51
|
Winkel M, Pjevac P, Kleiner M, Littmann S, Meyerdierks A, Amann R, Mußmann M. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems. FEMS Microbiol Ecol 2014; 90:731-46. [DOI: 10.1111/1574-6941.12429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Matthias Winkel
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Petra Pjevac
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Manuel Kleiner
- Department of Symbiosis; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Sten Littmann
- Department of Biogeochemistry; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Rudolf Amann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Marc Mußmann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| |
Collapse
|
52
|
Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, Pelletier E, Le Paslier D, Spieck E, Richter A, Nielsen PH, Wagner M, Daims H. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 2014; 345:1052-4. [PMID: 25170152 DOI: 10.1126/science.1256985] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.
Collapse
Affiliation(s)
- Hanna Koch
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria
| | - Alexander Galushko
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, 9000 Aalborg, Denmark
| | - Arno Schintlmeister
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria. Large Instrument Facility for Advanced Isotope Research, University of Vienna, 1090 Vienna, Austria
| | - Christiane Gruber-Dorninger
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria
| | - Sebastian Lücker
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria
| | - Eric Pelletier
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de génomique, Genoscope, 91057 Evry, France. Centre National de la Recherche Scientifique, UMR8030, 91057 Evry, France. Université d'Evry Val d'Essonne, 91057 Evry, France
| | - Denis Le Paslier
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de génomique, Genoscope, 91057 Evry, France. Centre National de la Recherche Scientifique, UMR8030, 91057 Evry, France. Université d'Evry Val d'Essonne, 91057 Evry, France
| | - Eva Spieck
- Biozentrum Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria
| | - Per H Nielsen
- Center for Microbial Communities, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, 9000 Aalborg, Denmark
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
53
|
Nunoura T, Takaki Y, Kazama H, Kakuta J, Shimamura S, Makita H, Hirai M, Miyazaki M, Takai K. Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent. PLoS One 2014; 9:e104959. [PMID: 25133584 PMCID: PMC4136832 DOI: 10.1371/journal.pone.0104959] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 12/04/2022] Open
Abstract
Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
- * E-mail:
| | - Yoshihiro Takaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiromi Kazama
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Jungo Kakuta
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroko Makita
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Masayuki Miyazaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
54
|
Berney M, Greening C, Hards K, Collins D, Cook GM. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol 2014; 16:318-30. [PMID: 24536093 DOI: 10.1111/1462-2920.12320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_2262–2263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.
Collapse
|
55
|
Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 2014; 5:3900. [PMID: 24845058 PMCID: PMC4050266 DOI: 10.1038/ncomms4900] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/16/2014] [Indexed: 12/15/2022] Open
Abstract
Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. Microbes can dwell in highly alkaline environments in the absence of obvious food sources. Here, the authors describe physiological and genomic features of a group of bacteria that live on hydrogen, calcium carbonate and oxygen at a very high pH.
Collapse
|
56
|
Sandrini G, Matthijs HCP, Verspagen JMH, Muyzer G, Huisman J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. THE ISME JOURNAL 2014; 8:589-600. [PMID: 24132080 PMCID: PMC3930318 DOI: 10.1038/ismej.2013.179] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/09/2022]
Abstract
Rising CO2 levels may act as an important selective factor on the CO2-concentrating mechanism (CCM) of cyanobacteria. We investigated genetic diversity in the CCM of Microcystis aeruginosa, a species producing harmful cyanobacterial blooms in many lakes worldwide. All 20 investigated Microcystis strains contained complete genes for two CO2 uptake systems, the ATP-dependent bicarbonate uptake system BCT1 and several carbonic anhydrases (CAs). However, 12 strains lacked either the high-flux bicarbonate transporter BicA or the high-affinity bicarbonate transporter SbtA. Both genes, bicA and sbtA, were located on the same operon, and the expression of this operon is most likely regulated by an additional LysR-type transcriptional regulator (CcmR2). Strains with only a small bicA fragment clustered together in the phylogenetic tree of sbtAB, and the bicA fragments were similar in strains isolated from different continents. This indicates that a common ancestor may first have lost most of its bicA gene and subsequently spread over the world. Growth experiments showed that strains with sbtA performed better at low inorganic carbon (Ci) conditions, whereas strains with bicA performed better at high Ci conditions. This offers an alternative explanation of previous competition experiments, as our results reveal that the competition at low CO2 levels was won by a specialist with only sbtA, whereas a generalist with both bicA and sbtA won at high CO2 levels. Hence, genetic and phenotypic variation in Ci uptake systems provide Microcystis with the potential for microevolutionary adaptation to changing CO2 conditions, with a selective advantage for bicA-containing strains in a high-CO2 world.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans C P Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jolanda M H Verspagen
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
57
|
Wu X, Ge T, Yuan H, Li B, Zhu H, Zhou P, Sui F, O’Donnell AG, Wu J. Changes in bacterial CO2 fixation with depth in agricultural soils. Appl Microbiol Biotechnol 2013; 98:2309-19. [DOI: 10.1007/s00253-013-5179-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
58
|
Guadalupe-Medina V, Wisselink HW, Luttik MAH, de Hulster E, Daran JM, Pronk JT, van Maris AJA. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:125. [PMID: 23987569 PMCID: PMC3766054 DOI: 10.1186/1754-6834-6-125] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/27/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. RESULTS A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. CONCLUSIONS Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.
