51
|
Abstract
The medial entorhinal cortex (MEC) creates a neural representation of space through a set of functionally dedicated cell types: grid cells, border cells, head direction cells, and speed cells. Grid cells, the most abundant functional cell type in the MEC, have hexagonally arranged firing fields that tile the surface of the environment. These cells were discovered only in 2005, but after 10 years of investigation, we are beginning to understand how they are organized in the MEC network, how their periodic firing fields might be generated, how they are shaped by properties of the environment, and how they interact with the rest of the MEC network. The aim of this review is to summarize what we know about grid cells and point out where our knowledge is still incomplete.
Collapse
Affiliation(s)
- David C Rowland
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway; , , ,
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway; , , ,
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway; , , ,
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway; , , ,
| |
Collapse
|
52
|
Abstract
Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.
Collapse
Affiliation(s)
- Weston Cox
- Department of Electrical and Computer Engineering, Seattle University, Seattle, Washington, United States of America
| | - Brian J. Fischer
- Department of Mathematics, Seattle University, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
53
|
Abstract
In spatial perception, visual information has higher acuity than auditory information and we often misperceive sound-source locations when spatially disparate visual stimuli are presented simultaneously. Ventriloquists make good use of this auditory illusion. In this study, we investigated neural substrates of the ventriloquism effect to understand the neural mechanism of multimodal integration. This study was performed in 2 steps. First, we investigated how sound locations were represented in the auditory cortex. Secondly, we investigated how simultaneous presentation of spatially disparate visual stimuli affects neural processing of sound locations. Based on the population rate code hypothesis that assumes monotonic sensitivity to sound azimuth across populations of broadly tuned neurons, we expected a monotonic increase of blood oxygenation level-dependent (BOLD) signals for more contralateral sounds. Consistent with this hypothesis, we found that BOLD signals in the posterior superior temporal gyrus increased monotonically as a function of sound azimuth. We also observed attenuation of the monotonic azimuthal sensitivity by spatially disparate visual stimuli. The alteration of the neural pattern was considered to reflect the neural mechanism of the ventriloquism effect. Our findings indicate that conflicting audiovisual spatial information of an event is associated with an attenuation of neural processing of auditory spatial localization.
Collapse
Affiliation(s)
- Akiko Callan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daniel Callan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ando
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
54
|
Katz PS. The golden age of comparative neuroethology on display in Japan. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:243-245. [PMID: 25341457 DOI: 10.1159/000367885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Ga., USA
| |
Collapse
|
55
|
Fischer BJ, Seidl AH. Resolution of interaural time differences in the avian sound localization circuit-a modeling study. Front Comput Neurosci 2014; 8:99. [PMID: 25206329 PMCID: PMC4143899 DOI: 10.3389/fncom.2014.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/01/2014] [Indexed: 11/13/2022] Open
Abstract
Interaural time differences (ITDs) are a main cue for sound localization and sound segregation. A dominant model to study ITD detection is the sound localization circuitry in the avian auditory brainstem. Neurons in nucleus laminaris (NL) receive auditory information from both ears via the avian cochlear nucleus magnocellularis (NM) and compare the relative timing of these inputs. Timing of these inputs is crucial, as ITDs in the microsecond range must be discriminated and encoded. We modeled ITD sensitivity of single NL neurons based on previously published data and determined the minimum resolvable ITD for neurons in NL. The minimum resolvable ITD is too large to allow for discrimination by single NL neurons of naturally occurring ITDs for very low frequencies. For high frequency NL neurons (>1 kHz) our calculated ITD resolutions fall well within the natural range of ITDs and approach values of below 10 μs. We show that different parts of the ITD tuning function offer different resolution in ITD coding, suggesting that information derived from both parts may be used for downstream processing. A place code may be used for sound location at frequencies above 500 Hz, but our data suggest the slope of the ITD tuning curve ought to be used for ITD discrimination by single NL neurons at the lowest frequencies. Our results provide an important measure of the necessary temporal window of binaural inputs for future studies on the mechanisms and development of neuronal computation of temporally precise information in this important system. In particular, our data establish the temporal precision needed for conduction time regulation along NM axons.
Collapse
Affiliation(s)
- Brian J Fischer
- Department of Mathematics, Seattle University Seattle, WA, USA
| | - Armin H Seidl
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington Seattle, WA, USA ; Department of Neurology, University of Washington Seattle, WA, USA
| |
Collapse
|
56
|
Ross B, Miyazaki T, Thompson J, Jamali S, Fujioka T. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing. J Neurophysiol 2014; 112:1871-84. [PMID: 25008412 DOI: 10.1152/jn.00224.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations.
Collapse
Affiliation(s)
- Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada;
| | - Takahiro Miyazaki
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - Jessica Thompson
- International Laboratory for Brain, Music and Sound Research, Department of Psychology, University of Montreal, Montreal, Quebec, Canada; and
| | - Shahab Jamali
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - Takako Fujioka
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California
| |
Collapse
|
57
|
Hamlet WR, Liu YW, Tang ZQ, Lu Y. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis. Front Neural Circuits 2014; 8:51. [PMID: 24904297 PMCID: PMC4033047 DOI: 10.3389/fncir.2014.00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/24/2014] [Indexed: 11/16/2022] Open
Abstract
Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K+ (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17–E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies.
Collapse
Affiliation(s)
- William R Hamlet
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA ; School of Biomedical Sciences, Kent State University Kent, OH, USA
| | - Yu-Wei Liu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - Zheng-Quan Tang
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA ; School of Biomedical Sciences, Kent State University Kent, OH, USA
| |
Collapse
|
58
|
Ohmori H. Neuronal specializations for the processing of interaural difference cues in the chick. Front Neural Circuits 2014; 8:47. [PMID: 24847212 PMCID: PMC4023016 DOI: 10.3389/fncir.2014.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/22/2014] [Indexed: 11/13/2022] Open
Abstract
Sound information is encoded as a series of spikes of the auditory nerve fibers (ANFs), and then transmitted to the brainstem auditory nuclei. Features such as timing and level are extracted from ANFs activity and further processed as the interaural time difference (ITD) and the interaural level difference (ILD), respectively. These two interaural difference cues are used for sound source localization by behaving animals. Both cues depend on the head size of animals and are extremely small, requiring specialized neural properties in order to process these cues with precision. Moreover, the sound level and timing cues are not processed independently from one another. Neurons in the nucleus angularis (NA) are specialized for coding sound level information in birds and the ILD is processed in the posterior part of the dorsal lateral lemniscus nucleus (LLDp). Processing of ILD is affected by the phase difference of binaural sound. Temporal features of sound are encoded in the pathway starting in nucleus magnocellularis (NM), and ITD is processed in the nucleus laminaris (NL). In this pathway a variety of specializations are found in synapse morphology, neuronal excitability, distribution of ion channels and receptors along the tonotopic axis, which reduces spike timing fluctuation in the ANFs-NM synapse, and imparts precise and stable ITD processing to the NL. Moreover, the contrast of ITD processing in NL is enhanced over a wide range of sound level through the activity of GABAergic inhibitory systems from both the superior olivary nucleus (SON) and local inhibitory neurons that follow monosynaptic to NM activity.
