51
|
Vavala E, Mignogna G, Spano F, Stringaro A, Colone M, Sanguinetti M, Maras B, Angiolella L. The cell wall protein Rhd3/Pga29 is over-expressed in Candida albicans upon micafungin treatment. J Chemother 2013; 25:332-40. [PMID: 24090751 DOI: 10.1179/1973947813y.0000000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Candida albicans cell wall constitutes a sensitive boundary that undergoes molecular changes upon environmental injuries. Antimycotics exert an intense action on cell wall eliciting both qualitative and quantitative changes of resident proteins. The emergence of drug resistance is marked by a modulation of cell wall proteomic profile. In this study, we monitored, at the proteome level through a two-dimensional gel electrophoresis-based approach, differences of cell wall proteins in sensitive and resistant strains of C. albicans, and variations occurring upon treatment of these strains with antifungal drugs. We identified Rhd3/Pga29, a glycophosphatidylinositol (GPI)-anchored protein, as the main over-expressed protein in micafungin resistant strain with respect to the sensitive control cells. A further increase of Rhd3/Pga29 took place when these resistant strains were treated with sub-lethal dose of micafungin. These results were also confirmed in other two clinical isolates resistant to caspofungin. Results were validated by Western blot analyses and RT-PCR and immunoelectron microscopy images confirmed the increase of the Rhd3/Pga29 on the cell wall as well as in the cytosolic compartment of the micafungin-treated resistant cells. Rhd3/Pga29 over-expression upon echinocandin treatment could represent a strategy of C. albicans to counteract the toxic action of this drug. A role of this protein has also been claimed in the virulence of the fungus, suggesting an involvement of Rhd3/Pga29 in the relationship between C. albicans and the host.
Collapse
|
52
|
Nagoba B, Sheikh N, Jahagirdar V, Kothadia S. Antifungal Drug Resistance in Candida Species. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2013; 10:254-258. [DOI: 10.29333/ejgm/82217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Multidrug-resistant transporter mdr1p-mediated uptake of a novel antifungal compound. Antimicrob Agents Chemother 2013; 57:5931-9. [PMID: 24041896 DOI: 10.1128/aac.01504-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of many anti-infectious drugs has been compromised by the evolution of multidrug-resistant (MDR) pathogens. For life-threatening fungal infections, such as those caused by Candida albicans, overexpression of MDR1, which encodes an MDR efflux pump of the major facilitator superfamily (MFS), often confers resistance to chemically unrelated substances, including the most commonly used azole antifungals. As the development of new and efficacious antifungals has lagged far behind the growing emergence of resistant strains, it is imperative to develop strategies to overcome multidrug resistance. Previous advances have been mainly to deploy combinational therapy to restore azole susceptibility, which, however, requires coordination of two or more compounds. We observed a unique phenotype in which Mdr1p facilitates the uptake of a specific class of compounds. Among them, we describe a novel antifungal small molecule, bis[1,6-a:5',6'-g]quinolizinium 8-methyl-salt (BQM) (U.S. patent application no. 61/793,090,2013), that has potent and broad antifungal activity. Notably, BQM exploits the MDR phenotype in C. albicans to promote the inhibitory effect. Rather than causing an antagonism of MDR strains, it exhibits a highly potentiated activity against a collection of clinical isolates and lab strains that overexpress MDR1. The activity of BQM against MDR1-overexpressing isolates is due to its facilitated intracellular accumulation. Microarray comparisons showed an extensive upregulation of MDR1 as well as polyamine transporter genes in a fluconazole-resistant strain. We then demonstrated that the polyamine transporters augment the accumulation of BQM. Importantly, BQM had greater activity than fluconazole and itraconazole against various fungal pathogens, including MDR Aspergillus fumigatus. Thus, our findings offer a paradigm shift to overcome MDR and the promise of improving antifungal treatment, especially in MDR pathogens.
Collapse
|
54
|
Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proc Natl Acad Sci U S A 2013; 110:13594-9. [PMID: 23904484 DOI: 10.1073/pnas.1305982110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.
Collapse
|
55
|
Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, Ramage G, Denning DW, Bowyer P. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 2013; 68:1486-96. [DOI: 10.1093/jac/dkt075] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
56
|
A small molecule inhibitor of fungal histone acetyltransferase Rtt109. Bioorg Med Chem Lett 2013; 23:2853-9. [PMID: 23587423 DOI: 10.1016/j.bmcl.2013.03.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022]
Abstract
The histone acetyltransferase Rtt109 is the sole enzyme responsible for acetylation of histone H3 lysine 56 (H3K56) in fungal organisms. Loss of Rtt109 renders fungal cells extremely sensitive to genotoxic agents, and prevents pathogenesis in several clinically important species. Here, via a high throughput chemical screen of >300,000 compounds, we discovered a chemical inhibitor of Rtt109 that does not inhibit other acetyltransferase enzymes. This compound inhibits Rtt109 regardless of which histone chaperone cofactor protein (Asf1 or Vps75) is present, and appears to inhibit Rtt109 via a tight-binding, uncompetitive mechanism.
Collapse
|
57
|
Prates RA, Fuchs BB, Mizuno K, Naqvi Q, Kato IT, Ribeiro MS, Mylonakis E, Tegos GP, Hamblin MR. Effect of virulence factors on the photodynamic inactivation of Cryptococcus neoformans. PLoS One 2013; 8:e54387. [PMID: 23349872 PMCID: PMC3548784 DOI: 10.1371/journal.pone.0054387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023] Open
Abstract
Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance.