Collapse
Affiliation(s)
- Víctor Guadalupe-Medina
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| | - H Wouter Wisselink
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| | - Marijke AH Luttik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| | - Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| | - Antonius JA van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
| |
Collapse
|
59
|
Santoro AL, Bastviken D, Gudasz C, Tranvik L, Enrich-Prast A. Dark carbon fixation: an important process in lake sediments. PLoS One 2013; 8:e65813. [PMID: 23776549 PMCID: PMC3679121 DOI: 10.1371/journal.pone.0065813] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/02/2013] [Indexed: 11/30/2022] Open
Abstract
Close to redox boundaries, dark carbon fixation by chemoautotrophic bacteria may be a large contributor to overall carbon fixation. Still, little is known about the relative importance of this process in lake systems, in spite the potentially high chemoautotrophic potential of lake sediments. We compared rates of dark carbon fixation, bacterial production and oxygen consumption in sediments from four Swedish boreal and seven tropical Brazilian lakes. Rates were highly variable and dark carbon fixation amounted up to 80% of the total heterotrophic bacterial production. The results indicate that non-photosynthetic carbon fixation can represent a substantial contribution to bacterial biomass production, especially in sediments with low organic matter content.
Collapse
Affiliation(s)
- Ana Lúcia Santoro
- Department of Ecology, Institute of Biology, University Federal of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
60
|
Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow"). Appl Environ Microbiol 2013; 79:4272-81. [PMID: 23645202 DOI: 10.1128/aem.00467-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.
Collapse
|
61
|
Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration. Microbiol Res 2013; 168:455-60. [PMID: 23414699 DOI: 10.1016/j.micres.2013.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 11/23/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile that oxidizes ferrous iron or sulfur compounds to obtain energy in the presence of various ions. To investigate the potassium ion response of A. ferrooxidans, we conducted a proteomics analysis. We identified eight proteins that were differentially expressed in the presence of high potassium concentration, including four up-regulated and four down-regulated proteins. Transcription levels of the genes encoding differential expressed proteins were subsequently analyzed by Northern blot in the presence of high potassium concentration. Among the up-regulated proteins, GDP-mannose 4,6-dehydratase, ribose 5-phosphate isomerase A and ribose-phosphate pyrophosphokinase were known to be implicated in the synthesis of glycocalyx, suggesting that the formation of glycocalyx might be involved in the A. ferrooxidans response to high potassium concentration. Thickening of the glycocalyx layer was also observed in cells cultivated under high potassium concentration via transmission electronic microscopy (TEM) analysis. Among the down-regulated proteins, ATP synthase F1 delta subunit and ATP synthase F1 beta subunit were two important components of ATP synthase. ATP synthase (P-ATPase) is directly linked to the transport of potassium into the cell, thus Acidithiobacillus ferrooxidans might just reduce the quantity of ATP synthase to offset the high potassium level in the culture medium. Therefore, the results obtained here provide some new clues to improve our understanding of the response of A. ferrooxidans to high potassium concentration.
Collapse
|
62
|
Storelli N, Peduzzi S, Saad MM, Frigaard NU, Perret X, Tonolla M. CO2assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria. FEMS Microbiol Ecol 2013; 84:421-32. [DOI: 10.1111/1574-6941.12074] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Maged M. Saad
- Department of Botany and Plant Biology, Microbiology Unit; University of Geneva, Sciences III; Geneva; Switzerland
| | - Niels-Ulrik Frigaard
- Section for Marine Biology, Department of Biology; University of Copenhagen; Helsingør; Denmark
| | - Xavier Perret
- Department of Botany and Plant Biology, Microbiology Unit; University of Geneva, Sciences III; Geneva; Switzerland
| | | |
Collapse
|
63
|
Regulatory twist and synergistic role of metabolic coinducer- and response regulator-mediated CbbR-cbbI interactions in Rhodopseudomonas palustris CGA010. J Bacteriol 2013; 195:1381-8. [PMID: 23292778 DOI: 10.1128/jb.02060-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris assimilates CO2 by the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway. Most genes required for a functional CBB pathway are clustered into the cbbI and cbbII operons, with the cbbI operon subject to control by a LysR transcriptional activator, CbbR, encoded by cbbR, which is divergently transcribed from the cbbLS genes (encoding form I RubisCO) of the cbbI operon. Juxtaposed between the genes encoding CbbR and CbbLS are genes that encode a three-protein two-component system (CbbRRS system) that functions to modify the ability of CbbR to regulate cbbLS expression. Previous studies indicated that the response regulators, as well as various coinducers (effectors), specifically influence CbbR-promoter interactions. In the current study, it was shown via several experimental approaches that the response regulators and coinducers act synergistically on CbbR to influence cbbLS transcription. Synergistic effects on the formation of specific CbbR-DNA complexes were quantified using surface plasmon resonance (SPR) procedures. Gel mobility shift and DNA footprint analyses further indicated structural changes in the DNA arising from the presence of response regulators and coinducer molecules binding to CbbR. Based on previous studies, and especially emphasized by the current investigation, it is clear that protein complexes influence promoter activity and the cbbLS transcription machinery.