Collapse
Affiliation(s)
- Harunori Ohmori
- Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
59
|
Abstract
The axon initial segment (AIS) is the site of spike initiation in neurons. Previous studies revealed that spatial distribution of the AIS varies greatly among neurons to meet their specific needs. However, when and how this differentiation arises is unknown. Neurons in the avian nucleus laminaris (NL) are binaural coincidence detectors for sound localization and show differentiation in the distribution of the AIS, with shorter length and a more distal position from the soma with an increase in tuning frequency. We studied these characteristics of the AIS in NL neurons of the chicken during development and found that the AIS differentiates in its distribution after initial formation, and this is driven by activity-dependent and activity-independent mechanisms that differentially regulate distal and proximal boundaries of the AIS. Before hearing onset, the ankyrinG-positive AIS existed at a wide stretch of proximal axon regardless of tuning frequency, but Na+ channels were only partially distributed within the AIS. Shortly after hearing onset, Na+ channels accumulated along the entire AIS, which started shortening and relocating distally to a larger extent in neurons with higher tuning frequencies. Ablation of inner ears abolished the shortening of the AIS without affecting the position of its proximal boundary, indicating that both distal and proximal AIS boundaries are disassembled during development, and the former is dependent on afferent activity. Thus, interaction of these activity-dependent and activity-independent mechanisms determines the cell-specific distribution of the AIS in NL neurons and plays a critical role in establishing the function of sound localization circuit.
Collapse
|
60
|
Witte M, Reinert T, Dietz B, Nerlich J, Rübsamen R, Milenkovic I. Depolarizing chloride gradient in developing cochlear nucleus neurons: Underlying mechanism and implication for calcium signaling. Neuroscience 2014; 261:207-22. [DOI: 10.1016/j.neuroscience.2013.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022]
|
61
|
Bee MA. Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 2014; 95:216-37. [PMID: 24424243 DOI: 10.1016/j.ijpsycho.2014.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/10/2013] [Accepted: 01/01/2014] [Indexed: 01/18/2023]
Abstract
The perceptual analysis of acoustic scenes involves binding together sounds from the same source and separating them from other sounds in the environment. In large social groups, listeners experience increased difficulty performing these tasks due to high noise levels and interference from the concurrent signals of multiple individuals. While a substantial body of literature on these issues pertains to human hearing and speech communication, few studies have investigated how nonhuman animals may be evolutionarily adapted to solve biologically analogous communication problems. Here, I review recent and ongoing work aimed at testing hypotheses about perceptual mechanisms that enable treefrogs in the genus Hyla to communicate vocally in noisy, multi-source social environments. After briefly introducing the genus and the methods used to study hearing in frogs, I outline several functional constraints on communication posed by the acoustic environment of breeding "choruses". Then, I review studies of sound source perception aimed at uncovering how treefrog listeners may be adapted to cope with these constraints. Specifically, this review covers research on the acoustic cues used in sequential and simultaneous auditory grouping, spatial release from masking, and dip listening. Throughout the paper, I attempt to illustrate how broad-scale, comparative studies of carefully considered animal models may ultimately reveal an evolutionary diversity of underlying mechanisms for solving cocktail-party-like problems in communication.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
62
|
Abstract
The activity of sensory neural populations carries information about the environment. This may be extracted from neural activity using different strategies. In the auditory brainstem, a recent theory proposes that sound location in the horizontal plane is decoded from the relative summed activity of two populations in each hemisphere, whereas earlier theories hypothesized that the location was decoded from the identity of the most active cells. We tested the performance of various decoders of neural responses in increasingly complex acoustical situations, including spectrum variations, noise, and sound diffraction. We demonstrate that there is insufficient information in the pooled activity of each hemisphere to estimate sound direction in a reliable way consistent with behavior, whereas robust estimates can be obtained from neural activity by taking into account the heterogeneous tuning of cells. These estimates can still be obtained when only contralateral neural responses are used, consistently with unilateral lesion studies. DOI:http://dx.doi.org/10.7554/eLife.01312.001 Having two ears allows animals to localize the source of a sound. For example, barn owls can snatch their prey in complete darkness by relying on sound alone. It has been known for a long time that this ability depends on tiny differences in the sounds that arrive at each ear, including differences in the time of arrival: in humans, for example, sound will arrive at the ear closer to the source up to half a millisecond earlier than it arrives at the other ear. These differences are called interaural time differences. However, the way that the brain processes this information to figure out where the sound came from has been the source of much debate. Several theories have been proposed for how the brain calculates position from interaural time differences. According to the hemispheric theory, the activities of particular binaurally sensitive neurons in each of side of the brain are added together: adding signals in this way has been shown to maximize sensitivity to time differences under simple, controlled circumstances. The peak decoding theory proposes that the brain can work out the location of a sound on the basis of which neurons responded most strongly to the sound. Both theories have their potential advantages, and there is evidence in support of each. Now, Goodman et al. have used computational simulations to compare the models under ecologically relevant circumstances. The simulations show that the results predicted by both models are inconsistent with those observed in real animals, and they propose that the brain must use the full pattern of neural responses to calculate the location of a sound. One of the parts of the brain that is responsible for locating sounds is the inferior colliculus. Studies in cats and humans have shown that damage to the inferior colliculus on one side of the brain prevents accurate localization of sounds on the opposite side of the body, but the animals are still able to locate sounds on the same side. This finding is difficult to explain using the hemispheric model, but Goodman et al. show that it can be explained with pattern-based models. DOI:http://dx.doi.org/10.7554/eLife.01312.002
Collapse
Affiliation(s)
- Dan F M Goodman
- Laboratoire de Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
63
|
Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex. Cell Rep 2013; 5:1365-74. [DOI: 10.1016/j.celrep.2013.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/03/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
|
64
|
Binaural gain modulation of spectrotemporal tuning in the interaural level difference-coding pathway. J Neurosci 2013; 33:11089-99. [PMID: 23825414 DOI: 10.1523/jneurosci.4941-12.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brainstem, the auditory system diverges into two pathways that process different sound localization cues, interaural time differences (ITDs) and level differences (ILDs). We investigated the site where ILD is detected in the auditory system of barn owls, the posterior part of the lateral lemniscus (LLDp). This structure is equivalent to the lateral superior olive in mammals. The LLDp is unique in that it is the first place of binaural convergence in the brainstem where monaural excitatory and inhibitory inputs converge. Using binaurally uncorrelated noise and a generalized linear model, we were able to estimate the spectrotemporal tuning of excitatory and inhibitory inputs to these cells. We show that the response of LLDp neurons is highly locked to the stimulus envelope. Our data demonstrate that spectrotemporally tuned, temporally delayed inhibition enhances the reliability of envelope locking by modulating the gain of LLDp neurons' responses. The dependence of gain modulation on ILD shown here constitutes a means for space-dependent coding of stimulus identity by the initial stages of the auditory pathway.
