51
|
Apelin/APJ system: A novel promising target for anti-aging intervention. Clin Chim Acta 2018; 487:233-240. [PMID: 30296443 DOI: 10.1016/j.cca.2018.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is widely expressed in various organs. Recent research has indicated that the Apelin/APJ system plays an important role in aging. Apelin and APJ receptor expression are down-regulated with increasing age. In murine models, Apelin and APJ knockouts exhibit accelerated senescence whereas Apelin-restoration results in enhanced vigor and rejuvenated behavioral and circadian phenotypes. Furthermore, aged Apelin knockout mice develop progressive impairment of cardiac contractility associated with systolic dysfunction. Apelin is crucial to maintain cardiac contractility in aging. Moreover, the Apelin/APJ system appears to be involved in regulation of renin-angiotensin-aldosterone system (RAAS), apoptosis, inflammation and oxidative stress which promotes aging. Likewise, the Apelin/APJ system regulates autophagy, stem cells and the sirtuin family thus contributing to anti-aging. In this review, we describe the relationship between Apelin/APJ system and aging. We elaborate on the role of the Apelin/APJ system in aging stimulators, aging inhibitors and age-related diseases such as obesity, diabetes and cardiovascular disease. We conclude that Apelin/APJ system might become a novel promising therapeutic target for anti-aging.
Collapse
|
52
|
Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 2018; 22:889-902. [PMID: 28762019 DOI: 10.1007/s10741-017-9644-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity and diabetes are strongly associated with metabolic and cardiovascular disorders including dyslipidemia, coronary artery disease, hypertension, and heart failure. Adipose tissue is identified as a complex endocrine organ, which by exerting a wide array of regulatory functions at the cellular, tissue and systemic levels can have profound effects on the cardiovascular system. Different terms including "epicardial," "pericardial," and "paracardial" have been used to describe adipose tissue deposits surrounding the heart. Epicardial adipose tissue (EAT) is a unique and multifaceted fat depot with local and systemic effects. The functional and anatomic proximity of EAT to the myocardium enables endocrine, paracrine, and vasocrine effects on the heart. EAT displays a large secretosome, which regulates physiological and pathophysiological processes in the heart. Perivascular adipose tissue (PVAT) secretes adipose-derived relaxing factor, which is a "cocktail" of cytokines, adipokines, microRNAs, and cellular mediators, with a potent effect on paracrine regulation of vascular tone, vascular smooth muscle cell proliferation, migration, atherosclerosis-susceptibility, and restenosis. Although there are various physiological functions of the EAT and PVAT, a phenotypic transformation can lead to a major pathogenic role in various cardiovascular diseases. The equilibrium between the physiological and pathophysiological properties of EAT is very delicate and susceptible to the influences of intrinsic and extrinsic factors. Various adipokines secreted from EAT and PVAT have a profound effect on the myocardium and coronary arteries; targeting these adipokines could be an important therapeutic approach to counteract cardiovascular disease.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saumya Shah
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
- Department of Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
53
|
Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Front Physiol 2018; 9:557. [PMID: 29875677 PMCID: PMC5974534 DOI: 10.3389/fphys.2018.00557] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Apelin is an endogenous peptide identified as a ligand of the G protein-coupled receptor APJ. Apelin belongs to the family of adipokines, which are bioactive mediators released by adipose tissue. Extensive tissue distribution of apelin and its receptor suggests, that it could be involved in many physiological processes including regulation of blood pressure, body fluid homeostasis, endocrine stress response, cardiac contractility, angiogenesis, and energy metabolism. Additionally, this peptide participates in pathological processes, such as heart failure, obesity, diabetes, and cancer. In this article, we review current knowledge about the role of apelin in organ and tissue pathologies. We also summarize the mechanisms by which apelin and its receptor mediate the regulation of physiological and pathological processes. Moreover, we put forward an indication of apelin as a biomarker predicting cardiac diseases and various types of cancer. A better understanding of the function of apelin and its receptor in pathologies might lead to the development of new medical compounds.