Collapse
|
64
|
Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination. PLoS One 2012; 7:e50507. [PMID: 23226297 PMCID: PMC3511582 DOI: 10.1371/journal.pone.0050507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.
Collapse
|
65
|
Nothing to waste. Nat Chem Biol 2012; 8:877-8. [DOI: 10.1038/nchembio.1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
66
|
DeLorenzo S, Bräuer SL, Edgmont CA, Herfort L, Tebo BM, Zuber P. Ubiquitous dissolved inorganic carbon assimilation by marine bacteria in the Pacific Northwest coastal ocean as determined by stable isotope probing. PLoS One 2012; 7:e46695. [PMID: 23056406 PMCID: PMC3463544 DOI: 10.1371/journal.pone.0046695] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022] Open
Abstract
In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM (13)C-NaHCO(3), doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.
Collapse
Affiliation(s)
- Suzanne DeLorenzo
- Center for Coastal Margin Observation & Prediction and Division of Environmental & Biomolecular Systems, Oregon Health & Science University, Beaverton, Oregon, United States of America.
| | | | | | | | | | | |
Collapse
|
67
|
Díaz Torres N, González G, Biswas S, Scott KM, McKenna R. Preliminary X-ray crystallographic analysis of α-carbonic anhydrase from Thiomicrospira crunogena XCL-2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1064-6. [PMID: 22949195 PMCID: PMC3433198 DOI: 10.1107/s1744309112031053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022]
Abstract
Thiomicrospira crunogena XCL-2 is a novel sulfur-oxidizing chemolithoautotroph that plays a significant role in the sustainability of deep-sea hydrothermal vent communities. This recently discovered gammaproteobacterium encodes and expresses four carbonic anhydrases (CAs) from three evolutionarily and structurally distinct CA families: an α-CA, two β-CAs and a γ-CA. In order to characterize and elucidate the physiological roles of these CAs, X-ray crystallographic structural studies have been initiated on the α-CA. The α-CA crystallized in space group C2. The crystals diffracted to a maximum resolution of 2.6 Å, with unit-cell parameters a = 127.1, b = 102.2, c = 105.0 Å, β = 127.3°, and a calculated Matthews coefficient of 2.04 Å(3) Da(-1) with four identical protein molecules in the crystallographic asymmetric unit. A preliminary solution was determined by molecular replacement with the PHENIX AutoMR wizard, which had an initial TFZ score of 17.9. Refinement of the structure is currently in progress.
Collapse
Affiliation(s)
- Natalia Díaz Torres
- Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| | - Guillermo González
- Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| | - Shyamasri Biswas
- Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| | - Kathleen M. Scott
- Department of Integrated Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| |
Collapse
|
68
|
Nakamura A, Fujihashi M, Aono R, Sato T, Nishiba Y, Yoshida S, Yano A, Atomi H, Imanaka T, Miki K. Dynamic, ligand-dependent conformational change triggers reaction of ribose-1,5-bisphosphate isomerase from Thermococcus kodakarensis KOD1. J Biol Chem 2012; 287:20784-96. [PMID: 22511789 DOI: 10.1074/jbc.m112.349423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribose-1,5-bisphosphate isomerase (R15Pi) is a novel enzyme recently identified as a member of an AMP metabolic pathway in archaea. The enzyme converts d-ribose 1,5-bisphosphate into ribulose 1,5-bisphosphate, providing the substrate for archaeal ribulose-1,5-bisphosphate carboxylase/oxygenases. We here report the crystal structures of R15Pi from Thermococcus kodakarensis KOD1 (Tk-R15Pi) with and without its substrate or product. Tk-R15Pi is a hexameric enzyme formed by the trimerization of dimer units. Biochemical analyses show that Tk-R15Pi only accepts the α-anomer of d-ribose 1,5-bisphosphate and that Cys(133) and Asp(202) residues are essential for ribulose 1,5-bisphosphate production. Comparison of the determined structures reveals that the unliganded and product-binding structures are in an open form, whereas the substrate-binding structure adopts a closed form, indicating domain movement upon substrate binding. The conformational change to the closed form optimizes active site configuration and also isolates the active site from the solvent, which may allow deprotonation of Cys(133) and protonation of Asp(202) to occur. The structural features of the substrate-binding form and biochemical evidence lead us to propose that the isomerase reaction proceeds via a cis-phosphoenolate intermediate.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kellermann C, Selesi D, Lee N, Hügler M, Esperschütz J, Hartmann A, Griebler C. Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiol Ecol 2012; 81:172-87. [DOI: 10.1111/j.1574-6941.2012.01359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023] Open
