbial diversity at sites associated with phase separation are rare. We evaluated prokaryotic diversity in arsenic-rich shallow-sea vents off Milos Island (Greece) by comparative analysis of 16S rRNA clone sequences from two vent sites with similar pH and temperature but marked differences in salinity. Clone sequences were also obtained for aioA-like functional genes (AFGs). Bacteria in the surface sediments (0–1.5 cm) at the high salinity site consisted of mainly Epsilonproteobacteria (Arcobacter sp.), which transitioned to almost exclusively Firmicutes (Bacillus sp.) at ~10 cm depth. However, the low salinity site consisted of Bacteroidetes (Flavobacteria) in the surface and Epsilonproteobacteria (Arcobacter sp.) at ~10 cm depth. Archaea in the high salinity surface sediments were dominated by the orders Archaeoglobales and Thermococcales, transitioning to Thermoproteales and Desulfurococcales (Staphylothermus sp.) in the deeper sediments. In contrast, the low salinity site was dominated by Thermoplasmatales in the surface and Thermoproteales at depth. Similarities in gas and redox chemistry suggest that salinity and/or arsenic concentrations may select for microbial communities that can tolerate these parameters. Many of the archaeal 16S rRNA sequences contained inserts, possibly introns, including members of the Euryarchaeota. Clones containing AFGs affiliated with either Alpha- or Betaproteobacteria, although most were only distantly related to published representatives. Most clones (89%) originated from the deeper layer of the low salinity, highest arsenic site. This is the only sample with overlap in 16S rRNA data, suggesting arsenotrophy as an important metabolism in similar environments.
Collapse
Affiliation(s)
- Roy E Price
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Kolodkin-Gal I, Elsholz AKW, Muth C, Girguis PR, Kolter R, Losick R. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev 2013; 27:887-99. [PMID: 23599347 DOI: 10.1101/gad.215244.113] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa3 and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD(+))/NADH ratio via binding of NAD(+) to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
96
|
de Oliveira RR, Nicholson WL. The LysR-type transcriptional regulator (LTTR) AlsR indirectly regulates expression of the Bacillus subtilis bdhA gene encoding 2,3-butanediol dehydrogenase. Appl Microbiol Biotechnol 2013; 97:7307-16. [PMID: 23576037 DOI: 10.1007/s00253-013-4871-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022]
Abstract
Bacillus subtilis ferments pyruvate to 2,3-butanediol via α-acetolactate synthase, α-acetolactate decarboxylase, and butanediol dehydrogenase (BDH), encoded by the alsSD operon and the unlinked monocistronic bdhA gene, respectively. Upstream and divergent from alsSD is the alsR gene that encodes AlsR, a member of the LysR-type transcriptional regulator family. AlsR directly stimulates alsSD transcription by binding to characteristic sites preceding the alsS promoter, but its effect on bdhA expression was unknown. The effect of AlsR on bdhA expression was assessed in a wild-type strain and a congenic strain carrying an alsR::spc knockout mutation by measuring: (a) expression of a transcriptional bdhA-lacZ fusion; (b) bdhA mRNA steady-state levels by quantitative reverse transcriptase PCR; and (c) expression of BDH enzymatic activity. Activation of bdhA expression occurred in early stationary phase, and expression was lowered, but not abolished, in the alsR::spc mutant. Mapping the transcriptional start site of bdhA by primer extension revealed a 268-nucleotide 5'-untranslated region preceding the bdhA initiation methionine codon. Transcription initiation was not reduced in the alsR::spc mutant, and by electrophoretic mobility shift assay, purified AlsR protein did not bind to the bdhA promoter region, suggesting that bdhA expression is indirectly under AlsR transcriptional control.
Collapse
Affiliation(s)
- Rafael R de Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
97
|
Belda E, Sekowska A, Le Fèvre F, Morgat A, Mornico D, Ouzounis C, Vallenet D, Médigue C, Danchin A. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (Reading) 2013; 159:757-770. [DOI: 10.1099/mic.0.064691-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Eugeni Belda
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - François Le Fèvre
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Anne Morgat
- Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Damien Mornico
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christos Ouzounis
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - David Vallenet
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claudine Médigue
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Danchin
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| |
Collapse
|
98
|
Abstract
The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
99
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
100
|
Hall JW, Ji Y. Sensing and Adapting to Anaerobic Conditions by Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2013; 84:1-25. [PMID: 23763757 DOI: 10.1016/b978-0-12-407673-0.00001-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly adaptive commensal organism, Staphylococcus aureus, possesses an array of genes that allow the bacterium to survive and grow in a wide variety of niches. Several of these niches are known to be or become anaerobic during the course of an infection; additionally, biofilms that develop, commonly on implanted medical devices, become anaerobic. The metabolic capability of S. aureus provides the organism with the essential nutrients needed to continue to grow, divide, and thwart the host immune system in the presence or absence of oxygen. In order to utilize the ATP-producing pathways and maintain cellular health S. aureus has evolved a series of regulatory systems that regulate these ATP-producing pathways. In this review, we discuss the protein signaling systems that sense, indirectly and directly, anaerobic conditions, their sensory mechanisms and signals, and outline the genes that are altered due to the absence of oxygen and the subsequent response by the bacterial cell. The switch from aerobic to anaerobic growth in S. aureus is complex and highly regulated, with some metabolic pathways regulated by multiple regulatory systems to ensure maximal utilization of each pathway and substrate.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minneapolis, Minnesota, USA
| | | |
Collapse
|