Collapse
Affiliation(s)
- Marta B Wysocka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
54
|
Kurowska P, Barbe A, Różycka M, Chmielińska J, Dupont J, Rak A. Apelin in Reproductive Physiology and Pathology of Different Species: A Critical Review. Int J Endocrinol 2018; 2018:9170480. [PMID: 29977292 PMCID: PMC6011052 DOI: 10.1155/2018/9170480] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
Apelin has been isolated from the bovine stomach extracts as an endogenous ligand of the previously orphan receptor APJ. Expression of the apelinergic system (apelin and APJ) was described in many organs where pleiotropic effects like regulation of food intake, body weight, or cardiovascular and immune function were described. Recent studies have shown that apelin also plays an important role in the regulation of female and male reproduction. Some data showed that the gene and protein of apelin/APJ are expressed in the hypothalamic-pituitary-gonad (HPG) axis tissue. Thus, apelin is synthesized locally in the hypothalamus, pituitary, ovaries, and testis of many species and has autocrine and/or paracrine effects. Most research indicates that apelin has an inhibitory effect on gonadotropin secretion and participates in the direct regulation of steroidogenesis, cell proliferation, and apoptosis in gonads. The article summarizes also results of a series of recent studies on the effect of apelin on reproduction pathology, like polycystic ovarian syndrome, endometriosis, and ovarian cancer. Many of these pathologies are still in critical need of therapeutic intervention, and recent studies have found that apelin can be targets in reproductive pathological states.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Alix Barbe
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Marta Różycka
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Justyna Chmielińska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joelle Dupont
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
55
|
Zhou Y, Wang Y, Qiao S, Yin L. Effects of Apelin on Cardiovascular Aging. Front Physiol 2017; 8:1035. [PMID: 29302260 PMCID: PMC5732982 DOI: 10.3389/fphys.2017.01035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Apelin is the endogenous ligand of APJ, the orphan G protein-coupled receptor. The apelin-APJ signal transduction pathway is widely expressed in the cardiovascular system and is an important factor in cardiovascular homeostasis. This signal transduction pathway has long been related to diseases with high morbidity in the elderly, such as atherosclerosis, coronary atherosclerotic heart disease, hypertension, calcific aortic valve disease, heart failure and atrial fibrillation. In this review, we discuss the apelin-APJ signal transduction pathway related to age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Shubin Qiao
- Department of Cardiology, Cardiovascular Institute of Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Yin
- School of Science, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
56
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
57
|
The endoplasmic reticulum stress-autophagy pathway is involved in apelin-13-induced cardiomyocyte hypertrophy in vitro. Acta Pharmacol Sin 2017; 38:1589-1600. [PMID: 28748915 DOI: 10.1038/aps.2017.97] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
Apelin is the endogenous ligand for the G protein-coupled receptor APJ, and plays important roles in the cardiovascular system. Our previous studies showed that apelin-13 promotes the hypertrophy of H9c2 rat cardiomyocytes through the PI3K-autophagy pathway. The aim of this study was to explore what roles ER stress and autophagy played in apelin-13-induced hypertrophy of cardiomyocytes in vitro. Treatment of H9c2 cells with apelin-13 (0.001-2 μmol/L) dose-dependently increased the production of ROS and the expression levels of NADPH oxidase 4 (NOX4). Knockdown of Nox4 with siRNAs effectively prevented the reduction of GSH/GSSG ratio in apelin-13-treated cells. Furthermore, apelin-13 treatment dose-dependently increased the expression of Bip and CHOP, two ER stress markers, in the cells. Knockdown of APJ or Nox4 with the corresponding siRNAs, or application of NADPH inhibitor DPI blocked apelin-13-induced increases in Bip and CHOP expression. Moreover, apelin-13 treatment increased the formation of autophagosome and ER fragments and the LC3 puncta in the ER of the cells. Knockdown of APJ, Nox4, Bip or CHOP with the corresponding siRNAs, or application of DPI or salubrinal attenuated apelin-13-induced overexpression of LC3-II/I and beclin 1. Finally, knockdown of Nox4, Bip or CHOP with the corresponding siRNAs, or application of salubrinal significantly suppressed apelin-13-induced increases in the cell diameter, volume and protein contents. Our results demonstrate that ER stress-autophagy is involved in apelin-13-induced H9c2 cell hypertrophy.