Affiliation(s)
- Claudia Kellermann
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Draženka Selesi
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Natuschka Lee
- Lehrstuhl für Mikrobiologie; Technische Universität München; Munich; Germany
| | - Michael Hügler
- DVGW - Technologiezentrum Wasser (TZW); Karlsruhe; Germany
| | - Jürgen Esperschütz
- Research Unit Environmental Genomics; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Christian Griebler
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| |
Collapse
|
70
|
Lu A, Li Y, Jin S, Wang X, Wu XL, Zeng C, Li Y, Ding H, Hao R, Lv M, Wang C, Tang Y, Dong H. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 2012; 3:768. [DOI: 10.1038/ncomms1768] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/01/2012] [Indexed: 11/09/2022] Open
|
71
|
Further unraveling the regulatory twist by elucidating metabolic coinducer-mediated CbbR-cbbI promoter interactions in Rhodopseudomonas palustris CGA010. J Bacteriol 2012; 194:1350-60. [PMID: 22247506 DOI: 10.1128/jb.06418-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cbb(I) region of Rhodopseudomonas palustris (Rp. palustris) contains the cbbLS genes encoding form I ribulose-1,5-bisphosphate (RuBP) carboxylase oxygenase (RubisCO) along with a divergently transcribed regulator gene, cbbR. Juxtaposed between cbbR and cbbLS are the cbbRRS genes, encoding an unusual three-protein two-component (CbbRRS) system that modulates the ability of CbbR to influence cbbLS expression. The nature of the metabolic signals that Rp. palustris CbbR perceives to regulate cbbLS transcription is not known. Thus, in this study, the CbbR binding region was first mapped within the cbbLS promoter by the use of gel mobility shift assays and DNase I footprinting. In addition, potential metabolic coinducers (metabolites) were tested for their ability to alter the cbbLS promoter binding properties of CbbR. Gel mobility shift assays and surface plasmon resonance analyses together indicated that biosynthetic intermediates such as RuBP, ATP, fructose 1,6-bisphosphate, and NADPH enhanced DNA binding by CbbR. These coinducers did not yield identical CbbR-dependent DNase I footprints, indicating that the coinducers caused significant changes in DNA structure. These in vitro studies suggest that cellular signals such as fluctuating metabolite concentrations are perceived by and transduced to the cbbLS promoter via the master regulator CbbR.
Collapse
|
72
|
Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. THE ISME JOURNAL 2012; 6:158-70. [PMID: 21716305 PMCID: PMC3246232 DOI: 10.1038/ismej.2011.75] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 11/08/2022]
Abstract
Highly acidic (pH 0-1) biofilms, known as 'snottites', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated 'G-plasma' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide-quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere.
Collapse
Affiliation(s)
- Daniel S Jones
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Heidi L Albrecht
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Katherine S Dawson
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Irene Schaperdoth
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Yundan Pi
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Jennifer L Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
73
|
Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H. Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site. Microbes Environ 2011; 27:19-29. [PMID: 22075623 PMCID: PMC4036035 DOI: 10.1264/jsme2.me11207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0–3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)−1 of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit.
Collapse
Affiliation(s)
- Reiko Fujimura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Fact 2011; 10:92. [PMID: 22046962 PMCID: PMC3247854 DOI: 10.1186/1475-2859-10-92] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 12/23/2022] Open
Abstract
Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery.
Collapse
|
75
|
Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A. CO2 utilizing microbes — A comprehensive review. Biotechnol Adv 2011; 29:949-60. [PMID: 21856405 DOI: 10.1016/j.biotechadv.2011.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Rashmi Saini
- Department of Botany, North Campus, University of Delhi, New Delhi-110007, India
| | | | | | | | | |
Collapse
|
76
|
Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, Chan CS, Comolli LR, Ferriera S, Johnson J, Heidelberg JF, Edwards KJ. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS One 2011; 6:e25386. [PMID: 21966516 PMCID: PMC3179512 DOI: 10.1371/journal.pone.0025386] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/02/2011] [Indexed: 12/21/2022] Open
Abstract
Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria.