Collapse
|
65
|
Ręk P. Acoustic location of conspecifics in a nocturnal bird: the corncrake Crex crex.. Acta Ethol 2013; 17:31-35. [PMID: 24563580 PMCID: PMC3926981 DOI: 10.1007/s10211-013-0155-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022]
Abstract
Although the use of sounds in spatial orientation is widespread among animals, only a few groups advanced such specific adaptations as echolocation. In contrast, practically all animals and night-active species in particular, must occasionally orient themselves relative to invisible but audible objects such as a hidden rival or predator. In this study, I would like to determine the impact of locating which involves the use of acoustic parameters of sender’s vocalisations by receivers and changes of positions and triangulation of sender’s vocalisations by receivers in estimating the distance to the sender during night-time territorial interactions of the corncrake (Crex crex). Males were subjected to two kinds of stimuli: approaching one, imitating the change of the distance of the calling intruder toward the focal male while keeping the direction constant, or stationary stimuli, involving acoustic stimulation with no motion. Although males subjected to approaching stimulation moved longer distances, in both stimuli groups, males moved predominantly toward or out of the playback speaker, and only occasionally made sideway movements. However, the results gave no evidence of corncrakes moving specifically in order to locate the source of the sound; they suggest that males moved toward or away from the already located sound. The fact that males moved longer distances in response to approaching than stationary stimuli indicates that they were able to perceive the change of the distance to the playback speaker based only on structural parameters or amplitude of the calls played.
Collapse
Affiliation(s)
- Paweł Ręk
- Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
66
|
Catania KC. Stereo and serial sniffing guide navigation to an odour source in a mammal. Nat Commun 2013; 4:1441. [PMID: 23385586 DOI: 10.1038/ncomms2444] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Integration of bilateral sensory information is fundamental to stimulus localization in auditory systems and depth perception in vision, but the role of stereo olfactory cues remains obscure. Here it is shown that blind, eastern American moles combine serial sampling with bilateral nasal cues to localize odorants. Blocking one nostril causes moles to err in the direction of the open nostril with strongest effect within 4-5 cm of the stimulus. Nostril block does not severely disrupt more distant navigation towards odorants in a T-maze nor prevent animals from ultimately locating the odour source. Crossing inputs to the nostrils using plastic tubes causes a local repulsion from the stimulus, whereas uncrossed tubes do not disrupt localization. These findings show that mammals can make use of bilateral chemosensory cues combined with serial sampling to localize odorants and offer insights into the relative contribution of each strategy during different stages of natural search behaviours.
Collapse
Affiliation(s)
- Kenneth C Catania
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, Tennessee 37235-1634, USA.
| |
Collapse
|
67
|
Abstract
Many species use bilateral sampling for odor-guided navigation. Bilateral localization strategies typically involve balanced and lateralized sensory input and early neuronal processing. For example, if gradient direction is estimated by differential sampling, then any asymmetry could bias the perceived direction. Subsequent neuronal processing can compensate for this asymmetry but requires the presence of mechanisms to track changes in asymmetry. A high degree of laterality is also important for differential sampling because spillover of signals will dilute the perceived odor gradient. In apparent contradiction to this model, both symmetry and laterality of nasal air flow have been reported to be incomplete in rats. Here, we measured symmetry and laterality in early olfactory processing in the rat. We first established behavioral readouts of precisely controlled bilateral odorant stimuli. We found that rats could rapidly and accurately report the direction of a wide range of odor gradients, presented in random sequence. We then showed that nasal air flow was symmetric over an entire day in awake rats. Furthermore, odor sampling from the two nostrils in the behavioral task was highly lateralized. This lateralization extended to the receptor epithelium responses as measured by electro-olfactograms. We finally observed strong lateralization of intrinsic signal responses from the glomerular layer of the olfactory bulb. We confirmed that a differential comparison of glomerular responses was sufficient to localize odorants. Together, these results suggest that the rat olfactory system is symmetric, with highly lateralized odor flow and neuronal responses. In combination, these attributes support odor localization by differential comparison.
Collapse
|
68
|
The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris. J Neurosci 2013; 33:3927-38. [PMID: 23447603 DOI: 10.1523/jneurosci.2377-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the nucleus laminaris (NL) of birds detect the coincidence of binaural excitatory inputs from the nucleus magnocellularis (NM) on both sides and process the interaural time differences (ITDs) for sound localization. Sustained inhibition from the superior olivary nucleus is known to control the gain of coincidence detection, which allows the sensitivity of NL neurons to ITD tolerate strong-intensity sound. Here, we found a phasic inhibition in chicken brain slices that follows the ipsilateral NM inputs after a short time delay, sharpens coincidence detection, and may enhance ITD sensitivity in low-frequency NL neurons. GABA-positive small neurons are distributed in and near the NL. These neurons generate IPSCs in NL neurons when photoactivated by a caged glutamate compound, suggesting that these GABAergic neurons are interneurons that mediate phasic inhibition. These IPSCs have fast decay kinetics that is attributable to the α1-subunit of the GABAA receptor, the expression of which dominates in the low-frequency region of the NL. Model simulations demonstrate that phasic IPSCs narrow the time window of coincidence detection and increase the contrast of ITD-tuning during low-level, low-frequency excitatory input. Furthermore, cooperation of the phasic and sustained inhibitions effectively increases the contrast of ITD-tuning over a wide range of excitatory input levels. We propose that the complementary interaction between phasic and sustained inhibitions is the neural mechanism that regulates ITD sensitivity for low-frequency sound in the NL.