Collapse
|
58
|
Neto-Neves EM, Frump AL, Vayl A, Kline JA, Lahm T. Isolated heart model demonstrates evidence of contractile and diastolic dysfunction in right ventricles from rats with sugen/hypoxia-induced pulmonary hypertension. Physiol Rep 2017; 5:5/19/e13438. [PMID: 29038355 PMCID: PMC5641930 DOI: 10.14814/phy2.13438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/29/2023] Open
Abstract
Although extensively used for the study of left ventricular function, limited experience exists with the isolated heart model in the evaluation of right ventricular (RV) function. In particular, no published experience exists with this tool in sugen/hypoxia‐induced pulmonary hypertension (SuHx‐PH), a frequently used model of severe and progressive PH. We sought to characterize markers of RV contractile and diastolic function in SuHx‐PH and to establish their relationship with markers of maladaptive RV remodeling. Hearts were excised from anesthetized Sprague Dawley rats with or without SuHx‐PH and perfused via the aorta using a Langendorff preparation. We explored the Frank–Starling relationship of RV function (RV developed pressure, dP/dtmax, and dP/dtmin; all normalized to RV mass) by increasing RV end‐diastolic pressure (RVEDP) from 0 to 40 mmHg. Functional studies were complemented by quantification of RV pro‐apoptotic signaling (bcl2/bax), procontractile signaling (apelin), and stress response signaling (p38MAPK activation). Pearson's correlation analysis was performed for functional and biochemical parameters. SuHx‐RVs exhibited severe RV dysfunction with marked hypertrophy and decreased echocardiographic cardiac output. For any given RVEDP, SuHx‐RVs demonstrated less developed pressure and lower dP/dtmax, as well as less pronounced dP/dtmin, suggestive of decreased contractile and diastolic function. SuHx‐RVs exhibited decreased bcl2/bax ratios, apelin expression, and p38MAPK activation. Bcl2/bax and apelin RNA abundance correlated positively with RV developed pressure and dP/dtmax and negatively with dP/dtmin. p38MAPK activation correlated positively with RV developed pressure. We conclude that SuHx‐RVs exhibit severe contractile and diastolic dysfunction. Increased pro‐apoptotic signaling and attenuated procontractile and stress response signaling may contribute to these functional alterations.
Collapse
Affiliation(s)
- Evandro M Neto-Neves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexandra Vayl
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey A Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
59
|
Chen T, Liu N, Xu GM, Liu TJ, Liu Y, Zhou Y, Huo SB, Zhang K. Apelin13/APJ promotes proliferation of colon carcinoma by activating Notch3 signaling pathway. Oncotarget 2017; 8:101697-101706. [PMID: 29254197 PMCID: PMC5731907 DOI: 10.18632/oncotarget.21904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 01/02/2023] Open
Abstract
Background The link between Apelin (APL)/APL receptor (APJ) and Jagged (JAG)/Notch signaling pathways in colorectal cancer (CRC) has been poorly investigated. APL/APJ system, a potent angiogenic factor, is up-regulated in a variety of cancers. It contributes to tumor angiogenesis, and correlates with progression of malignancy. JAG/Notch signaling also contributes to progression, proliferation and metastasis of multiple cancers, including CRC. Here we tested the hypothesis that APL/APJ system promotes CRC proliferation by up-regulating Notch3, thus allowing further binding of JAG1 to Notch3. Materials and Methods We used a variety of methods including Western blot, RT-qPCR, gene silencing, ELISA, immunofluorescence staining, to investigate the interaction between APL/APJ system and Notch3 signaling pathway in both surgically-resected specimens and CRC cell line LS180. Results We show that the expression of APL13, APJ, and Notch3 is elevated in CRC. We further demonstrate that APL13 can be secreted into culture media of LS180 cells, suggesting the existence of autocrine loop in CRC. Moreover, we found that APL13 stimulated expression of Notch3. Finally, we found that inhibition of either APJ or Notch3 prevents proliferation of LS180 cells. Conclusions Our results suggest that APL13/APJ and JAG1/Notch3 signaling pathways are linked in CRC. These findings provide a new direction to the efforts targeting effective therapeutic and management approaches in the treatment of CRC.