Collapse
Affiliation(s)
- Esther Singer
- Geomicrobiology Group, Department of Earth Sciences, University of Southern California, Los Angeles, California, United States of America
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, United States of America
| | - Eric A. Webb
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Roman A. Barco
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - J. Gijs Kuenen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - William C. Nelson
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Clara S. Chan
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Luis R. Comolli
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Steve Ferriera
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Justin Johnson
- J. Craig Venter Institute, San Diego, California, United States of America
| | - John F. Heidelberg
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Katrina J. Edwards
- Geomicrobiology Group, Department of Earth Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:390-396. [PMID: 23761285 DOI: 10.1111/j.1758-2229.2010.00239.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Gram-positive bacterium Nocardioides sp. strain CF8 uses a membrane-associated monooxygenase (pBMO) to grow on butane. The nucleotide sequences of the genes encoding this novel monooxygenase were revealed through analysis of a de novo assembled draft genome sequence determined by high-throughput sequencing of the whole genome. The pBMO genes were in a similar arrangement to the genes for ammonia monooxygenase (AMO) from the ammonia-oxidizing bacteria and for particulate methane monooxygenase (pMMO) from the methane-oxidizing bacteria. The pBMO genes likely constitute an operon in the order bmoC, bmoA and bmoB. The nucleotide sequence was less than 50% similar to the genes for AMO and pMMO. The operon for pBMO was confirmed to be a single copy in the genome by Southern and computational analyses. In an incubation on butane the increase of transcriptional activity of the pBmoA gene was congruent with the increase of pBMO activity and suggested correspondence between gene expression and the utilization of butane. Phylogenetic comparison revealed distant but significant similarity of all three pBMO subunits to homologous members of the AMO/pMMO family and indicated that the pBMO represents a deeply branching third lineage of this group of particulate monooxygenases. No other bmoCAB-like genes were found to cluster with pBMO lineage in phylogenetic analysis by database searches including genomic and metagenomic sequence databases. pBMO is the first example of the AMO/pMMO-like monooxygenase from Gram-positive bacteria showing similarities to proteobacterial pMMO and AMO sequences.
Collapse
Affiliation(s)
- Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology Molecular and Cellular Biology Program Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA. Center for Marine Environmental Studies, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan. Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | | | |
Collapse
|
78
|
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 2011; 193:3293-303. [PMID: 21531802 DOI: 10.1128/jb.00265-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.
Collapse
|
79
|
The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 2011; 9:719-738. [PMID: 21673885 PMCID: PMC3111178 DOI: 10.3390/md9050719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 03/20/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023] Open
Abstract
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.
Collapse
|
80
|
Felício AP, de Oliveira E, Odena MA, Garcia O, Bertolini MC, Ferraz LFC, Ottoboni LMM, Novo MTM. Differential proteomic analysis of Acidithiobacillus ferrooxidans cells maintained in contact with bornite or chalcopyrite: Proteins involved with the early bacterial response. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
81
|
Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 2011; 77:1925-36. [PMID: 21216907 PMCID: PMC3067309 DOI: 10.1128/aem.02473-10] [Citation(s) in RCA: 457] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotrophic CO(2) fixation represents the most important biosynthetic process in biology. Besides the well-known Calvin-Benson cycle, five other totally different autotrophic mechanisms are known today. This minireview discusses the factors determining their distribution. As will be made clear, the observed diversity reflects the variety of the organisms and the ecological niches existing in nature.
Collapse
Affiliation(s)
- Ivan A Berg
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
82
|
Ohashi Y, Shi W, Takatani N, Aichi M, Maeda SI, Watanabe S, Yoshikawa H, Omata T. Regulation of nitrate assimilation in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1411-1424. [PMID: 21282331 DOI: 10.1093/jxb/erq427] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.
Collapse
Affiliation(s)
- Yoshitake Ohashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Imanaka T. Molecular bases of thermophily in hyperthermophiles. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:587-602. [PMID: 22075760 PMCID: PMC3309922 DOI: 10.2183/pjab.87.587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
I reflect on some of our studies on the hyperthermophilic archaeon, Thermococcus kodakarensis KOD1 and its enzymes. The strain can grow at temperatures up to 100 °C, and also represents one of the simplest forms of life. As expected, all enzymes, DNA, RNA, cytoplasmic membrane, and cytoplasmic solute displayed remarkable thermostability, and we have determined some of the basic principles that govern this feature. To our delight, many of the enzymes exhibited unique biochemical properties and novel structures not found in mesophilic proteins. Here, I will focus on some enzymes whose three-dimensional structures are characteristic of thermostable enzymes. I will also add some examples on the stabilization of DNA, RNA, cytoplasmic membrane, and cytoplasmic solute.
Collapse
Affiliation(s)
- Tadayuki Imanaka
- Department of Biotechnology, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
84
|
Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:261-89. [PMID: 21329206 DOI: 10.1146/annurev-marine-120709-142712] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.