Collapse
|
69
|
Bomash I, Roudi Y, Nirenberg S. A virtual retina for studying population coding. PLoS One 2013; 8:e53363. [PMID: 23341940 PMCID: PMC3544815 DOI: 10.1371/journal.pone.0053363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022] Open
Abstract
At every level of the visual system – from retina to cortex – information is encoded in the activity of large populations of cells. The populations are not uniform, but contain many different types of cells, each with its own sensitivities to visual stimuli. Understanding the roles of the cell types and how they work together to form collective representations has been a long-standing goal. This goal, though, has been difficult to advance, and, to a large extent, the reason is data limitation. Large numbers of stimulus/response relationships need to be explored, and obtaining enough data to examine even a fraction of them requires a great deal of experiments and animals. Here we describe a tool for addressing this, specifically, at the level of the retina. The tool is a data-driven model of retinal input/output relationships that is effective on a broad range of stimuli – essentially, a virtual retina. The results show that it is highly reliable: (1) the model cells carry the same amount of information as their real cell counterparts, (2) the quality of the information is the same – that is, the posterior stimulus distributions produced by the model cells closely match those of their real cell counterparts, and (3) the model cells are able to make very reliable predictions about the functions of the different retinal output cell types, as measured using Bayesian decoding (electrophysiology) and optomotor performance (behavior). In sum, we present a new tool for studying population coding and test it experimentally. It provides a way to rapidly probe the actions of different cell classes and develop testable predictions. The overall aim is to build constrained theories about population coding and keep the number of experiments and animals to a minimum.
Collapse
Affiliation(s)
- Illya Bomash
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yasser Roudi
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
70
|
Day NF, Terleski KL, Nykamp DQ, Nick TA. Directed functional connectivity matures with motor learning in a cortical pattern generator. J Neurophysiol 2012; 109:913-23. [PMID: 23175804 DOI: 10.1152/jn.00937.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning.
Collapse
Affiliation(s)
- Nancy F Day
- Department of Neuroscience, The University of Minnesota, Twin Cities, Minnesota, USA
| | | | | | | |
Collapse
|
71
|
Higgs MH, Kuznetsova MS, Spain WJ. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem. J Neurosci 2012; 32:15489-94. [PMID: 23115186 PMCID: PMC3518488 DOI: 10.1523/jneurosci.1865-12.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023] Open
Abstract
While adaptation is widely thought to facilitate neural coding, the form of adaptation should depend on how the signals are encoded. Monaural neurons early in the interaural time difference (ITD) pathway encode the phase of sound input using spike timing rather than firing rate. Such neurons in chicken nucleus magnocellularis (NM) adapt to ongoing stimuli by increasing firing rate and decreasing spike timing precision. We measured NM neuron responses while adapting them to simulated physiological input, and used these responses to construct inputs to binaural coincidence detector neurons in nucleus laminaris (NL). Adaptation of spike timing in NM reduced ITD sensitivity in NL, demonstrating the dominant role of timing in the short-term plasticity as well as the immediate response of this sound localization circuit.
Collapse
Affiliation(s)
- Matthew H. Higgs
- Neurology Section, Department of Veterans Affairs Medical Center, Seattle, Washington 98108, and
- Department of Physiology and Biophysics
| | - Marina S. Kuznetsova
- Department of Physiology and Biophysics
- Interdisciplinary Graduate Program in Neurobiology and Behavior, and
| | - William J. Spain
- Neurology Section, Department of Veterans Affairs Medical Center, Seattle, Washington 98108, and
- Department of Physiology and Biophysics
- Department of Neurology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
72
|
Evidence for opponent process analysis of sound source location in humans. J Assoc Res Otolaryngol 2012; 14:83-101. [PMID: 23090057 DOI: 10.1007/s10162-012-0356-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 10/10/2012] [Indexed: 10/27/2022] Open
Abstract
Research with barn owls suggested that sound source location is represented topographically in the brain by an array of neurons each tuned to a narrow range of locations. However, research with small-headed mammals has offered an alternative view in which location is represented by the balance of activity in two opponent channels broadly tuned to the left and right auditory space. Both channels may be present in each auditory cortex, although the channel representing contralateral space may be dominant. Recent studies have suggested that opponent channel coding of space may also apply in humans, although these studies have used a restricted set of spatial cues or probed a restricted set of spatial locations, and there have been contradictory reports as to the relative dominance of the ipsilateral and contralateral channels in each cortex. The current study used electroencephalography (EEG) in conjunction with sound field stimulus presentation to address these issues and to inform the development of an explicit computational model of human sound source localization. Neural responses were compatible with the opponent channel account of sound source localization and with contralateral channel dominance in the left, but not the right, auditory cortex. A computational opponent channel model reproduced every important aspect of the EEG data and allowed inferences about the width of tuning in the spatial channels. Moreover, the model predicted the oft-reported decrease in spatial acuity measured psychophysically with increasing reference azimuth. Predictions of spatial acuity closely matched those measured psychophysically by previous authors.
Collapse
|
73
|
Kuba H. Structural tuning and plasticity of the axon initial segment in auditory neurons. J Physiol 2012; 590:5571-9. [PMID: 23027822 DOI: 10.1113/jphysiol.2012.237305] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The axon initial segment (AIS) that separates axonal and somato-dendritic compartments is a highly specialised neuronal structure enriched with voltage-gated Na(+) channels and functions as the site of spike initiation in neurons. The AIS was once thought to be uniform and static in structure, but has been found to be organised in a manner specific to the function of individual neurons and to exhibit plasticity with changes in synaptic inputs. Such structural specialisations are found in the avian auditory system. In the nucleus magnocellularis (NM), which is involved in a precise relay of timing information, the length of the AIS differs depending on sound frequency and increases with decreasing frequencies to accommodate frequency-specific variations in synaptic inputs. In the nucleus laminaris, which integrates the timing information from both NMs for sound localisation, the length and the location of the AIS vary depending on sound frequency: AISs are shorter and more remote for higher frequency. Furthermore, the AISs of NM neurons elongate to increase their excitability when synaptic inputs are removed by cochlea ablation, suggesting their contribution to the homeostatic control of neural activity. These structural tunings and plasticities of the AIS are thus indispensable for the function of the auditory circuits in both normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroshi Kuba
- Nagoya University Faculty of Medicine, Physiology, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
74
|
Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 2012; 32:7970-85. [PMID: 22674272 DOI: 10.1523/jneurosci.0154-12.2012] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Odor signals are conveyed from the olfactory bulb to the olfactory cortex (OC) by mitral cells (MCs) and tufted cells (TCs). However, whether and how the two types of projection neuron differ in function and axonal connectivity is still poorly understood. Odor responses and axonal projection patterns were compared between MCs and TCs in mice by visualizing axons of electrophysiologically identified single neurons. TCs demonstrated shorter onset latency for reliable responses than MCs. The shorter latency response of TCs was maintained in a wide range of odor concentrations, whereas MCs responded only to strong signals. Furthermore, individual TCs projected densely to focal targets only in anterior areas of the OC, whereas individual MCs dispersedly projected to all OC areas. Surprisingly, in anterior OC areas, the two cell types projected to segregated subareas. These results suggest that MCs and TCs transmit temporally distinct odor information to different OC targets.