Collapse
Affiliation(s)
- Tong Chen
- Gastrointestinal Surgery Department, The China-Japan Union Hospital of Jilin University, Jilin, China
| | - Ning Liu
- General Surgery Department, The First Hospital of Jilin Province Academy of Traditional Chinese Medicine, Jilin, China
| | - Guang-Meng Xu
- Colorectal Surgery Department, The Second Hospital of Jilin University, Jilin, China
| | - Tong-Jun Liu
- Colorectal Surgery Department, The Second Hospital of Jilin University, Jilin, China
| | - Ying Liu
- Colorectal Surgery Department, The Second Hospital of Jilin University, Jilin, China
| | - Yan Zhou
- Colorectal Surgery Department, The Second Hospital of Jilin University, Jilin, China
| | - Si-Bo Huo
- Colorectal Surgery Department, The Second Hospital of Jilin University, Jilin, China
| | - Kai Zhang
- Colorectal Surgery Department, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
60
|
Motawi TMK, Mahdy SG, El-Sawalhi MM, Ali EN, El-Telbany RFA. Serum levels of chemerin, apelin, vaspin, and omentin-1 in obese type 2 diabetic Egyptian patients with coronary artery stenosis. Can J Physiol Pharmacol 2017; 96:38-44. [PMID: 28957639 DOI: 10.1139/cjpp-2017-0272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in the diabetic population. Obesity is a serious problem that has been linked with CVD and diabetes via a variety of adipokines. The aims of this study were to evaluate and correlate circulating chemerin, apelin, vaspin, and omentin-1 levels in obese type 2 diabetic Egyptian patients with coronary artery stenosis (CAS), and to assess their usefulness as noninvasive diagnostic biomarkers. Chemerin, apelin, vaspin, and omentin-1 levels were determined by enzyme immunoassay in coronary artery disease (CAD) I patients (45 non-obese, nondiabetic with CAS), CAD II patients (45 obese, diabetic with CAS), and 30 controls. Patients in CAD I and CAD II groups exhibited higher levels of chemerin and apelin together with lower levels of vaspin and omentin-1 than in controls. These alterations were more significant in CAD II than in CAD I patients. Additionally, adipokine levels were individually correlated with each other and with certain biochemical variables. Moreover, chemerin and vaspin levels could differentiate CAD II patients from CAD I and controls. Alterations of these adipokines may play a crucial role in the pathogenesis of CAS in obese type 2 diabetic Egyptian patients. Chemerin and vaspin could be used as markers to support diagnosis of CAS.
Collapse
Affiliation(s)
- Tarek M K Motawi
- a Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soliman G Mahdy
- b Cardiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha M El-Sawalhi
- a Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,c Biochemistry Section, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Future University, 11835 Cairo, Egypt
| | - Eman N Ali
- d Biochemistry Department, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Rania Farag A El-Telbany
- e Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
61
|
Liu Y, Zhang J, Wang Y, Zeng X. Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis 2017; 8:e3006. [PMID: 28837139 PMCID: PMC5596593 DOI: 10.1038/cddis.2017.414] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022]
Abstract
Podocyte autophagy dysfunction has been reported to be responsible for the progression of diabetic nephropathy (DN), however, the factors contributed to autophagy dysfunction in type 2 diabetes are not fully understood. Among promoting factors in DN, an adipokine, apelin, had been showed to trigger podocyte dysfunction. Therefore, it is hypothesized that apelin, which is increased in plasma in type 2 diabetes, lead to podocyte apoptosis through inhibiting podocyte autophagy, which resulted in podocyte dysfunction followed by DN. KkAy mice (diabetic mice) and cultured podocytes (MPC5 cells and native podocytes) were treated with high glucose (HG) and apelin or its antagonist F13A. Renal function, podocyte autophagy, podocyte apoptosis and corresponding cell signaling pathways in podocytes were detected. The results showed that apelin aggravated the renal dysfunction and foot process injuries in kkAy mice, which is positively correlated to podocyte apoptosis and negatively correlated to podocyte autophagy. Apelin induced podocyte apoptosis and inhibited podocyte autophagy in both normal glucose and HG conditions while F13A reversed these effects. Investigations by western blot found that apelin inhibits podocyte autophagy through ERK-, Akt- and mTOR-dependent pathways. In conclusion, increased apelin concentration in plasma inhibited podocyte autophagy, which would lead to podocyte apoptosis and renal dysfunction in diabetes. These effects would contribute to the progression of DN.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| | - Jia Zhang
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| | - Yangjia Wang
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| | - Xiangjun Zeng
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| |
Collapse
|
62
|