Collapse
Affiliation(s)
- Michael Hügler
- Microbiology Department, Water Technology Center, 76139 Karlsruhe, Germany.
| | | |
Collapse
|
85
|
Nishitani Y, Yoshida S, Fujihashi M, Kitagawa K, Doi T, Atomi H, Imanaka T, Miki K. Structure-based catalytic optimization of a type III Rubisco from a hyperthermophile. J Biol Chem 2010; 285:39339-47. [PMID: 20926376 PMCID: PMC2998091 DOI: 10.1074/jbc.m110.147587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 09/21/2010] [Indexed: 11/06/2022] Open
Abstract
The Calvin-Benson-Bassham cycle is responsible for carbon dioxide fixation in all plants, algae, and cyanobacteria. The enzyme that catalyzes the carbon dioxide-fixing reaction is ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) belongs to the type III group, and shows high activity at high temperatures. We have previously found that replacement of the entire α-helix 6 of Tk-Rubisco with the corresponding region of the spinach enzyme (SP6 mutant) results in an improvement of catalytic performance at mesophilic temperatures, both in vivo and in vitro, whereas the former and latter half-replacements of the α-helix 6 (SP4 and SP5 mutants) do not yield such improvement. We report here the crystal structures of the wild-type Tk-Rubisco and the mutants SP4 and SP6, and discuss the relationships between their structures and enzymatic activities. A comparison among these structures shows the movement and the increase of temperature factors of α-helix 6 induced by four essential factors. We thus supposed that an increase in the flexibility of the α-helix 6 and loop 6 regions was important to increase the catalytic activity of Tk-Rubisco at ambient temperatures. Based on this structural information, we constructed a new mutant, SP5-V330T, which was designed to have significantly greater flexibility in the above region, and it proved to exhibit the highest activity among all mutants examined to date. The thermostability of the SP5-V330T mutant was lower than that of wild-type Tk-Rubisco, providing further support on the relationship between flexibility and activity at ambient temperatures.
Collapse
Affiliation(s)
- Yuichi Nishitani
- From the Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 and
| | - Shosuke Yoshida
- the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Fujihashi
- From the Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 and
| | - Kazuya Kitagawa
- From the Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 and
| | - Takashi Doi
- From the Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 and
| | - Haruyuki Atomi
- the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kunio Miki
- From the Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 and
| |
Collapse
|
86
|
Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiol 2010; 10:229. [PMID: 20799944 PMCID: PMC2942843 DOI: 10.1186/1471-2180-10-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2). Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4) in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB) cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39) and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA) were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs) confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19). Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II RubisCO could promote the ability of A. ferrooxidans to fix CO2 at different concentrations of CO2. Conclusions A. ferrooxidans has features of cbb gene organization for CO2-assimilating functions that are characteristic of obligate chemolithoautotrophs and distinguish this group from facultative autotrophs. The most conspicuous difference is a separate operon for the cbbP gene. It is hypothesized that this organization may provide greater flexibility in the regulation of expression of genes involved in inorganic carbon assimilation.
Collapse
Affiliation(s)
- Mario Esparza
- Center for Bioinformatics and Genome Biology, MIFAB, Fundación Ciencia para la Vida and Depto. de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
87
|
Tourova TP, Spiridonova EM. Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol Biol 2009. [DOI: 10.1134/s0026893309050033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Abstract
Dwindling petroleum feedstocks and increased CO(2)-concentrations in the atmosphere currently open the concept of using CO(2) as raw material for the synthesis of well-defined organic compounds. In parallel to recent advances in the chemical CO(2)-fixation, enzymatic (biocatalytic) carboxylation is currently being investigated at an increased pace. On the one hand, this critical review provides a concise overview on highly specific biosynthetic pathways for CO(2)-fixation and, on the other hand, a summary of biodegradation (detoxification) processes involving enzymes which possess relaxed substrate specificities, which allow their application for the regioselective carboxylation of organic substrates to furnish the corresponding carboxylic acids (145 references).