Collapse
Affiliation(s)
- Renato A. Prates
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP, Brazil
- School of Dentistry, Health Department, Universidade Nove de Julho, São Paulo, SP, Brazil
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kazue Mizuno
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qurat Naqvi
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ilka T. Kato
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - George P. Tegos
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, University of New Mexico School of Medicine, New Mexico, United States of America
- * E-mail: (GPT); (MH)
| | - Michael R. Hamblin
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (GPT); (MH)
| |
Collapse
|
58
|
Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR, Ribeiro MS. Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 2013; 57:445-51. [PMID: 23129051 PMCID: PMC3535901 DOI: 10.1128/aac.01451-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to evaluate whether Candida albicans exhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells. C. albicans was exposed to sublethal APDI by using methylene blue (MB) as a photosensitizer (0.05 mM) combined with a GaAlAs diode laser (λ 660 nm, 75 mW/cm(2), 9 to 27 J/cm(2)). In vitro, we evaluated APDI effects on C. albicans growth, germ tube formation, sensitivity to oxidative and osmotic stress, cell wall integrity, and fluconazole susceptibility. In vivo, we evaluated C. albicans pathogenicity with a mouse model of systemic infection. Animal survival was evaluated daily. Sublethal MB-mediated APDI reduced the growth rate and the ability of C. albicans to form germ tubes compared to untreated cells (P < 0.05). Survival of mice systemically infected with C. albicans pretreated with APDI was significantly increased compared to mice infected with untreated yeast (P < 0.05). APDI increased C. albicans sensitivity to sodium dodecyl sulfate, caffeine, and hydrogen peroxide. The MIC for fluconazole for C. albicans was also reduced following sublethal MB-mediated APDI. However, none of those pathogenic parameters was altered in daughter cells of C. albicans submitted to APDI. These data suggest that APDI may inhibit virulence factors and reduce in vivo pathogenicity of C. albicans. The absence of alterations in daughter cells indicates that APDI effects are transitory. The MIC reduction for fluconazole following APDI suggests that this antifungal could be combined with APDI to treat C. albicans infections.
Collapse
Affiliation(s)
- Ilka Tiemy Kato
- Center for Lasers and Applications, IPEN-CNEN/SP, São Paulo, Brazil
| | - Renato Araujo Prates
- Center for Lasers and Applications, IPEN-CNEN/SP, São Paulo, Brazil
- Dentistry School, Health Division and Biophotonics Program of UNINOVE, São Paulo, São Paulo, Brazil
| | | | - Beth Burgwyn Fuchs
- Harvard Medical School, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - George P. Tegos
- Department of Pathology, School of Medicine, and Center for Molecular Discovery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleftherios Mylonakis
- Harvard Medical School, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard—MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
59
|
Chlorhexidine is a highly effective topical broad-spectrum agent against Candida spp. Int J Antimicrob Agents 2013; 41:65-9. [DOI: 10.1016/j.ijantimicag.2012.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/08/2012] [Accepted: 08/24/2012] [Indexed: 11/20/2022]
|
60
|
McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 2012; 7:1520-8. [PMID: 22724584 DOI: 10.1021/cb300235m] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1's effects on host-pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host-pathogen interactions in genetically intractable fungi.
Collapse
Affiliation(s)
- Catherine A. McLellan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge,
Massachusetts 02142, United States
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge,
Massachusetts 02142, United States
| | - Oliver D. King
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, Massachusetts
02472, United States
| | - Alex K. Lancaster
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge,
Massachusetts 02142, United States
| | - Ralph Mazitschek
- Center
for Systems Biology, Massachusetts General Hospital, Richard B. Simches
Research Center, 185 Cambridge Street, Suite 5.210, Boston, Massachusetts
02114, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge,
Massachusetts 02142, United States
| |
Collapse
|
61
|
Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL, Chen YL, Poutanen SM, Rennie RP, Heitman J, Cowen LE. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog 2012; 8:e1002718. [PMID: 22615574 PMCID: PMC3355103 DOI: 10.1371/journal.ppat.1002718] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/10/2012] [Indexed: 12/24/2022] Open
Abstract
The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential. The evolution of drug resistance poses a severe threat to human health. Candida glabrata is a leading cause of mortality due to fungal infections worldwide. It can rapidly evolve resistance to drugs such as echinocandins, which target the fungal cell wall and are front-line therapeutics for Candida infections. We harness whole genome sequencing to provide a global view of mutations that accumulate in C. glabrata during the evolution of echinocandin resistance in a human host. Nine non-synonymous mutations were identified, including one in the echinocandin target. A mutation in an additional gene conferred a small resistance increase and another was in a gene whose dosage mitigated the fitness cost of resistance. We further discovered that compromising function of the molecular chaperone Hsp90 abrogates drug resistance and reduces kidney fungal burden in a mouse model of infection. Hsp90 and its downstream effector calcineurin are required for induction of the drug target in response to drug. Thus, we reveal the first global portrait of antifungal resistance mutations that evolve in a human host, identify the first compensatory mutation that mitigates the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance that can be exploited to treat life-threatening fungal infections.
Collapse
Affiliation(s)
| | - Tomas Babak
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Stephanie Diezmann
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica A. Hill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jinglin Lucy Xie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan M. Poutanen
- University Health Network/Mount Sinai Hospital, Department of Microbiology, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Rennie
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
62
|
Lee H, Khanal Lamichhane A, Garraffo HM, Kwon-Chung KJ, Chang YC. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol Microbiol 2012; 84:130-46. [PMID: 22339665 DOI: 10.1111/j.1365-2958.2012.08016.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study shows the importance of PDK1, TOR and PKC signalling pathways to the basal tolerance of Cryptococcus neoformans towards fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1 or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sin1Δ, ypk1Δ and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
63
|
Lopes da Rosa J, Kaufman PD. Chromatin-mediated Candida albicans virulence. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:349-55. [PMID: 21888998 PMCID: PMC3243783 DOI: 10.1016/j.bbagrm.2011.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Candida albicans is the most prevalent human fungal pathogen. To successfully propagate an infection, this organism relies on the ability to change morphology, express virulence-associated genes and resist DNA damage caused by the host immune system. Many of these events involve chromatin alterations that are crucial for virulence. This review will focus on the studies that have been conducted on how chromatin function affects pathogenicity of C. albicans and other fungi. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Jessica Lopes da Rosa
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | - Paul D. Kaufman
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| |
Collapse
|
64
|
Bajpai V, Kang S, Baek K. Microbial fermentation of cabbage by a bacterial strain of Pectobacterium atrosepticum for the production of bioactive material against Candida species. J Mycol Med 2012. [DOI: 10.1016/j.mycmed.2011.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Bajpai VK, Kang SC, Lee SG, Baek KH. Microbial Conversion of Tomato by a Plant Pathogenic Bacterium Pectobacterium atrosepticum: A Plant-Microbial Approach to Control Pathogenic Candida Species. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study was carried out to produce bioconverted products by microbial fermentation of tomato using a plant pathogenic bacterium Pectobacterium atrosepticum and to evaluate their in vitro antimycotic effect against pathogenic Candida species. The bioconverted products (500 μg/disc) provoked promising antimycotic effects against pathogenic isolates of Candida species as shown by the diameters of zones of inhibition (9 ± 0.6 to 14 ± 0.4 mm), along with their respective minimum inhibitory and minimum fungicidal concentration values, which increased from 250 to 1000 and 250 to 2000 μg/mL, respectively. With the viable counts of the tested fungal pathogens, exposure of the bioconverted products revealed a remarkable antimycotic effect. In addition, the morphology of a clinical isolate of C. glabrata KBN06P00368, visualized by scanning electron microscopy, showed a severe detrimental effect produced by the bioconverted products at the minimum inhibitory concentration (250 μg/mL). The bioconverted products significantly inhibited the in vitro growth of all the tested clinical and pathogenic laboratory isolates of Candida species. This study confirmed the potent antimycotic efficacy of the bioconverted products of tomato, hence justifying the therapeutic uses of bioconverted products in pharmaceutical preparations as an alternative approach to support the antifungal activity of conventional antimycotics.