Wu D, Xie F, Xiao L, Feng F, Huang S, He L, Liu M, Zhou Q, Li L, Chen L. Caveolin-1-Autophagy Pathway Mediated Cardiomyocyte Hypertrophy Induced by Apelin-13. DNA Cell Biol 2017; 36:611-618. [DOI: 10.1089/dna.2016.3574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Di Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Feng Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ling Xiao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Fen Feng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Qun Zhou
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
63
|
Liu J, Liu M, Chen L. Novel pathogenesis: regulation of apoptosis by Apelin/APJ system. Acta Biochim Biophys Sin (Shanghai) 2017; 49:471-478. [PMID: 28407045 DOI: 10.1093/abbs/gmx035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Apelin is the endogenous peptide APJ receptor, while APJ is a member of the G protein-coupled receptors family. Recent evidence strongly suggests that Apelin/APJ system influences apoptosis in various diseases through different signal pathways. In this review, we discuss the possible mechanisms by which the Apelin/APJ system inhibits apoptosis, including the phosphatidylinositol-3-kinase (PI3K)/Akt, ERK1/2, caspase signaling, and autophagy pathway. We also summarize the role of Apelin/APJ system in apoptosis in myocardial ischemia-reperfusion (I/R) injury, pulmonary artery hypertension, retinal neovascular disease, acute renal injury, skeletal homeostasis, and gastrointestinal diseases. Apelin/APJ system decreases myocardial infarction size and alleviates myocardial I/R injury by inhibiting cardiomyocytes apoptosis. However, Apelin/APJ system improves pulmonary artery hypertension via increasing apoptosis. Apelin/APJ system exerts neuroprotective effect by blocking apoptosis and participates in the recovery of retinal neovascular disease by suppressing apoptosis. Apelin/APJ system also shows anti-apoptotic effect against acute renal injury and plays a role in regulating skeletal homeostasis. In gastrointestinal disease, Apelin/APJ system plays a potential physiological role in gastrointestinal cytoprotection by regulating apoptosis. We hope that a better understanding of the Apelin/APJ system will help to discover new disease pathogenesis and find possible therapeutic targets of the Apelin/APJ system essential for various diseases.
Collapse
Affiliation(s)
- Jiaqi Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | | |
Collapse
|
64
|
Zhang X, Ye Q, Gong D, Lv Y, Cheng H, Huang C, Chen L, Zhao Z, Li L, Wei X, Zhang M, Xia X, Yu X, Zheng X, Wang S, Wang Z, Tang C. Apelin-13 inhibits lipoprotein lipase expression via the APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophage-derived foam cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:530-540. [PMID: 28444107 DOI: 10.1093/abbs/gmx038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic lesions are characterized by the accumulation of abundant lipids and chronic inflammation. Previous researches have indicated that macrophage-derived lipoprotein lipase (LPL) promotes atherosclerosis progression by accelerating lipid accumulation and pro-inflammatory cytokine secretion. Although apelin-13 has been regarded as an atheroprotective factor, it remains unclear whether it can regulate the expression of LPL. The aim of this study was to explore the effects of apelin-13 on the expression of LPL and the underlying mechanism in THP-1 macrophage-derived foam cells. Apelin-13 significantly decreased cellular levels of total cholesterol, free cholesterol, and cholesterol ester at the concentrations of 10 and 100 nM. ELISA analysis confirmed that treatment with apelin-13 reduced pro-inflammatory cytokine secretion, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). It was also found that apelin-13 inhibited the expression of LPL as revealed by western blot and real-time PCR analyses. Bioinformatics analyses and dual-luciferase reporter assay indicated that miR-361-5p directly downregulated the expression of LPL by targeting the 3'UTR of LPL. In addition, apelin-13 + miR-361-5p mimic significantly downregulated the expression of LPL in cells. Finally, we demonstrated that apelin-13 downregulated the expression of LPL through activating the activity of PKCα. Taken together, our results showed that apelin-13 downregulated the expression of LPL via activating the APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophage-derived foam cells, leading to inhibition of lipid accumulation and pro-inflammatory cytokine secretion. Therefore, our studies provide important new insight into the inhibition of lipid accumulation and pro-inflammatory cytokine secretion by apelin-13, and highlight apelin-13 as a promising therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Qiong Ye
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yuan Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Haipeng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Chong Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lingyan Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zhenwang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xie Wei