Collapse
Affiliation(s)
- Silvia M Glueck
- Research Centre Applied Biocatalysis, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
89
|
Lu S, Eiteman MA, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol 2009; 143:213-23. [PMID: 19631242 DOI: 10.1016/j.jbiotec.2009.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/14/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
Succinate production under different concentrations of carbon dioxide (CO(2)) was studied in Escherichia coli AFP111, which contains mutations in pyruvate formate lyase (pfl), lactate dehydrogenase (ldhA) and the phosphotransferase system glucosephosphotransferase enzyme II (ptsG). A series of two-phase fermentations were conducted in which an aerobic cell growth phase was followed by an anaerobic succinate production phase using several constant concentrations of CO(2). As the concentration of CO(2) in the gas phase increased from 0% to 50%, the succinate specific productivity increased from 1.9 mg/gh to 225 mg/gh, and the succinate yield increased from 0.04 g/g to 0.75 g/g. Above 50% CO(2), succinate production did not increase further. Intracellular fluxes were determined at three different CO(2) concentrations (3%, 10%, and 50%) using (13)C-label tracing coupled with LC-MS analysis. The fraction of carbon flux into the pentose phosphate pathway increased from 0.04 at 3% CO(2) to 0.17 at 50% CO(2). Also, the fractional flux through anaplerotic carboxylation at the phosphoenolpyruvate (PEP) node increased slightly from 0.53 at 3% CO(2) to 0.63 at 50% CO(2). The increased flux into the pentose phosphate pathway is attributed to an increased demand for reduced cofactors with elevated CO(2). A four-process explicit model to describe the CO(2) transfer and utilization was proposed. The model predicted that at CO(2) concentrations below about 30-40% the system becomes limited by gas phase CO(2), while at higher CO(2) concentrations the system is limited by PEP carboxylase enzyme kinetics.
Collapse
Affiliation(s)
- Shiying Lu
- Center for Molecular BioEngineering, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
90
|
Videmsek U, Hagn A, Suhadolc M, Radl V, Knicker H, Schloter M, Vodnik D. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. MICROBIAL ECOLOGY 2009; 58:1-9. [PMID: 18777188 DOI: 10.1007/s00248-008-9442-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 08/10/2008] [Indexed: 05/26/2023]
Abstract
Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.
Collapse
Affiliation(s)
- Urska Videmsek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
91
|
Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. J Bacteriol 2009; 191:4243-50. [PMID: 19376869 DOI: 10.1128/jb.01795-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO(2) or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO(2) in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription.
Collapse
|
92
|
Janssen AJH, Lens PNL, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJN. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1333-43. [PMID: 19027933 DOI: 10.1016/j.scitotenv.2008.09.054] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/04/2008] [Accepted: 09/19/2008] [Indexed: 05/23/2023]
Abstract
In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual CODorganic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH4 (80-90 vol.%), CO2 (10-20 vol.%) and H2S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H2S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.
Collapse
Affiliation(s)
- Albert J H Janssen
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Liu H, Zhou H, Zhu D, Bi R. Overexpression, purification, characterization and preliminary crystallographic study of phosphoglycolate phosphatase from Shigella flexneri 2a strain 301. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:29-33. [PMID: 19153451 DOI: 10.1107/s1744309108039067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Accepted: 11/21/2008] [Indexed: 11/10/2022]
Abstract
Phosphoglycolate phosphatase has a salvage function in the metabolism of the 2-phosphoglycolate formed during bacterial DNA repair. In order to better understand its dimerization behaviour, the influence of metal ions on its activity and its catalytic mechanism at the molecular level, recombinant phosphoglycolate phosphatase from Shigella flexneri was overexpressed, purified, characterized and crystallized by the hanging-drop vapour-diffusion method at 291 K using polyethylene glycol 3500 as a precipitant and zinc acetate as an additive. The crystals belonged to space group R3, with unit-cell parameters a = 88.1, b = 88.1, c = 259.2 A, corresponding to the presence of two molecules in the asymmetric unit. SeMet-labelled protein was also prepared and crystallized for use in phase determination. Initial structure determination using the multiwavelength anomalous dispersion (MAD) method clearly revealed that SfPGPase bears an alpha-helical cap domain that differs from that of a previously reported orthologue.
Collapse
Affiliation(s)
- Heli Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
94
|
|
95
|
Newton ILG, Girguis PR, Cavanaugh CM. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts. BMC Genomics 2008; 9:585. [PMID: 19055818 PMCID: PMC2642828 DOI: 10.1186/1471-2164-9-585] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 12/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Vesicomyidae (Bivalvia: Mollusca) are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible. RESULTS To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics framework, including the existing genomic data combined with heterologous microarray hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and hydrothermal vents. CONCLUSION The results of this comparative genomics analysis emphasize the importance of the symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear to be metabolically capable autotrophs underscores the extent to which the host depends on them for nutrition and reveals the key to invertebrate colonization of these challenging environments.
Collapse
Affiliation(s)
- Irene L G Newton
- Harvard University, Organismic and Evolutionary Biology, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
96
|
Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 2008; 9:581. [PMID: 19055775 PMCID: PMC2607301 DOI: 10.1186/1471-2164-9-581] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. RESULTS In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. CONCLUSION The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.