Collapse
|
75
|
Abstract
Minute differences between the time of arrival of a sound at the two ears are used by humans and animals to locate the source. New in vivo recordings have shed light on how auditory neurons solve the problem of resolving microsecond time differences.
Collapse
Affiliation(s)
- Christine Köppl
- Institut für Biologie und Umweltwissenschaften, Fakultät V, and Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.
| |
Collapse
|
76
|
Tang Y, Christensen-Dalsgaard J, Carr CE. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei. J Comp Neurol 2012; 520:1784-99. [PMID: 22120438 PMCID: PMC4300985 DOI: 10.1002/cne.23013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low to middle best-frequency fibers that bifurcate to project to both the NA and the nucleus magnocellularis (NM). The projection to NM formed large somatic terminals and bouton terminals. NM projected bilaterally to the second-order nucleus laminaris (NL), such that the ipsilateral projection innervated the dorsal NL neuropil, whereas the contralateral projection crossed the midline and innervated the ventral dendrites of NL neurons. Neurons in NL were generally bitufted, with dorsoventrally oriented dendrites. NL projected to the contralateral torus semicircularis and to the contralateral ventral superior olive (SOv). NA projected to ipsilateral dorsal superior olive (SOd), sent a major projection to the contralateral SOv, and projected to torus semicircularis. The SOd projected to the contralateral SOv, which projected back to the ipsilateral NM, NL, and NA. These results suggest homologous patterns of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem.
Collapse
Affiliation(s)
- Yezhong Tang
- Chengdu Institute of Biology, CAS, Chengdu, 610041 People's Republic of China.
| | | | | |
Collapse
|
77
|
Abstract
The action potential generally begins in the axon initial segment (AIS), a principle confirmed by 60 years of research; however, the most recent advances have shown that a very rich biology underlies this simple observation. The AIS has a remarkably complex molecular composition, with a wide variety of ion channels and attendant mechanisms for channel localization, and may feature membrane domains each with distinct roles in excitation. Its function may be regulated in the short term through the action of neurotransmitters, in the long term through activity- and Ca(2+)-dependent processes. Thus, the AIS is not merely the beginning of the axon, but rather a key site in the control of neuronal excitability.
Collapse
Affiliation(s)
- Kevin J Bender
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
78
|
Abstract
The axon initial segment (AIS) is a highly specialized neuronal subregion that is the site of action potential initiation and the boundary between axonal and somatodendritic compartments. In recent years, our understanding of the molecular structure of the AIS, its maturation, and its multiple fundamental roles in neuronal function has seen major advances. We are beginning to appreciate that the AIS is dynamically regulated, both over short timescales via adaptations in ion channel function, and long timescales via activity-dependent structural reorganization. Here, we review results from this emerging field highlighting how structural and functional plasticity relate to the development of the initial segment, and to neuronal disorders linked to AIS dysfunction.
Collapse
|
79
|
Benichoux V, Brette R. A functional spiking model of the ITD processing pathway of the barn owl. BMC Neurosci 2011. [PMCID: PMC3240301 DOI: 10.1186/1471-2202-12-s1-p20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
80
|
Neural development of binaural tuning through Hebbian learning predicts frequency-dependent best delays. J Neurosci 2011; 31:11692-6. [PMID: 21832198 DOI: 10.1523/jneurosci.0237-11.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Birds use microsecond differences in the arrival times of the sounds at the two ears to infer the location of a sound source in the horizontal plane. These interaural time differences (ITDs) are encoded by binaural neurons which fire more when the ITD matches their "best delay." In the textbook model of sound localization, the best delays of binaural neurons reflect the differences in axonal delays of their monaural inputs, but recent observations have cast doubts on this classical view because best delays were found to depend on preferred frequency. Here, we show that these observations are in fact consistent with the notion that best delays are created by differences in axonal delays, provided ITD tuning is created during development through spike-timing-dependent plasticity: basilar membrane filtering results in correlations between inputs to binaural neurons, which impact the selection of synapses during development, leading to the observed distribution of best delays.
Collapse
|
81
|
Abstract
Alterations in synaptic strength over short time scales, termed short-term synaptic plasticity, can gate the flow of information through neural circuits. Different information can be extracted from the same presynaptic spike train depending on the activity- and time-dependent properties of the plasticity at a given synapse. The parallel processing in the brain stem auditory pathways provides an excellent model system for investigating the functional implications of short-term plasticity in neural coding. We review recent evidence that short-term plasticity differs in different pathways with a special emphasis on the 'intensity' pathway. While short-term depression dominates the 'timing' pathway, the intensity pathway is characterized by a balance of short-term depression and facilitation that allows linear transmission of rate-coded intensity information. Target-specific regulation of presynaptic plasticity mechanisms underlies the differential expression of depression and facilitation. The potential contribution of short-term plasticity to different aspects of 'intensity'-related information processing, such as interaural level/intensity difference coding, amplitude modulation coding, and intensity-dependent gain control coding, is discussed.
Collapse
Affiliation(s)
- Katrina M MacLeod
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
82
|
Corfield J, Kubke MF, Parsons S, Wild JM, Köppl C. Evidence for an auditory fovea in the New Zealand kiwi (Apteryx mantelli). PLoS One 2011; 6:e23771. [PMID: 21887317 PMCID: PMC3161079 DOI: 10.1371/journal.pone.0023771] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis. However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions. Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a nocturnal lifestyle in which auditory communication plays a dominant role.