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiaodan Xia
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, Calgary, Alberta, CanadaT2N 4N1
| | - Shuzhi Wang
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Zongbao Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
65
|
Zhang P, Yi LH, Meng GY, Zhang HY, Sun HH, Cui LQ. Apelin-13 attenuates cisplatin-induced cardiotoxicity through inhibition of ROS-mediated DNA damage and regulation of MAPKs and AKT pathways. Free Radic Res 2017; 51:449-459. [PMID: 28554248 DOI: 10.1080/10715762.2017.1313414] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pu Zhang
- Cardiovascular Center, Shandong Provincial Hospital to Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, China
| | - Lu-hua Yi
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, China
| | - Guang-yuan Meng
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, China
| | - Huan-yi Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, China
| | - Hai-hui Sun
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, China
| | - Lian-qun Cui
- Cardiovascular Center, Shandong Provincial Hospital to Shandong University, Jinan, Shandong, China
| |
Collapse
|
66
|
Lu L, Cao J, Li L, Chen L. Elabela, a new endogenous ligand of APJ, functions in embryos and adults organisms. Acta Biochim Biophys Sin (Shanghai) 2017; 49:378-381. [PMID: 28338953 DOI: 10.1093/abbs/gmx014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liqun Lu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Jiangang Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| |
Collapse
|
67
|
Hou J, Zhong T, Guo T, Miao C, Zhou C, Long H, Wu H, Zheng S, Wang L, Wang T. Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro involving the upregulation of vascular endothelial growth factor. Exp Mol Pathol 2017; 102:203-209. [PMID: 28161441 DOI: 10.1016/j.yexmp.2017.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) transplantation has been regarded as an optimal therapeutic approach for cardiovascular disease. However, the inferior survival and low vascularization potential of these cells in the local infarct site reduce the therapeutic efficacy. In this study, we investigated the influence of apelin on MSCs survival and vascularization under hypoxic-ischemic condition in vitro and explored the relevant mechanism. METHODS MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells of the third passage were divided into MSCs and MSCs+apelin groups. In the MSCs+apelin group, MSCs were stimulated with apelin-13 (5μM). The two groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24h, using normoxia (20% O2) as a negative control during the process. Human umbilical vein endothelial cells (HUVECs) were used and incubated with conditioned media from both groups to promote vascularization for another 6h. Vascular densities were assessed and relevant biomarkers were detected thereafter. RESULTS Compared with MSCs group, MSCs+apelin group presented more rapid growth. The proliferation rate was much higher. Cells apoptosis percentage was significantly declined both under normoxic and hypoxic conditions. Media produced from MSCs+apelin group triggered HUVECs to form a larger number of vascular branches on matrigel. The expression and secretion of vascular endothelial growth factor (VEGF) were significantly increased. CONCLUSION Apelin could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro, and this procedure was associated with the upregulation of VEGF. This study provides a new perspective for exploring novel approaches to enhance MSCs survival and vascularization potential.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Changqing Miao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
68
|
Tao YK, Zeng H, Zhang GQ, Chen ST, Xie XJ, He X, Wang S, Wen H, Chen JX. Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia. Int J Cardiol 2017; 236:413-422. [PMID: 28131704 DOI: 10.1016/j.ijcard.2017.01.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022]
Abstract
RATIONALE Vascular maturation plays an important role in wound repair post-myocardial infarction (MI). The Notch3 is critical for pericyte recruitment and vascular maturation during embryonic development. OBJECTIVE This study is to test whether Notch3 deficiency impairs vascular maturation and blunts cardiac functional recovery post-MI. APPROACH AND RESULTS Wild type (WT) and Notch3 knockout (Notch3KO) mice were subjected to MI by the ligation of left anterior descending coronary artery (LAD). Cardiac function and coronary blood flow reserve (CFR) were measured by echocardiography. The expression of angiogenic growth factor, pericyte/capillary coverage and arteriolar formation were analyzed. Loss of Notch3 in mice resulted in a significant reduction of pericytes and small arterioles. Notch3 KO mice had impaired pericyte/capillary coverage and CFR compared to WT mice. Notch3 KO mice were more prone to ischemic injury with larger infarcted size and higher rates