51
|
Profiles of microRNA networks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 2015; 5:18174. [PMID: 26647826 PMCID: PMC4673535 DOI: 10.1038/srep18174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) accompany a critical loss of the frontline barrier function that is achieved primarily by intestinal epithelial cells (IECs). Although the gene-regulation pathways underlying these host-defense roles of IECs presumably are deranged during IBD pathogenesis, the quantitative and qualitative alterations of posttranscriptional regulators such as microRNAs (miRNAs) within the cells largely remain to be defined. We aimed to uncover the regulatory miRNA–target gene relationships that arise differentially in inflamed small- compared with large-IECs. Whereas IBD significantly increased the expression of only a few miRNA candidates in small-IECs, numerous miRNAs were upregulated in inflamed large-IECs. These marked alterations might explain why the large, as compared with small, intestine is more sensitive to colitis and shows more severe pathology in this experimental model of IBD. Our in-depth assessment of the miRNA–mRNA expression profiles and the resulting networks prompts us to suggest that miRNAs such as miR-1224, miR-3473a, and miR-5128 represent biomarkers that appear in large-IECs upon IBD development and co-operatively repress the expression of key anti-inflammatory factors. The current study provides insight into gene-regulatory networks in IECs through which dynamic rearrangement of the involved miRNAs modulates the gene expression–regulation machinery between maintaining and disrupting gastrointestinal homeostasis.
Collapse
|
52
|
Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 2015; 149:1204-1225.e12. [PMID: 26216839 PMCID: PMC4589488 DOI: 10.1053/j.gastro.2015.07.011] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. One of the fundamental processes driving the initiation and progression of CRC is the accumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Over the past decade, major advances have been made in our understanding of cancer epigenetics, particularly regarding aberrant DNA methylation, microRNA (miRNA) and noncoding RNA deregulation, and alterations in histone modification states. Assessment of the colon cancer "epigenome" has revealed that virtually all CRCs have aberrantly methylated genes and altered miRNA expression. The average CRC methylome has hundreds to thousands of abnormally methylated genes and dozens of altered miRNAs. As with gene mutations in the cancer genome, a subset of these epigenetic alterations, called driver events, are presumed to have a functional role in CRC. In addition, the advances in our understanding of epigenetic alterations in CRC have led to these alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in this field suggests that these epigenetic alterations will be commonly used in the near future to direct the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Gastroenterology, University of Washington School of Medicine, Seattle, Washington.
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
53
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
54
|
Liu W, Zhang Q, Li S, Li L, Ding Z, Qian Q, Fan L, Jiang C. The Relationship Between Colonic Macrophages and MicroRNA-128 in the Pathogenesis of Slow Transit Constipation. Dig Dis Sci 2015; 60:2304-2315. [PMID: 25749934 DOI: 10.1007/s10620-015-3612-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent evidence suggests that colonic macrophages and microRNAs play important roles in motor activity in the gastrointestinal tract. However, there are almost no data concerning colonic macrophages and microRNAs in slow transit constipation. AIM The purpose of this study was to investigate colonic macrophages and microRNA-128 expression in the pathogenesis of slow transit constipation in colon tissues. METHODS Full-thickness colonic specimens from patients undergoing surgery for slow transit constipation, due to refractoriness to other therapeutic interventions (n = 25), were compared to controls (n = 25), and the number of colonic macrophages (as evaluated by specific monoclonal antibodies) was counted. Gene expression analysis of microRNA-128 was performed by microRNA microarray and qRT-PCR. Lastly, bioinformatics analysis, coupled with luciferase reporter assays, was used to investigate the mRNA transcript(s) targeted by microRNA-128. RESULTS Compared to controls, 20 of 25 slow transit constipation patients (80 %) had significantly higher numbers of macrophages in colonic specimens, coupled with down-regulation of microRNA-128. Linear regression analyses showed a significant negative correlation between macrophage number and microRNA-128 expression level. Among 83 bioinformatically predicated candidates, mitogen-activated protein kinase 14 (p38α) was validated to be a direct target of microRNA-128 in human intestinal epithelial cells. CONCLUSIONS This study presents evidence for the negative correlation of macrophage number and microRNA-128 expression, in slow transit constipation patients, representing a possible mechanism of impaired gastrointestinal motility.