Collapse
Affiliation(s)
- Vivek K. Bajpai
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea
| | - Soon-Gu Lee
- Department of Plant Medicine, School of Bioresource Science, Andong National University, Andong 760-749, Republic of Korea
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| |
Collapse
|
66
|
Hwang IS, Lee J, Jin HG, Woo ER, Lee DG. Amentoflavone Stimulates Mitochondrial Dysfunction and Induces Apoptotic Cell Death in Candida albicans. Mycopathologia 2011; 173:207-18. [DOI: 10.1007/s11046-011-9503-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
|
67
|
Rajeshkumar R, Sundararaman M. Emergence of Candida spp. and exploration of natural bioactive molecules for anticandidal therapy--status quo. Mycoses 2011; 55:e60-73. [PMID: 22118661 DOI: 10.1111/j.1439-0507.2011.02156.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The opportunistic yeast pathogen Candida albicans and the emerging non-albicans Candida spp. cause life-threatening infections in immuno-compromised patients, leading to an increase in mortality rate. At present, the emergence of non-albicans Candida spp. causes serious infections that are difficult to treat the human populations worldwide. The available, synthetic antifungal drugs show high toxicity to host tissues causing adverse effects. Many metabolites of terrestrial and marine plants, microbes, algae, etc., contain a rich source of unexplored novel leads of different types, which are under use to treat various diseases. Such natural drugs are less expensive and have lower toxicity to host tissues. The patent search on identified and potential anticandidal-lead molecules, from various patent databases, has been described in this review. Furthermore, this article consolidates the trends in the development of anticandidal drug discovery worldwide. Most of the investigations on natural, bioactive molecules against candidiasis are in various phases of clinical trials, of which, two drugs Caspofungin acetate and Micafungin sodium were approved by the U.S. FDA. In conclusion, the exploration of drugs from natural resources serves as a better alternative source in anticandidal therapeutics, having great scope for drug discovery in the future.
Collapse
Affiliation(s)
- Radhakrishnan Rajeshkumar
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
68
|
Huang M, McClellan M, Berman J, Kao KC. Evolutionary dynamics of Candida albicans during in vitro evolution. EUKARYOTIC CELL 2011; 10:1413-21. [PMID: 21890821 PMCID: PMC3209058 DOI: 10.1128/ec.05168-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/22/2011] [Indexed: 12/29/2022]
Abstract
While mechanisms of resistance to major antifungal agents have been characterized in Candida albicans, little is known about the evolutionary trajectories during the emergence of drug resistance. Here, we examined the evolutionary dynamics of C. albicans that evolved in vitro in the presence or absence of fluconazole using the visualizing evolution in real-time (VERT) method, a novel experimental approach that facilitates the systematic isolation of adaptive mutants that arise in the population. We found an increase in the frequency of adaptive events in the presence of fluconazole compared to the no-drug controls. Analysis of the evolutionary dynamics revealed that mutations that led to increased drug resistance appeared frequently and that mutants with increased levels of resistance arose in independent lineages. Interestingly, most adaptive mutants with increased fitness in the presence of the drug did not exhibit a significant fitness decrease in the absence of the drug, supporting the idea that rapid resistance can arise from mutations in strains maintained in the population prior to exposure to the drug.
Collapse
Affiliation(s)
- Mian Huang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Katy C. Kao
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| |
Collapse
|
69
|
Yang F, Yan TH, Rustchenko E, Gao PH, Wang Y, Yan L, Cao YY, Wang QJ, Ji H, Cao YB, Jiang YY. High-frequency genetic contents variations in clinical Candida albicans isolates. Biol Pharm Bull 2011; 34:624-31. [PMID: 21532148 DOI: 10.1248/bpb.34.624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome plasticity is a hallmark of Candida albicans and is believed to be an adaptation strategy. But the extent of such genomic variability is not well investigated. In this study, genetic contents of clinical C. albicans isolates were investigated at whole-genome level with array-based comparative genomic hybridization (array CGH) technology. It was revealed that C. albicans possessed variations of genetic contents, as well as aneuploidy. The variable genes were scattered across the chromosomes, as well clustered in particular regions, including sub-telomeric regions, retrotransposon-insertion sites and a variable region on chromosome 6.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 2011; 55:5710-7. [PMID: 21930868 DOI: 10.1128/aac.05404-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to investigate photodynamic therapy (PDT), using blue dye and red light, for prophylaxis and treatment of cutaneous Candida albicans infections in mice. A mouse model of skin abrasion infected with C. albicans was developed by inoculating wounds measuring 1.2 cm by 1.2 cm with 10(6) or 10(7) CFU. The use of a luciferase-expressing strain of C. albicans allowed real-time monitoring of the extent of infection in mice noninvasively through bioluminescence imaging. The phenothiazinium salts toluidine blue O (TBO), methylene blue (MB), and new methylene blue (NMB) were compared as photosensitizers (PS) for the photodynamic inactivation of C. albicans in vitro. PDT in vivo was initiated either at 30 min or at 24 h after fungal inoculation to investigate the efficacies of PDT for both prophylaxis and treatment of infections. Light at 635 ± 15 nm or 660 ± 15 nm was delivered with a light dose of 78 J/cm(2) (for PDT at 30 min postinfection) or 120 J/cm(2) (for PDT at 24 h postinfection) in multiple exposures with bioluminescence imaging taking place after each exposure of light. In vitro studies showed that NMB was superior to TBO and MB as the PS in the photodynamic inactivation of C. albicans. The efficacy of PDT was related to the ratio of PS concentration to fungal cell density. PDT in vivo initiated either at 30 min or at 24 h postinfection significantly reduced C. albicans burden in the infected mouse skin abrasion wounds. These data suggest that PDT is a viable approach for prophylaxis and treatment of cutaneous C. albicans infections.