Collapse
Affiliation(s)
- Jeremy Corfield
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - M. Fabiana Kubke
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Stuart Parsons
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J. Martin Wild
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Christine Köppl
- Institute for Biology and Environmental Sciences, and Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
83
|
Milenković I, Rübsamen R. Development of the chloride homeostasis in the auditory brainstem. Physiol Res 2011; 60:S15-27. [PMID: 21777024 DOI: 10.33549/physiolres.932178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inhibitory neurotransmission plays a substantial role in encoding of auditory cues relevant for sound localization in vertebrates. While the anatomical organization of the respective afferent auditory brainstem circuits shows remarkable similarities between mammals and birds, the properties of inhibitory neurotransmission in these neural circuits are strikingly different. In mammals, inhibition is predominantly glycinergic and endowed with fast kinetics. In birds, inhibition is mediated by gamma-Aminobutiric acid (GABA) and too slow to convey temporal information. A further prominent difference lies in the mechanism of inhibition in the respective systems. In auditory brainstem neurons of mammals, [Cl(-)](i) undergoes a developmental shift causing the actions of GABA and glycine to gradually change from depolarization to the 'classic' hyperpolarizing-inhibition before hearing onset. Contrary to this, in the mature avian auditory brainstem Cl(-) homeostasis mechanisms accurately adjust the Cl(-) gradient to enable depolarizing, but still very efficient, shunting inhibition. The present review considers the mechanisms underlying development of the Cl(-) homeostasis in the auditory system of mammals and birds and discusses some open issues that require closer attention in future studies.
Collapse
Affiliation(s)
- I Milenković
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
84
|
Fischer BJ, Peña JL. Owl's behavior and neural representation predicted by Bayesian inference. Nat Neurosci 2011; 14:1061-6. [PMID: 21725311 PMCID: PMC3145020 DOI: 10.1038/nn.2872] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/29/2011] [Indexed: 11/10/2022]
Abstract
The owl captures prey using sound localization. In the classical model, the owl infers sound direction from the position of greatest activity in a brain map of auditory space. However, this model fails to describe the actual behavior. Although owls accurately localize sources near the center of gaze, they systematically underestimate peripheral source directions. We found that this behavior is predicted by statistical inference, formulated as a Bayesian model that emphasizes central directions. We propose that there is a bias in the neural coding of auditory space, which, at the expense of inducing errors in the periphery, achieves high behavioral accuracy at the ethologically relevant range. We found that the owl's map of auditory space decoded by a population vector is consistent with the behavioral model. Thus, a probabilistic model describes both how the map of auditory space supports behavior and why this representation is optimal.
Collapse
Affiliation(s)
- Brian J Fischer
- Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France.
| | | |
Collapse
|
85
|
Logerot P, Krützfeldt NOE, Wild JM, Kubke MF. Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis) in zebra finches using calcium-binding protein immunocytochemistry. PLoS One 2011; 6:e20686. [PMID: 21701681 PMCID: PMC3119058 DOI: 10.1371/journal.pone.0020686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/07/2011] [Indexed: 12/02/2022] Open
Abstract
The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches.
Collapse
Affiliation(s)
- Priscilla Logerot
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nils O. E. Krützfeldt
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - J. Martin Wild
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - M. Fabiana Kubke
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
86
|
Burger RM, Fukui I, Ohmori H, Rubel EW. Inhibition in the balance: binaurally coupled inhibitory feedback in sound localization circuitry. J Neurophysiol 2011; 106:4-14. [PMID: 21525367 DOI: 10.1152/jn.00205.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaural time differences (ITDs) are the primary cue animals, including humans, use to localize low-frequency sounds. In vertebrate auditory systems, dedicated ITD processing neural circuitry performs an exacting task, the discrimination of microsecond differences in stimulus arrival time at the two ears by coincidence-detecting neurons. These neurons modulate responses over their entire dynamic range to sounds differing in ITD by mere hundreds of microseconds. The well-understood function of this circuitry in birds has provided a fruitful system to investigate how inhibition contributes to neural computation at the synaptic, cellular, and systems level. Our recent studies in the chicken have made significant progress in bringing together many of these findings to provide a cohesive picture of inhibitory function.
Collapse
Affiliation(s)
- R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | | | | | |
Collapse
|
87
|
Steinberg LJ, Peña JL. Difference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls. J Neurosci 2011; 31:3234-42. [PMID: 21368035 PMCID: PMC3059808 DOI: 10.1523/jneurosci.5422-10.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/21/2022] Open
Abstract
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure, and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magnocellularis (NM). NA and NM receive input from bifurcating auditory nerve fibers and initiate processing pathways specialized in encoding interaural time (ITD) and level (ILD) differences, respectively. We found that NA neurons, although unable to accurately encode stimulus phase, lock more strongly to the stimulus envelope than NM units. The spectrotemporal receptive fields (STRFs) of NA neurons exhibit a pre-excitatory suppressive field. Using multilinear regression analysis and computational modeling, we show that this feature of STRFs can account for enhanced across-trial response reliability, by locking spikes to the stimulus envelope. Our findings indicate a dichotomy in envelope coding between the time and intensity processing pathways as early as at the level of the cochlear nuclei. This allows the ILD processing pathway to encode envelope information with greater fidelity than the ITD processing pathway. Furthermore, we demonstrate that the properties of the STRFs of the neurons can be quantitatively related to spike timing reliability.
Collapse
Affiliation(s)
- Louisa J Steinberg
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
88
|
Christensen-Dalsgaard J, Tang Y, Carr CE. Binaural processing by the gecko auditory periphery. J Neurophysiol 2011; 105:1992-2004. [PMID: 21325679 DOI: 10.1152/jn.00004.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼ 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200-500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional.
Collapse
|
89
|
Seelig JD, Jayaraman V. Studying sensorimotor processing with physiology in behaving Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:169-89. [PMID: 21906540 DOI: 10.1016/b978-0-12-387003-2.00007-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neural underpinnings of sensorimotor integration are best studied in the context of well-characterized behavior. A rich trove of Drosophila behavioral genetics research offers a variety of well-studied behaviors and candidate brain regions that can form the bases of such studies. The development of tools to perform in vivo physiology from the Drosophila brain has made it possible to monitor activity in defined neurons in response to sensory stimuli. More recently still, it has become possible to perform recordings from identified neurons in the brain of head-fixed flies during walking or flight behaviors. In this chapter, we discuss how experiments that simultaneously monitor behavior and physiology in Drosophila can be combined with other techniques to produce testable models of sensorimotor circuit function.