Collapse
Affiliation(s)
- Weicheng Liu
- Department of Colorectal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Law IKM, Bakirtzi K, Polytarchou C, Oikonomopoulos A, Hommes D, Iliopoulos D, Pothoulakis C. Neurotensin--regulated miR-133α is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis. Gut 2015; 64:1095-104. [PMID: 25112884 PMCID: PMC4422787 DOI: 10.1136/gutjnl-2014-307329] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neurotensin (NT) mediates colonic inflammation through its receptor neurotensin receptor 1 (NTR1). NT stimulates miR-133α expression in colonic epithelial cells. We investigated the role of miR-133α in NT-associated colonic inflammation in vitro and in vivo. DESIGN miR-133α and aftiphilin (AFTPH) levels were measured by quantitative PCR. Antisense (as)-miR-133α was administrated intracolonicaly prior to induction of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and dextran sodium sulfate (DSS)-induced colitis. The effect of AFTPH was examined by gene silencing in vitro. RESULTS NT increased miR-133α levels in NCM-460 overexpressing NTR1 (NCM460-NTR1) and HCT-116 cells. NT-induced p38, ERK1/2, c-Jun, and NF-κB activation, as well as IL-6, IL-8 and IL-1β messenger RNA (mRNA) expression in NCM-460-NTR1 cells were reduced in miR-133α-silenced cells, while overexpression of miR-133α reversed these effects. MiR-133α levels were increased in TNBS (2 day) and DSS (5 day) colitis, while NTR1 deficient DSS-exposed mice had reduced miR-133α levels, compared to wild-type colitic mice. Intracolonic as-miR-133α attenuated several parameters of colitis as well expression of proinflammatory mediators in the colonic mucosa. In silico search coupled with qPCR identified AFTPH as a downstream target of miR-133α, while NT decreased AFTPH expression in NCM-460-NTR1 colonocytes. Gene silencing of AFTPH enhanced NT-induced proinflammatory responses and AFTPH levels were downregulated in experimental colitis. Levels of miR-133α were significantly upregulated, while AFTPH levels were downregulated in colonic biopsies of patients with ulcerative colitis compared to controls. CONCLUSIONS NT-associated colitis and inflammatory signalling are regulated by miR-133α-AFTPH interactions. Targeting of miR-133α or AFTPH may represent a novel therapeutic approach in inflammatory bowel disease.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Angelos Oikonomopoulos
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Daniel Hommes
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
56
|
Zhang X, Shi H, Tang H, Fang Z, Wang J, Cui S. miR-218 inhibits the invasion and migration of colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway. Int J Mol Med 2015; 35:1301-8. [PMID: 25760926 DOI: 10.3892/ijmm.2015.2126] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/26/2015] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is one of the most common and lethal malignancies worldwide. Despite major advances in the treatment of colon cancer, the prognosis remains very poor. Thus, novel and effective therapies for colon cancer are urgently needed. In the present study, the expression status of miR-218 and the role of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway were investigated in colon cancer samples. Firstly, we observed that miR-218 expression was significantly reduced, while PI3K/Akt/mTOR pathway activity was enhanced. The overexpression of miR-218 suppressed the proliferation, migration and invasion of LoVo colon cancer cells, whereas the inhibition of miR-218 promoted these processes. Furthermore, the PI3K/Akt/mTOR signaling pathway was identified as a direct target of miR-218. The upregulation of miR-218 inhibited the activation of the PI3K/Akt/mTOR signaling pathway, as well as the expression of matrix metalloproteinase (MMP)9. The downregulation of miR-218 activated the PI3K/Akt/mTOR signaling pathway and promoted MMP9 expression. Taken together, our results demonstrate that miR-218 suppresses the proliferation, migration and invasion of LoVo colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway and MMP9. Our data indicate that miR-218 is a potential target in the treatment of colon cancer.
Collapse
Affiliation(s)
- Xiangliang Zhang
- Department of Abdominal Surgery (Section 2), The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongsheng Tang
- Department of Abdominal Surgery (Section 2), The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zhiyuan Fang
- Department of Abdominal Surgery (Section 2), The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jiping Wang
- Department of Surgery, Brigham and Women's Hospital affiliated to Harvard Medical School, Boston, MA 02115, USA
| | - Shuzhong Cui
- Department of Abdominal Surgery (Section 2), The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
57
|
The role of the mediators of inflammation in cancer development. Pathol Oncol Res 2015; 21:527-34. [PMID: 25740073 DOI: 10.1007/s12253-015-9913-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Epigenetic disorders such as point mutations in cellular tumor suppressor genes, DNA methylation and post-translational modifications are needed to transformation of normal cells into cancer cells. These events result in alterations in critical pathways responsible for maintaining the normal cellular homeostasis, triggering to an inflammatory response which can lead the development of cancer. The inflammatory response is a universal defense mechanism activated in response to an injury tissue, of any nature, that involves both innate and adaptive immune responses, through the collective action of a variety of soluble mediators. Many inflammatory signaling pathways are activated in several types of cancer, linking chronic inflammation to tumorigenesis process. Thus, Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, growth, invasion, and metastasis, affecting also the immune surveillance. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. A range of inflammation mediators, including cytokines, chemokines, free radicals, prostaglandins, growth and transcription factors, microRNAs, and enzymes as, cyclooxygenase and matrix metalloproteinase, collectively acts to create a favorable microenvironment for the development of tumors. In this review are presented the main mediators of the inflammatory response and discussed the likely mechanisms through which, they interact with each other to create a condition favorable to development of cancer.