of mortality. The expression of CXCR-4 and VEGF/Ang-1 was significantly decreased in Notch3 KO mice. Notch3 KO mice also had few NG2+/Sca1+ and NG2+/c-kit+ progenitor cells in the ischemic area and exhibited worse cardiac function recovery at 2weeks after MI. These were accompanied by a significant reduction of pericyte/capillary coverage and arteriolar maturation. Furthermore, Notch3 KO mice subjected to MI had increased intracellular adhesion molecule-2 (ICAM-2) expression and CD11b+ macrophage infiltration into ischemic areas compared to that of WT mice. CONCLUSION Notch3 mutation impairs recovery of cardiac function post-MI by the mechanisms involving the pre-existing coronary microvascular dysfunction conditions, and impairment of pericyte/progenitor cell recruitment and microvascular maturation.
Collapse
Affiliation(s)
- Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Emergency Department of China-Japan Friendship Hospital, Beijing 100029, China
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, Beijing 100029, China.
| | - Sean T Chen
- Duke University School of Medicine, Durham, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongyan Wen
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
69
|
Chen Z, Wu D, Li L, Chen L. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol 2016; 35:766-775. [DOI: 10.1089/dna.2016.3391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| |
Collapse
|
70
|
Luo JW, Zheng X, Cheng GC, Ye QH, Deng YZ, Wu L. Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed Rep 2016; 5:473-478. [PMID: 27699016 DOI: 10.3892/br.2016.749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/18/2016] [Indexed: 11/06/2022] Open
Abstract
It has been reported that resistin induces, whereas apelin inhibits cardiac hypertrophy. However, the underlying molecular mechanisms of apelin inhibiting resistin-induced cardiac hypertrophy remain unclear. The aim of the current study is to investigate the effects of apelin on resistin-induced cardiomyocyte hypertrophy and elucidate the underlying molecular mechanism. H9c2 cells were used in the present study, and cell surface area and protein synthesis were evaluated. Reverse transcription-quantitative polymerase chain reaction was performed to analyze the expression levels of hypertrophic markers, brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, western blotting was conducted to examine phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Following treatment of H9c2 cells with resistin, cell surface area, protein synthesis, and BNP and β-MHC mRNA expression levels were increased. Subsequent to co-treatment of H9c2 cells with apelin and resistin, lead to the inhibition of resistin-induced hypertrophic effects by apelin. In addition, treatment with resistin increased phosphorylation of ERK1/2, whereas pretreatment with apelin decreased phosphorylation of ERK1/2, which was increased by resistin. These results indicate that resistin-induced cardiac hypertrophy is inhibited by apelin via inactivation of ERK1/2 cell signaling.
Collapse
Affiliation(s)
- Jian-Wei Luo
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Xian Zheng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Guan-Chang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Qun-Hui Ye
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yong-Zhi Deng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Lin Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
71
|
Hu H, He L, Li L, Chen L. Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol Genet Metab 2016; 119:20-7. [PMID: 27650065 DOI: 10.1016/j.ymgme.2016.07.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/25/2023]
Abstract
The G-protein-coupled receptor APJ and its endogenous ligand apelin are widely expressed in many peripheral tissues and central nervous system, including adipose tissue, skeletal muscles and hypothalamus. Apelin/APJ system, involved in numerous physiological functions like angiogenesis, fluid homeostasis and energy metabolism regulation, is notably implicated in the development of different pathologies such as diabetes and its complications. Increasing evidence suggests that apelin regulates insulin sensitivity, stimulates glucose utilization and enhances brown adipogenesis in different tissues associated with diabetes. Moreover, apelin is also involved in the regulation of diabetic complications via binding to APJ receptor. Apelin improves diabetes-induced kidney hypertrophia, normalizes obesity-associated cardiac hypertrophy and negatively promotes retinal angiogenesis in diabetic retinopathy. In this review, we provide a comprehensive overview about the role of apelin/APJ system in different tissues related with diabetes. Furthermore, we describe the pathogenesis of diabetic complications associated with apelin/APJ system. Finally, agonists and antagonists targeted to APJ receptor are described in the literature. Thus, we highlight apelin/APJ system as a novel therapeutic target for pharmacological intervention in treating diabetes and its complications.