Collapse
Affiliation(s)
- Johannes D Seelig
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | |
Collapse
|
90
|
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, USA.
| |
Collapse
|
91
|
Kuba H. Plasticity at the axon initial segment. Commun Integr Biol 2010; 3:597-8. [PMID: 21331251 DOI: 10.4161/cib.3.6.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/19/2022] Open
Abstract
Experience dependent alterations in neural activity are mediated by diverse forms of plasticity, which are conventionally thought to occur at either synaptic terminals and/or postsynaptic membrane, such as dendrites and cell soma. However, our recent study has revealed that plasticity is not limited to synaptic sites, but it also takes place at the site where neural activity arises, the axon initial segment (AIS), which is a highly specialized region in the axon concentrated with voltage-gated Na+ channels. We observed in an avian brainstem auditory neuron that the AIS reorganized itself to elongate after deprivation of sensory inputs, which augmented the excitability of the neuron. Notably, this elongation of AIS caused spontaneous firing in some neurons, suggesting its compensatory role to restore neural activity in the circuit. Given that the AIS is the source of neural activity, this plasticity should be a most efficient mechanism for neurons to control their activity. This finding will provide a new insight into development, maintenance and refinement of neural circuits.
Collapse
Affiliation(s)
- Hiroshi Kuba
- Department of Physiology; Kyoto University Graduate School of Medicine; Kyoto, Japan
| |
Collapse
|
92
|
Magezi DA, Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J Neurophysiol 2010; 104:1997-2007. [PMID: 20702739 PMCID: PMC2957465 DOI: 10.1152/jn.00424.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/07/2010] [Indexed: 11/22/2022] Open
Abstract
In humans, horizontal sound localization of low-frequency sounds is mainly based on interaural time differences (ITDs). Traditionally, it was assumed that ITDs are converted into a topographic (or rate-place) code, supported by an array of neurons with parametric tuning to ITDs within the behaviorally relevant range. Although this topographic model has been confirmed in owls, its applicability to mammals has been challenged by recent physiological results suggesting that, at least in small-headed species, ITDs are represented by a nontopographic population rate code, which involves only two opponent (left and right) channels, broadly tuned to ITDs from the two auditory hemifields. The current study investigates which of these two models of ITD processing is more likely to apply to humans. For that, evoked responses to abrupt changes in the ITDs of otherwise continuous sounds were measured with electroencephalography. The ITD change was either away from ("outward" change) or toward the midline ("inward" change). According to the opponent-channel model, the response to an outward ITD change should be larger than the response to the corresponding inward change, whereas the topographic model would predict similar response sizes for both conditions. The measured response sizes were highly consistent with the predictions of the opponent-channel model and contravened the predictions of the topographic model, suggesting that, in humans, ITDs are coded nontopographically. The hemispheric distributions of the ITD change responses suggest that the majority of ITD-sensitive neurons in each hemisphere are tuned to ITDs from the contralateral hemifield.
Collapse
Affiliation(s)
- David A Magezi
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
93
|
Abstract
Interaural time differences (ITDs) are the primary cue for the localization of low-frequency sound sources in the azimuthal plane. For decades, it was assumed that the coding of ITDs in the mammalian brain was similar to that in the avian brain, where information is sparsely distributed across individual neurons, but recent studies have suggested otherwise. In this study, we characterized the representation of ITDs in adult male and female gerbils. First, we performed behavioral experiments to determine the acuity with which gerbils can use ITDs to localize sounds. Next, we used different decoders to infer ITDs from the activity of a population of neurons in central nucleus of the inferior colliculus. These results show that ITDs are not represented in a distributed manner, but rather in the summed activity of the entire population. To contrast these results with those from a population where the representation of ITDs is known to be sparsely distributed, we performed the same analysis on activity from the external nucleus of the inferior colliculus of adult male and female barn owls. Together, our results support the idea that, unlike the avian brain, the mammalian brain represents ITDs in the overall activity of a homogenous population of neurons within each hemisphere.
Collapse
|
94
|
Fukui I, Burger RM, Ohmori H, Rubel EW. GABAergic inhibition sharpens the frequency tuning and enhances phase locking in chicken nucleus magnocellularis neurons. J Neurosci 2010; 30:12075-83. [PMID: 20826670 PMCID: PMC3376706 DOI: 10.1523/jneurosci.1484-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 11/21/2022] Open
Abstract
GABAergic modulation of activity in avian cochlear nucleus neurons has been studied extensively in vitro. However, how this modulation actually influences processing in vivo is not known. We investigated responses of chicken nucleus magnocellularis (NM) neurons to sound while pharmacologically manipulating the inhibitory input from the superior olivary nucleus (SON). SON receives excitatory inputs from nucleus angularis (NA) and nucleus laminaris (NL), and provides GABAergic inputs to NM, NA, NL, and putatively to the contralateral SON. Results from single-unit extracellular recordings from 2 to 4 weeks posthatch chickens show that firing rates of auditory nerve fibers increased monotonically with sound intensity, while that of NM neurons saturated or even decreased at moderate or loud sound levels. Blocking GABAergic input with local application of TTX into the SON induced an increase in firing rate of ipsilateral NM, while that of the contralateral NM decreased at high sound levels. Moreover, local application of bicuculline to NM also increased the firing rate of NM neurons at high sound levels, reduced phase locking, and broadened the frequency-tuning properties of NM neurons. Following application of DNQX, clear evidence of inhibition was observed. Furthermore, the inhibition was tuned to a broader frequency range than the excitatory response areas. We conclude that GABAergic inhibition from SON has at least three physiological influences on the activity of NM neurons: it regulates the firing activity of NM units in a sound-level-dependent manner; it improves phase selectivity; and it sharpens frequency tuning of NM neuronal responses.