Collapse
|
71
|
Camacho ET, Wirkus S, Marshall PA. Mathematical modeling of fungal infection in immune compromised individuals: implications for drug treatment. J Theor Biol 2011; 281:9-17. [PMID: 21540041 DOI: 10.1016/j.jtbi.2011.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
We present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual, who has both a susceptible and a resistant population of fungus, is treated with a fungicidal or fungistatic drug. The model demonstrates that when the drug is only successful at treating the susceptible strain, low levels of the drug cause both strains to be in stable co-existence and high levels eradicate the susceptible strain while allowing the resistant strain to persist or to multiply unchecked. A modified model is then described in which the drug is changed to one in which both strains are susceptible, and subsequently, at the appropriate level of treatment, complete eradication of both fungal strains ensues. We discuss the model and implications for treatment options within the context of an immune compromised patient.
Collapse
Affiliation(s)
- Erika T Camacho
- Division of Mathematical & Natural Sciences, Arizona State University, Glendale, AZ 85306, USA.
| | | | | |
Collapse
|
72
|
Modulation of morphogenesis in Candida albicans by various small molecules. EUKARYOTIC CELL 2011; 10:1004-12. [PMID: 21642508 DOI: 10.1128/ec.05030-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.
Collapse
|
73
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
74
|
Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR. Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 2011; 66:1525-32. [PMID: 21525022 DOI: 10.1093/jac/dkr160] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To investigate whether the major fungal multidrug efflux systems (MESs) affect the efficiency of methylene blue (MB)-mediated antimicrobial photodynamic inactivation (APDI) in pathogenic fungi and test specific inhibitors of these efflux systems to potentiate APDI. METHODS Candida albicans wild-type and mutants that overexpressed two classes of MESs [ATP-binding cassette (ABC) and major facilitator superfamily (MFS)] were tested for APDI using MB as the photosensitizer with and without addition of MES inhibitors. The uptake and cytoplasm localization of photosensitizer were achieved using laser confocal microscopy. RESULTS ABC MES overexpression reduced MB accumulation and APDI killing more than MFS MES overexpression. Furthermore, by combining MB APDI with the ABC inhibitor verapamil, fungal killing and MB uptake were potentiated, while by combining MB APDI with the MFS inhibitor INF(271), fungal killing and MB uptake were inhibited. This latter surprising finding may be explained by the hypothesis that the MFS channel can also serve as an uptake mechanism for MB. CONCLUSIONS The ABC pumps are directly implicated in MB efflux from the cell cytoplasm. Both the influx and efflux of MB may be regulated by MFS systems, and blocking this gate before incubation with MB can decrease the uptake and APDI effects. An ABC inhibitor could be usefully combined with MB APDI for treating C. albicans infections.
Collapse
Affiliation(s)
- Renato A Prates
- Center for Lasers and Applications, IPEN-CNEN/SP, São Paulo, SP 05508-000, Brazil
| | | | | | | | | |
Collapse
|
75
|
Stopiglia CDO, Collares FM, Ogliari FA, Piva E, Fortes CBB, Samuel SMW, Scroferneker ML. Antimicrobial activity of [2-(methacryloyloxy)ethyl]trimethylammonium chloride against Candida spp. Rev Iberoam Micol 2011; 29:20-3. [PMID: 21473928 DOI: 10.1016/j.riam.2011.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 01/14/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Candida-associated denture stomatitis is the most common manifestation of oral candidal infection, caused mainly by Candida albicans. Several authors have attempted to add antifungal agents or antiseptics to denture temporary soft lining materials or to denture acrylic resins, without relevant results. Therefore, the investigation of a quaternary ammonium functionalized compound [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MADQUAT), which copolymerizes with methacrylates and which could act as a fungal inhibitor, is of paramount importance. AIMS To evaluate the in vitro activity of MADQUAT against Candida species. METHODS Thirty-one Candida strains were used to determine the in vitro antifungal activity of this compound. The minimum inhibitory concentrations and minimum fungicidal concentrations of MADQUAT and nystatin were determined. RESULTS MADQUAT showed antifungal properties at concentrations of 6.25 to > 100mg/ml, and fungicidal activity between 25 and > 100mg/ml. The quantitative determinations of the fungistatic and fungicidal activity of MADQUAT showed fungistatic activity against all Candida albicans, Candida krusei and Candida parapsilosis strains, revealing fungicidal activity against some strains of the other species. CONCLUSIONS MADQUAT has antifungal activity against Candida spp. Moreover, the sensitivity to this substance varies across the different species in terms of MIC values and fungicidal or fungistatic activity.