Collapse
|
58
|
Law IKM, Pothoulakis C. MicroRNA-133α regulates neurotensin-associated colonic inflammation in colonic epithelial cells and experimental colitis. RNA & DISEASE 2015; 2. [PMID: 26005712 DOI: 10.14800/rd.472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn's Disease (CD) are the two most common forms of Inflammatory Bowel Diseases (IBD) marked by chronic and persistent inflammation. Neurotensin (NT), together with its receptor, NT receptor 1 (NTR1), are important mediators in intestinal inflammation and their expression is upregulated in the intestine of experimental colitis models and UC colonic biopsies. MicroRNAs (miRNAs) are short, non-coding RNA molecules which act as transcription repressors. We have previously shown that NT exposure upregulates miR-133α expression in human colonocytes NCM460 cells overexpressing NTR1 (NCM460-NTR1). Recently, miR-133α was further examined forits role in NT-associated proinflammatory signaling cascades and acute colitis in vivo. Our study shows that NT-induced miR-133α upregulation modulates NF-κB phosphorylation and promotes proinflammatory cytokine production. In addition, intracolonicinjection of antisense-miR-133α before colitis induction improves histological scores and proinflammatory cytokine transcription. More importantly, dysregulation of miR-133α levels and aftiphilin (AFTPH), a newly-identified miR-133α downstream target, is found only in UC patients, but not in patients with CD. Taken together, we identified NTR1/miR-133α/aftiphilin as a novel regulatory axis involved in NT-associated colonic inflammation in human colonocytes, acute colitis mouse model and in colonic biopsies from UC patients. Our results also provide evidence that colonic levels of NTR1, miR-133α and aftiphilin may also serve as potential biomarkers in UC.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
59
|
Weng W, Feng J, Qin H, Ma Y, Goel A. An update on miRNAs as biological and clinical determinants in colorectal cancer: a bench-to-bedside approach. Future Oncol 2015; 11:1791-808. [PMID: 26075447 PMCID: PMC4489702 DOI: 10.2217/fon.15.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinogenesis represents a sequential progression of normal colonic mucosa from adenoma to carcinoma. It has become apparent that miRNA deregulation contributes to the initiation and progression of colorectal cancer (CRC). These oncogenic or tumor-suppressive miRNAs interact with intracellular signaling networks and lead to alteration of cell proliferation, apoptosis, metastasis and even response to chemotherapeutic treatments. This article aims to review the cutting edge progress in the discovery of the role of novel mechanisms for miRNAs in the development of CRC. We will also discuss the potential use of miRNAs as biomarkers for early diagnosis and prognosis of CRC. Furthermore, with advancements in RNA delivery technology, it is anticipated that manipulation of miRNAs may offer an alternative therapy for CRC treatment.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital Affiliated with Tongji University, Shanghai 200072, China
| | - Junlan Feng
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Ajay Goel
- Center for Gastrointestinal Research & Center for Epigenetics, Cancer Prevention & Cancer Genomics, Baylor Research Institute & Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
60
|
Dheer R, Davies JM, Abreu MT. Inflammation and Colorectal Cancer. INTESTINAL TUMORIGENESIS 2015:211-256. [DOI: 10.1007/978-3-319-19986-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
61
|
Tian S, Su X, Qi L, Jin XH, Hu Y, Wang CL, Ma X, Xia HF. MiR-143 and rat embryo implantation. Biochim Biophys Acta Gen Subj 2014; 1850:708-21. [PMID: 25486623 DOI: 10.1016/j.bbagen.2014.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND To study the role of miR-143 during embryo implantation in rat. METHODS MiR-143 expression in rat early pregnancy was detected by Northern blot. The relation between miR-143 and Lifr predicted and confirmed by bioinformatics method, dual-luciferase activity assay, Western blot and immunohistochemistry. The role of miR-143 was detected by MTS, Edu and ranswell chamber assays. RESULTS The expression level of miR-143 on gestation day 5-8 (g.d. 5-8) was higher than on g.d. 3-4 in uteri of pregnant rat. MiR-143 was mainly localized in the superficial stroma/primary decidual zone, luminal and glandular epithelia. The expression of miR-143 was not significantly influenced by pseudopregnancy, but the activation of delayed implantation and experimentally induced decidualization significantly promoted miR-143 expression. Over-expression of miR-143 in human endometrial stromal cells (ESCs) inhibited cell proliferation, migration and invasion. Knockdown of miR-143 promoted cell proliferation and invasion. The results of recombinant luciferase reporters showed that miR-143 could bind to the 3¢-untranslated region (UTR) of leukemia inhibitory factor receptor (Lifr) to inhibit Lifr translation. CONCLUSIONS Uterine miR-143 may be involved in the successful pregnancy, especially during the process of blastocyst implantation through regulating Lifr. GENERAL SIGNIFICANCE This study may have the potential to provide new insights into the understanding of miR-143 function during embryo implantation.
Collapse
Affiliation(s)
- Shi Tian
- Haidian Maternal & Child Health Hospital, Beijing 100080, China
| | - Xing Su
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China
| | - Lu Qi
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | - Xiao-Hua Jin
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China
| | - Yi Hu
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | - Chun-Ling Wang
- Cadre Ward, China Mei-Tan General Hospital, Beijing 100028, China.
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China.
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
62
|
Orang AV, Barzegari A. MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy. Asian Pac J Cancer Prev 2014; 15:6989-99. [DOI: 10.7314/apjcp.2014.15.17.6989] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|