Collapse
|
97
|
Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA. Bacterial microcompartments: their properties and paradoxes. Bioessays 2008; 30:1084-95. [PMID: 18937343 PMCID: PMC3272490 DOI: 10.1002/bies.20830] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many bacteria conditionally express proteinaceous organelles referred to here as microcompartments (Fig. 1). These microcompartments are thought to be involved in a least seven different metabolic processes and the number is growing. Microcompartments are very large and structurally sophisticated. They are usually about 100-150 nm in cross section and consist of 10,000-20,000 polypeptides of 10-20 types. Their unifying feature is a solid shell constructed from proteins having bacterial microcompartment (BMC) domains. In the examples that have been studied, the microcompartment shell encases sequentially acting metabolic enzymes that catalyze a reaction sequence having a toxic or volatile intermediate product. It is thought that the shell of the microcompartment confines such intermediates, thereby enhancing metabolic efficiency and/or protecting cytoplasmic components. Mechanistically, however, this creates a paradox. How do microcompartments allow enzyme substrates, products and cofactors to pass while confining metabolic intermediates in the absence of a selectively permeable membrane? We suggest that the answer to this paradox may have broad implications with respect to our understanding of the fundamental properties of biological protein sheets including microcompartment shells, S-layers and viral capsids.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | - Yu Liu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | | | | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
98
|
Starkenburg SR, Arp DJ, Bottomley PJ. D-Lactate metabolism and the obligate requirement for CO2 during growth on nitrite by the facultative lithoautotroph Nitrobacter hamburgensis. MICROBIOLOGY-SGM 2008; 154:2473-2481. [PMID: 18667580 DOI: 10.1099/mic.0.2008/018085-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitrobacter hamburgensis X14 is a facultative lithoautotroph that conserves energy from the oxidation of nitrite (NO(-)2) and fixes carbon dioxide (CO(2)) as its sole source of carbon. The availability of the N. hamburgensis X14 genome sequence initiated a re-examination of its mixotrophic and organotrophic potential, as genes encoding three flavin-dependent oxidases were identified that may function to oxidize lactate, providing energy and carbon for growth. The response of N. hamburgensis to D- and L-lactate in the presence (mixotrophy) and absence (organotrophy) of NO(-)2 was examined. L-lactate did not support organotrophic growth or stimulate mixotrophic growth. In contrast, D-lactate enhanced the growth rate and yield of N. hamburgensis in the presence of NO(-)2, and served as the sole carbon and energy source for growth in the absence of NO(-)2 with ammonium as the sole nitrogen source. Lithoautotrophically grown cells immediately consumed D-lactate, suggesting that a lactate metabolic pathway is constitutively expressed. Nevertheless, a physiological adaptation to lactate occurred, as D-lactate-grown cells consumed and assimilated lactate at a faster rate than NO(-)2-grown cells, and the D-lactate-dependent O(2) uptake rate was significantly greater in cells grown either organotrophically or mixotrophically compared with cells grown lithoautotrophically. Although D-lactate was assimilated and metabolized to CO(2) in the presence or absence of NO(-)2, exposure to atmospheric CO(2) or the addition of 0.75 mM sodium carbonate was required for mixotrophic growth and for optimum organotrophic growth on D-lactate.
Collapse
Affiliation(s)
- Shawn R Starkenburg
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter J Bottomley
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA.,Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
99
|
Glaubitz S, Lueders T, Abraham WR, Jost G, Jürgens K, Labrenz M. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ Microbiol 2008; 11:326-37. [PMID: 18793316 DOI: 10.1111/j.1462-2920.2008.01770.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marine pelagic redoxclines are zones of high dark CO(2) fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO(2) fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO(2) incorporation in (13)C-bicarbonate pulse experiments. The incorporation of (13)C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in (13)C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO(2)-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the (13)C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO(2)-fixing Proteobacteria within this habitat.
Collapse
|
100
|
Li H, Miao J, Cui F, Li G. Characterization of cupric glutamate extinguishing mechanism of Alexandrium sp. LC3 with two-dimensional electrophoresis and MALDI-TOF MS. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:527-537. [PMID: 18449603 DOI: 10.1007/s10126-008-9091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 02/04/2008] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
Mechanisms by which cupric glutamate, a novel algicide, extinguishes Alexandrium sp. LC3 are shown in this study. We show that cupric glutamate not only stimulated the production of malonaldehyde (MDA) and dramatically promoted cell plasma membrane permeability (p < 0.01) but also remarkably reduced sulfhydryl (SH) group content (p < 0.01). Analysis of protein expression profiles by two-dimensional electrophoresis (2-DE) indicated that only 47 protein spots were detected in both control and cupric glutamate treated cells. Three reliable spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) as ribulose-bisphosphate carboxylase large subunit precursor, RNA polymerase beta chain, and hypothetical protein, which can be well correlated with cupric glutamate stress. Based on above results, we hypothesize that the extinguishing mechanisms include (1) the cell membrane being damaged by cupric glutamate; (2) cupric glutamate probably induced denaturation and disintegration of intracellular protein, which led to inhibition of cell growth.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Marine Biological Active Substances, SOA., 6 Xian Xia-ling Road, Hi-Tech Park, Qingdao 266061, China.
| | | | | | | |
Collapse
|