Collapse
|
76
|
Bajpai VK, Kang SC, Park E, Jeon WT, Baek KH. Diverse role of microbially bioconverted product of cabbage (Brassica oleracea) by Pseudomonas syringe pv. T1 on inhibiting Candida species. Food Chem Toxicol 2011; 49:403-7. [DOI: 10.1016/j.fct.2010.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
|
77
|
Fu Z, Lu H, Zhu Z, Yan L, Jiang Y, Cao Y. Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biol Pharm Bull 2011; 34:214-218. [PMID: 21415530 DOI: 10.1248/bpb.34.214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Candida albicans is the most important human fungal pathogen. Amphotericin (AmB) is a gold standard of antifungal treatment for fungi, but the severe side effect of this drug restricts its clinical application. In this study, the interaction of AmB and baicalein (BE) was investigated against thirty clinical isolates of C. albicans. Synergistic activities were determined using the checkerboard microdilution assay based on the fractional inhibitory concentration indices. Combination of BE and AmB accelerated C. albicans apoptosis accompanied with an increase of reactive oxygen species (ROS). Moreover, AmB increased the caspase activity and expression of the corresponding gene CaMCA1 in C. albicans. These effects were enhanced in the presence of BE. Deletion of CaMCA1 clearly attenuated AmB-induced apoptosis, indicating the involvement of CaMCA1-mediated caspase pathway in AmB-induced apoptosis and the synergistic action.
Collapse
Affiliation(s)
- Zijin Fu
- School of Pharmacy, Second Military Medical University, PR China
| | | | | | | | | | | |
Collapse
|
78
|
Padovan ACB, Chaves GM, Colombo AL, Briones MRS. A novel allele of HWP1, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion. Med Mycol 2010; 47:824-35. [PMID: 19184714 DOI: 10.3109/13693780802669574] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene HWP1 encodes a major Candida albicans hyphae cell wall protein which is a substrate of mammalian transglutaminases, promoting the cross-link of the fungus to epithelial cells. Here, we describe a novel HWP1 allele, isolated from C. albicans blood isolates. Analysis of the translated sequence shows that three important regions are absent in the novel allele, HWP1-2, relative to the previously described allele, HWP1-1. Regions 1 and 2 consist of 10 amino acid repeats important for functional conformation of peptide chains and attachment of C. albicans cells to the mammalian epithelia. Region 3 consists of 34 amino acid residues rich in threonine and serine, with O-glycosylation sites that promote the cross-linking with other proteins on C. albicans surface. The HWP1-2 homozygous strain L757 and the heterozygous strain L296 (HWP1-1/HWP1-2) have significantly lower levels of HWP1 expression during hyphal growth and biofilm formation compared to strain SC5314 (HWP1-1/HWP1-1). However, strain L296 properly forms hyphae and biofilms in vitro while strain L757 has reduced hyphal growth (40.4%) and biofilm formation (90.8%). Our results indicate that the HWP1 locus has biofilm specific allelic differential expression and suggest that the HWP1-2 encoded protein is less efficient to maintain cell-to-cell and cell-to-surface adhesion during biofilm formation. This is the first report of a natural variant of HWP1.
Collapse
Affiliation(s)
- Ana Carolina B Padovan
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
79
|
Bajpai VK, Kang SC, Heu S, Shukla S, Lee S, Baek KH. Microbial conversion and anticandidal effects of bioconverted product of cabbage (Brassica oleracea) by Pectobacterium carotovorum pv. carotovorum 21. Food Chem Toxicol 2010; 48:2719-24. [DOI: 10.1016/j.fct.2010.06.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 11/25/2022]
|
80
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
81
|
Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee EH, Thibault P, Verreault A, Raymond M. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 2010; 16:774-80. [PMID: 20601951 PMCID: PMC4108442 DOI: 10.1038/nm.2175] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/03/2010] [Indexed: 12/12/2022]
Abstract
Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.
Collapse
Affiliation(s)
- Hugo Wurtele
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. PHYTOPATHOLOGY 2010; 100:444-453. [PMID: 20373965 DOI: 10.1094/phyto-100-5-0444] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Azole fungicides play a prominent role for reliable plant disease management. However, quantitative azole resistance has been shown to develop in fungal pathogens, including Fusarium graminearum, the causal agent of Fusarium head blight (FHB). Due to widespread application of azole fungicides, resistance may accumulate to higher degrees in fungal field populations over time. Although azole fungicides are prominent components in FHB control, little effort has been made to investigate azole resistance in F. graminearum. We allowed F. graminearum strain NRRL 13383 to adapt to an azole fungicide in vitro, applying a strongly growth-reducing but sublethal dose of tebuconazole. Two morphologically distinguishable azole-resistant phenotypes were recovered that differed with regard to levels of fitness, fungicide resistance, virulence, and mycotoxin production. Isolates of the adapted "phenotype 1" exhibited azole-specific cross-resistance, whereas "phenotype 2" isolates displayed the phenomenon of multidrug resistance because the sensitivity to amine fungicides was also affected. Assessment of individual infected spikelets for mycotoxin contents by high-performance liquid chromatography mass spectrometry and for Fusarium DNA by quantitative polymerase chain reaction indicated that some of the adapted isolates produced significantly higher levels of nivalenol per fungal biomass than the NRRL 13383 strain.
Collapse
Affiliation(s)
- Rayko Becher
- Martin-Luther Universität Halle-Wittenberg, Halle (Salle), Germany
| | | | | | | | | |
Collapse
|
83
|
Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 2010; 6:e1000848. [PMID: 20368972 PMCID: PMC2848560 DOI: 10.1371/journal.ppat.1000848] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 03/05/2010] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is a haploid environmental organism and the major cause of fungal meningoencephalitis in AIDS patients. Fluconazole (FLC), a triazole, is widely used for the maintenance therapy of cryptococcosis. Heteroresistance to FLC, an adaptive mode of azole resistance, was associated with FLC therapy failure cases but the mechanism underlying the resistance was unknown. We used comparative genome hybridization and quantitative real-time PCR in order to show that C. neoformans adapts to high concentrations of FLC by duplication of multiple chromosomes. Formation of disomic chromosomes in response to FLC stress was observed in both serotype A and D strains. Strains that adapted to FLC concentrations higher than their minimal inhibitory concentration (MIC) contained disomies of chromosome 1 and stepwise exposure to even higher drug concentrations induced additional duplications of several other specific chromosomes. The number of disomic chromosomes in each resistant strain directly correlated with the concentration of FLC tolerated by each strain. Upon removal of the drug pressure, strains that had adapted to high concentrations of FLC returned to their original level of susceptibility by initially losing the extra copy of chromosome 1 followed by loss of the extra copies of the remaining disomic chromosomes. The duplication of chromosome 1 was closely associated with two of its resident genes: ERG11, the target of FLC and AFR1, the major transporter of azoles in C. neoformans. This adaptive mechanism in C. neoformans may play an important role in FLC therapy failure of cryptococcosis leading to relapse during azole maintenance therapy. Cryptococcus neoformans is an environmental fungus that causes life threatening brain disease, primarily in AIDS patients. The disease is estimated to claim 700,000 lives annually world-wide but most heavily in Africa. Fluconazole (FLC), a fungistatic antifungal drug, is commonly used to treat patients for long term maintenance therapy. Recurrence of cryptococcosis in AIDS patients undergoing FLC maintenance therapy has been increasingly reported. Heteroresistance, an adaptive azole resistance, was associated with FLC therapy failure cases but the mechanism underlying the resistance was unknown. We previously described that C. neoformans strains are innately heteroresistant to FLC; each strain producing a fraction of subpopulation that can tolerate a high concentration of the drug. These resistant subpopulations revert to original phenotype during maintenance in drug free media. Various methods including cDNA microarrays, comparative genome hybridization and quantitative PCR have been applied to uncover the mechanism involved in the adaptation of C. neoformans to high concentrations of FLC and subsequent loss of resistance upon the removal of drug pressure. We discovered that C. neoformans adapts to high concentration of FLC by formation of disomy in multiple chromosomes. The removal of drug pressure results in a sequential loss of the extra chromosomal copies. It is likely that this novel mechanism of adaptation contributes to the failure of FLC therapy for cryptococcosis.