Collapse
Affiliation(s)
- Iwao Fukui
- Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
95
|
Abstract
This Primer focuses on detection of the small interaural time differences that underlie sound localization.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland, United States of America.
| | | |
Collapse
|
96
|
Krützfeldt NOE, Logerot P, Kubke MF, Wild JM. Connections of the auditory brainstem in a songbird, Taeniopygia guttata. I. Projections of nucleus angularis and nucleus laminaris to the auditory torus. J Comp Neurol 2010; 518:2109-34. [PMID: 20394061 DOI: 10.1002/cne.22334] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Auditory information is important for social and reproductive behaviors in birds generally, but is crucial for oscine species (songbirds), in particular because in these species auditory feedback ensures the learning and accurate maintenance of song. While there is considerable information on the auditory projections through the forebrain of songbirds, there is no information available for projections through the brainstem. At the latter levels the prevalent model of auditory processing in birds derives from an auditory specialist, the barn owl, which uses time and intensity parameters to compute the location of sounds in space, but whether the auditory brainstem of songbirds is similarly functionally organized is unknown. To examine the songbird auditory brainstem we charted the projections of the cochlear nuclei angularis (NA) and magnocellularis (NM) and the third-order nucleus laminaris (NL) in zebra finches using standard tract-tracing techniques. As in other avian species, the projections of NM were found to be confined to NL, and NL and NA provided the ascending projections. Here we report on differential projections of NA and NL to the torus semicircularis, known in birds as nucleus mesencephalicus lateralis, pars dorsalis (MLd), and in mammals as the central nucleus of the inferior colliculus (ICc). Unlike the case in nonsongbirds, the projections of NA and NL to MLd in the zebra finch showed substantial overlap, in agreement with the projections of the cochlear nuclei to the ICc in mammals. This organization could suggest that the "what" of auditory stimuli is as important as "where."
Collapse
Affiliation(s)
- Nils O E Krützfeldt
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, PB 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
97
|
Krützfeldt NOE, Logerot P, Kubke MF, Wild JM. Connections of the auditory brainstem in a songbird, Taeniopygia guttata. II. Projections of nucleus angularis and nucleus laminaris to the superior olive and lateral lemniscal nuclei. J Comp Neurol 2010; 518:2135-48. [PMID: 20394062 DOI: 10.1002/cne.22324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three nuclei of the lateral lemniscus are present in the zebra finch, ventral (LLV), intermediate (LLI), and dorsal (LLD). LLV is separate from the superior olive (OS): it lies closer to the spinal lemniscus and extends much further rostrally around the pontine periphery. LLI extends from a caudal position ventrolateral to the principal sensory trigeminal nucleus (LLIc) to a rostral position medial to the ventrolateral parabrachial nucleus (LLIr). LLD consists of posterior (LLDp) and anterior (LLDa) parts, which are largely coextensive rostrocaudally, although LLDa lies medial to LLDp. All nuclei are identifiable on the basis of cytochrome oxidase activity. The cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) project on OS predominantly ipsilaterally, on LLV and LLI predominantly contralaterally, and on LLD contralaterally only. The NA projections are heavier than those of NL and differ from them primarily in their terminations within LLD: NA projects to LLDp, whereas NL projects to LLDa. In this the projections are similar to those in the barn owl (Takahashi and Konishi [1988] J Comp Neurol 274:212-238), in which time and intensity pathways remain separate as far as the central nucleus of the inferior colliculus (MLd). In contrast, in the zebra finch, although NA and NL projections remain separate within LLD, the projections of LLDa and LLDp become intermixed within MLd (Wild et al., J Comp Neurol, this issue), consistent with the intermixing of the direct NA and NL projections to MLd (Krützfeldt et al., J Comp Neurol, this issue).
Collapse
Affiliation(s)
- Nils O E Krützfeldt
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, PB 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
98
|
From the Cover: Neurons in the anterior olfactory nucleus pars externa detect right or left localization of odor sources. Proc Natl Acad Sci U S A 2010; 107:12363-8. [PMID: 20616091 DOI: 10.1073/pnas.1003999107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rodents can localize odor sources by comparing odor inputs to the right and left nostrils. However, the neuronal circuits underlying such odor localization are not known. We recorded neurons in the anterior olfactory nucleus (AON) while administering odors to the ipsilateral or contralateral (ipsi- or contra-) nostril. Neurons in the AON pars externa (AONpE) showed respiration phase-locked excitatory spike responses to ipsinostril-only stimulation with a category of odorants, and inhibitory responses to contranostril-only stimulation with the same odorants. Simultaneous odor stimulation of the ipsi- and contranostrils elicited significantly smaller responses than ipsinostril-only stimulation, indicating that AONpE neurons subtract the contranostril odor inputs from ipsinostril odor inputs. An ipsilateral odor source induced larger responses than a centrally located source, whereas an odor source at the contralateral position elicited inhibitory responses. These results indicate that individual AONpE neurons can distinguish the right or left position of an odor source by referencing signals from the two nostrils.
Collapse
|
99
|
Zhang H, Kelly JB. Time dependence of binaural responses in the rat's central nucleus of the inferior colliculus. Hear Res 2010; 268:271-80. [PMID: 20600745 DOI: 10.1016/j.heares.2010.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/16/2022]
Abstract
Recordings were made from single neurons in the rat's central nucleus of the inferior colliculus. Excitatory/inhibitory binaural interactions and interaural-level difference curves were determined for responses to 100 ms dichotic tone bursts presented to the left and right ears simultaneously. Most neurons with sustained responses to tone bursts had the same binaural response type throughout the 100 ms stimulus period. However, some neurons (39% of our sample) showed qualitatively different binaural response types during the early and late parts of the stimulus (the first 20 ms versus the last 80 ms of the tone burst). Also, for many neurons with consistent early and late binaural response patterns, the strength of binaural interaction was different during the early and late periods. For example, for neurons excited by the contralateral ear and inhibited by the ipsilateral ear during the entire 100 ms period (the most common binaural response type), the degree of inhibition was generally greater during the later part of a stimulus. This change in the strength and/or quality of binaural interaction during dichotic stimulation likely reflects a complex pattern of converging excitatory and inhibitory inputs to the inferior colliculus from lower brainstem structures as well as the time course of local synaptic events. The temporal properties of binaural interaction may influence how sound source location is represented in the central auditory system.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada.
| | | |
Collapse
|
100
|
Abstract
Attempts to relate brain size to behaviour and cognition have rarely integrated information from insects with that from vertebrates. Many insects, however, demonstrate that highly differentiated motor repertoires, extensive social structures and cognition are possible with very small brains, emphasising that we need to understand the neural circuits, not just the size of brain regions, which underlie these feats. Neural network analyses show that cognitive features found in insects, such as numerosity, attention and categorisation-like processes, may require only very limited neuron numbers. Thus, brain size may have less of a relationship with behavioural repertoire and cognitive capacity than generally assumed, prompting the question of what large brains are for. Larger brains are, at least partly, a consequence of larger neurons that are necessary in large animals due to basic biophysical constraints. They also contain greater replication of neuronal circuits, adding precision to sensory processes, detail to perception, more parallel processing and enlarged storage capacity. Yet, these advantages are unlikely to produce the qualitative shifts in behaviour that are often assumed to accompany increased brain size. Instead, modularity and interconnectivity may be more important.
Collapse
|