Collapse
Affiliation(s)
- Edward Sionov
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Hyeseung Lee
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
84
|
Metabolic control of antifungal drug resistance. Fungal Genet Biol 2010; 47:81-93. [DOI: 10.1016/j.fgb.2009.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/16/2022]
|
85
|
Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 2009; 5:e1000705. [PMID: 19876375 PMCID: PMC2760147 DOI: 10.1371/journal.pgen.1000705] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. C. albicans, the most prevalent human fungal pathogen, acquires resistance to fluconazole by genetic alterations that often include changes in the number of chromosomes or chromosome arms (aneuploidy). Here we demonstrate that chromosomal rearrangements resulting in increased gene dosage are the predominant means of acquired resistance to the antifungal drug fluconazole in replicated experimental populations of C. albicans. A specific aneuploidy, isochromosome 5L, which is composed of two copies of the left arm of Chr5, occurs with high frequency and is detectable soon after fluconazole exposure. The early appearance of aneuploidy in some populations is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. The results presented here indicate that the C. albicans genome is highly plastic and imply that exposure to an antifungal drug induces genome reorganization events, some of which provide a fitness advantage in the presence of drug.
Collapse
Affiliation(s)
- Anna M. Selmecki
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Keely Dulmage
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - James B. Anderson
- Department of Ecology and Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
86
|
Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 2009; 53:2804-15. [PMID: 19414582 DOI: 10.1128/aac.00295-09] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1999, heteroresistance to triazoles was reported in Cryptococcus neoformans strains isolated from an azole therapy failure case of cryptococcosis in an AIDS patient and in a diagnostic strain from a non-AIDS patient. In this study, we analyzed 130 strains of C. neoformans isolated from clinical and environmental sources before 1979, prior to the advent of triazoles, and 16 fluconazole (FLC)-resistant strains isolated from AIDS patients undergoing FLC maintenance therapy during 1990 to 2000. All strains isolated prior to 1979 manifested heteroresistance (subset of a population that grows in the presence of FLC) at concentrations between 4 and 64 microg/ml, and all 16 FLC-resistant AIDS isolates manifested heteroresistance at concentrations between 16 and 128 microg/ml. Upon exposure to stepwise increases in the concentration of FLC, subpopulations that could grow at higher concentrations emerged. Repeated transfer on drug-free media caused the highly resistant subpopulations to revert to the original level of heteroresistance. The reversion pattern fell into four categories based on the number of transfers required. The strains heteroresistant at > or =32 microg/ml were significantly more resistant to other xenobiotics and were also more virulent in mice than were those heteroresistant at < or =8 microg/ml. During FLC treatment of mice infected by strains with low levels of heteroresistance, subpopulations exhibiting higher levels of heteroresistance emerged after a certain period of time. The ABC transporter AFR1, known to efflux FLC, was unrelated to the heteroresistance mechanism. Our study showed that heteroresistance to azole is universal and suggests that heteroresistance contributes to relapse of cryptococcosis during azole maintenance therapy.
Collapse
|
87
|
Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int J Antimicrob Agents 2009; 33:258-63. [DOI: 10.1016/j.ijantimicag.2008.09.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/03/2008] [Accepted: 09/18/2008] [Indexed: 11/20/2022]
|
88
|
Richards TS, Oliver BG, White TC. Micafungin activity against Candida albicans with diverse azole resistance phenotypes. J Antimicrob Chemother 2008; 62:349-55. [PMID: 18436555 PMCID: PMC2532560 DOI: 10.1093/jac/dkn156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate whether mechanisms of azole resistance in Candida albicans contribute to reduced micafungin activity in vitro. METHODS MICs were determined for a collection of strains with well-characterized mechanisms of azole resistance obtained from systemic, oral and vaginal infections. This collection of strains includes those with resistance-associated phenotypes. All known molecular mechanisms of azole resistance are included in this set of isolates (alone or in combination). Micafungin activity was further investigated for a subset of isolates by agar dilution. RESULTS There was no correlation between any of the azole resistance mechanisms or resistance phenotypes and micafungin activity as determined by MIC, even in isolates with cross-resistance to multiple azole drugs. Overexpression of the ABC transporter CDR2 has been suggested to contribute to reduced echinocandin activity in agar dilution studies. By broth microdilution, there was no difference in MIC between the pump overexpressors and the collection as a whole. However, azole-resistant isolates from matched strains exhibited a small increase in their micafungin MICs relative to their susceptible controls. By agar dilution analysis, multiple CDR2-overexpressing strains exhibited reduced growth in the presence of micafungin relative to the laboratory strain SC5314. CONCLUSIONS Azole resistance mechanisms do not contribute to increased micafungin MIC as determined by broth microdilution. However, within sets of matched isolates, strains overexpressing CDR2 had a slight increase in micafungin MIC. Changes in micafungin susceptibility are associated with CDR2 overexpression in agar dilution tests.
Collapse
Affiliation(s)
- Theresa S. Richards
- Department of Global Health, School of Public Health and Community Medicine, University of Washington, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | - Theodore C. White
- Department of Global Health, School of Public Health and Community Medicine, University of Washington, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| |
Collapse
|
89
|
Basma R, Barada G, Ojaimi N, Khalaf RA. Susceptibility of Candida albicans to common and novel antifungal drugs, and relationship between the mating type locus and resistance, in Lebanese hospital isolates. Mycoses 2008; 52:141-8. [PMID: 18627469 DOI: 10.1111/j.1439-0507.2008.01559.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incidence of antifungal resistance is on the increase worldwide and novel drugs are constantly being developed to counter this trend. One hundred and sixteen clinical isolates of Candida albicans were collected from Lebanese hospitals in order to first determine the degree of resistance of Lebanese isolates to four common azoles: fluconazole (FL), itraconazole (IT), ketoconazole (KE), and voriconazole (VO), in addition to amphotericin B (AP) and caspofungin (CS) through the Epsilometer test method and second, determine any relationship between the allelic compositions of the mating type loci (MTLa, MTL alpha, MTLa/alpha) with drug resistance. Results showed that resistance, among C. albicans isolates, was the highest with 12% for IT, followed by 7.7% for VO, 6% for KE, 5% for FL, 1.7% for AP and 0% for CS. Three isolates (2.6%) were resistant to all azoles tested, including one that was resistant to all drugs used except CS. Eleven isolates were homozygous at the MTL locus (9.5%), five of which (45%) were resistant to at least one antifungal drug whereas 14 of the 105 heterozygous strains (13%) exhibited similar resistance (P = 0.02), indicating a strong correlation between MTL locus homozygosity and resistance.
Collapse
Affiliation(s)
- Raida Basma
- Natural Sciences Division, Lebanese American University, Byblos, Lebanon
| | | | | | | |
Collapse
|
90
|
|
91
|
Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. EUKARYOTIC CELL 2008; 7:747-64. [PMID: 18375617 DOI: 10.1128/ec.00041-08] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
92
|
The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 2008; 6:187-98. [PMID: 18246082 DOI: 10.1038/nrmicro1835] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The emergence of drug resistance in pathogenic microorganisms provides an excellent example of microbial evolution that has had profound consequences for human health. The widespread use of antimicrobial agents in medicine and agriculture exerts strong selection for the evolution of drug resistance. Selection acts on the phenotypic consequences of resistance mutations, which are influenced by the genetic variation in particular genomes. Recent studies have revealed a mechanism by which the molecular chaperone heat shock protein 90 (Hsp90) can alter the relationship between genotype and phenotype in an environmentally contingent manner, thereby 'sculpting' the course of evolution. Harnessing Hsp90 holds great promise for treating life-threatening infectious diseases.
Collapse
|
93
|
Barada G, Basma R, Khalaf RA. Microsatellite DNA Identification and Genotyping of Candida albicans from Lebanese Clinical Isolates. Mycopathologia 2008; 165:115-25. [DOI: 10.1007/s11046-008-9089-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/07/2008] [Indexed: 11/30/2022]
|
94
|
Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrob Agents Chemother 2008; 52:927-36. [PMID: 18180350 DOI: 10.1128/aac.01223-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is concern about the rise of antifungal drug resistance, but little is known about comparative biological properties and pathogenicity of drug-resistant strains. We generated fluconazole (FLC; CO23 RFLC)- or micafungin (FK; CO23 RFK)-resistant strains of Candida albicans by treating a FLC- and FK-susceptible strain of this fungus (CO23 S) with stepwise-increasing concentrations of either drug. Molecular analyses showed that CO23 RFLC had acquired markedly increased expression of the drug-resistance efflux pump encoded by the MDR1 gene, whereas CO23 RFK had a homozygous mutation in the FSK1 gene. These genetic modifications did not alter to any extent the growth capacity of the drug-resistant strains in vitro, either at 28 degrees C or at 37 degrees C, but markedly increased their experimental pathogenicity in a systemic mouse infection model, as assessed by the overall mortality and target organ invasion. Interestingly, no apparent increase in the vaginopathic potential of the strains was observed with an estrogen-dependent rat vaginal infection. The increased pathogenicity of drug-resistant strains for systemic infection was associated with a number of biochemical and physiological changes, including (i) marked cellular alterations associated with a different expression and content of major cell wall polysaccharides, (ii) more rapid and extensive hypha formation in both liquid and solid media, and (iii) increased adherence to plastic and a propensity for biofilm formation. Overall, our data demonstrate that experimentally induced resistance to antifungal drugs, irrespective of drug family, can substantially divert C. albicans biology, affecting in particular biological properties of potential relevance for deep-seated candidiasis.
Collapse
|
95
|
Brown J, O'Callaghan CA, Marshall ASJ, Gilbert RJC, Siebold C, Gordon S, Brown GD, Jones EY. Structure of the fungal beta-glucan-binding immune receptor dectin-1: implications for function. Protein Sci 2007; 16:1042-52. [PMID: 17473009 PMCID: PMC2206667 DOI: 10.1110/ps.072791207] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
The murine molecule dectin-1 (known as the beta-glucan receptor in humans) is an immune cell surface receptor implicated in the immunological defense against fungal pathogens. Sequence analysis has indicated that the dectin-1 extracellular domain is a C-type lectin-like domain, and functional studies have established that it binds fungal beta-glucans. We report several dectin-1 crystal structures, including a high-resolution structure and a 2.8 angstroms resolution structure in which a short soaked natural beta-glucan is trapped in the crystal lattice. In vitro characterization of dectin-1 in the presence of its natural ligand indicates higher-order complex formation between dectin-1 and beta-glucans. These combined structural and biophysical data considerably extend the current knowledge of dectin-1 structure and function, and suggest potential mechanisms of defense against fungal pathogens.
Collapse
Affiliation(s)
- James Brown
- CR-UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Cools HJ, Fraaije BA, Kim SH, Lucas JA. Impact of changes in the target P450 CYP51 enzyme associated with altered triazole-sensitivity in fungal pathogens of cereal crops. Biochem Soc Trans 2006; 34:1219-22. [PMID: 17073789 DOI: 10.1042/bst0341219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Control of diseases caused by fungi in both medicine and agriculture is heavily dependent on the use of triazoles. As a consequence, resistance to triazoles is a threat to both human health and the sustainability of agricultural production systems. In human pathogens, particularly Candida albicans, mutations encoding alterations in the target cytochrome P450 sterol 14α-demethylase (CYP51; where CYP is cytochrome P450) enzyme are the primary determinants of triazole resistance. In fungal pathogens of cereals, CYP51A1 modifications, some at positions known to contribute to a resistant phenotype in human pathogens, have also been identified in isolates with altered triazole-sensitivity. However, unlike medicine where resistance to triazoles is a major clinical problem, failures of triazoles to control crop diseases in the field are rare with mean population sensitivities generally remaining low, perhaps due to differences in the selection pressures imposed on human and cereal pathogen populations. Nonetheless, the biological potential for resistance exists, and the question remains as to whether widespread triazole resistance can develop in an important cereal pathogen.
Collapse
Affiliation(s)
- H J Cools
- Plant-Pathogen Interactions Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | |
Collapse
|
97
|
Zhang N, O'Donnell K, Sutton DA, Nalim FA, Summerbell RC, Padhye AA, Geiser DM. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol 2006; 44:2186-90. [PMID: 16757619 PMCID: PMC1489407 DOI: 10.1128/jcm.00120-06] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Fusarium solani species complex (FSSC) are increasingly implicated as the causative agents of human mycoses, particularly in the expanding immunocompromised and immunosuppressed patient populations. Best known as ubiquitous plant pathogens and saprotrophs, the FSSC comprises over 45 phylogenetically distinct species distributed among three major clades. To identify which species are associated with human infections, we generated multilocus haplotypes based on four partial gene sequences from 471 isolates. Of these, 278 were from human patients, 21 were from hospital environments, and 172 were from other sources. Phylogenetic trees inferred from an ergosterol biosynthesis gene (erg-3) were highly discordant with those inferred from the three other partial gene sequences; therefore, this partition was analyzed separately. Multilocus analysis showed that isolates from humans were restricted to but spread throughout clade 3 of the FSSC phylogeny, comprising at least 18 phylogenetically distinct species. The majority (74.5%) of the clinical isolates, however, were associated with four major lineages, designated groups 1 to 4. Groups 1 and 2 were strongly supported as phylogenetic species, whereas groups 3 and 4 were not. Although isolates from ocular infections were found in all four groups, they had a significant tendency to belong to group 3 (P < 0.001). Human clinical isolates shared identical multilocus haplotypes with isolates from plants, other animals, and from hospital environments, suggesting potential nosocomiality. The major finding of this study is that FSSC-associated mycoses of humans and other animals have origins in a broad phylogenetic spectrum, indicating widespread ability to cause infection in this diverse species complex.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Suliman HS, Sawyer GM, Appling DR, Robertus JD. Purification and properties of cobalamin-independent methionine synthase from Candida albicans and Saccharomyces cerevisiae. Arch Biochem Biophys 2005; 441:56-63. [PMID: 16083849 DOI: 10.1016/j.abb.2005.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 11/22/2022]
Abstract
In this study, we investigated methionine synthase from Candida albicans (CaMET 6p) and Saccharomyces cerevisiae (ScMET 6p). We describe the cloning of CaMet 6 and ScMet 6, and the expression of both the enzymes in S. cerevisiae. CaMET 6p is able to complement the disruption of met 6 in S. cerevisiae. Following the purification of ScMET 6p and CaMET 6p, kinetic assays were performed to determine substrate specificity. The Michaelis constants for ScMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 108, 84, 95, and 13 microM, respectively. The Michaelis constants for CaMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 113, 129, 120, and 14 microM, respectively. Neither enzyme showed activity with CH(3)-H(4)PteGlu(1) as a substrate. We conclude that ScMET 6p and CaMET 6p require a minimum of two glutamates on the methyltetrahydrofolate substrate, similar to the bacterial metE homologs. The cloning, purification, and characterization of these enzymes lay the groundwork for inhibitor-design studies on the cobalamin-independent fungal methionine synthases.
Collapse
Affiliation(s)
- Huda S Suliman
- Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
99
|
Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 2005; 309:2185-9. [PMID: 16195452 DOI: 10.1126/science.1118370] [Citation(s) in RCA: 518] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hsp90 is a molecular chaperone for many signal transducers and may influence evolution by releasing previously silent genetic variation in response to environmental change. In fungi separated by approximately 800 million years of evolution, Hsp90 potentiated the evolution of drug resistance in a different way, by enabling new mutations to have immediate phenotypic consequences. Resistance was abrogated by Hsp90 inhibitors and by febrile temperatures, suggesting new therapeutic strategies and a clinical benefit of fever. During selection in a human host, drug resistance that was initially Hsp90-dependent evolved toward independence. Thus, Hsp90 can act in diverse ways to couple environmental contingency to the emergence and fixation of new traits.
Collapse
Affiliation(s)
- Leah E Cowen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
100
|
Abstract
Recent studies on the genetics of adaptive coat-color variation in pocket mice (Chaetodipus intermedius) are reviewed in the context of several on-going debates about the genetics of adaptation. Association mapping with candidate genes was used to identify mutations responsible for melanism in four different populations of C. intermedius. Here, I review four main results (i) a single gene, the melanocortin-1-receptor (Mc1r), appears to be responsible for most of the phenotypic variation in color in one population, the Pinacate site; (ii) four or fewer nucleotide changes at Mc1r appear to be responsible for the difference in receptor function; (iii) studies of migration-selection balance suggest that the selection coefficient associated with the dark Mc1r allele at the Pinacate site is large; and (iv) different (unknown) genes underlie the evolution of melanism on three other lava flows. These findings are discussed in light of the evolution of convergent phenotypes, the average size of phenotypic effects underlying adaptation, the evolution of dominance, and the distinction between adaptations caused by changes in gene dosage versus gene structure.
Collapse
Affiliation(s)
- Michael W Nachman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|