Collapse
Affiliation(s)
- Haoliang Hu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China; Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
72
|
|
73
|
Chung WJ, Cho A, Byun K, Moon J, Ge X, Seo HS, Moon E, Dash R, Yang PC. Apelin-13 infusion salvages the peri-infarct region to preserve cardiac function after severe myocardial injury. Int J Cardiol 2016; 222:361-367. [PMID: 27500765 DOI: 10.1016/j.ijcard.2016.07.263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Apelin-13 (A13) regulates cardiac homeostasis. However, the effects and mechanism of A13 infusion after an acute myocardial injury (AMI) have not been elucidated. This study assesses the restorative effects and mechanism of A13 on the peri-infarct region in murine AMI model. METHODS 51 FVB/N mice (12weeks, 30g) underwent AMI. A week following injury, continuous micro-pump infusion of A13 (0.5μg/g/day) and saline was initiated for 4-week duration. Dual contrast MRI was conducted on weeks 1, 2, 3, and 5, consisting of delayed-enhanced and manganese-enhanced MRI. Four mice in each group were followed for an extended period of 4weeks without further infusion and underwent MRI scans on weeks 7 and 9. RESULTS A13 infusion demonstrated preserved LVEF compared to saline from weeks 1 to 4 (21.9±3.2% to 23.1±1.7%* vs. 23.5±1.7% to 16.9±2.8%, *p=0.02), which persisted up to 9weeks post-MI (+1.4%* vs. -9.4%, *p=0.03). Mechanistically, dual contrast MRI demonstrated significant decrease in the peri-infarct and scar % volume in A13 group from weeks 1 to 4 (15.1 to 7.4% and 34.3 to 25.1%, p=0.02, respectively). This was corroborated by significant increase in 5-ethynyl-2'-deoxyuridine (EdU(+)) cells by A13 vs. saline groups in the peri-infarct region (16.5±3.1% vs. 8.1±1.6%; p=0.04), suggesting active cell mitosis. Finally, significantly enhanced mobilization of CD34(+) cells in the peripheral blood and up-regulation of APJ, fibrotic, and apoptotic genes in the peri-infarct region were found. CONCLUSIONS A13 preserves cardiac performance by salvaging the peri-infarct region and may contribute to permanent restoration of the severely injured myocardium.
Collapse
Affiliation(s)
- Wook-Jin Chung
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA; Department of Cardiovascular Medicine, Gachon University, Incheon, Republic of Korea; Gachon Cardiovascular Research Institute, Gachon University, Incheon, Republic of Korea
| | - Ahryon Cho
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kyunghee Byun
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Republic of Korea; Department of Anatomy and Cell Biology, Gachon University, Incheon, Republic of Korea; Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jeongsik Moon
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Republic of Korea; Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Xiaohu Ge
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Hye-Sun Seo
- Division of Cardiology, Soon Chun Hyang University College of Medicine, Bucheon, Republic of Korea
| | - Ejung Moon
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Rajesh Dash
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Phillip C Yang
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
74
|
He X, Zeng H, Chen JX. Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia. Int J Cardiol 2016; 215:349-57. [PMID: 27128560 PMCID: PMC4890543 DOI: 10.1016/j.ijcard.2016.04.092] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
RATIONALE Sirtuin (SIRT3), a major nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase in mitochondria, declines with aging and its ablation is associated with accelerated development of cardiovascular diseases. However, the role of SIRT3 in coronary microvascular function and post-MI recovery has not been completely understood. OBJECTIVE The goal was to investigate whether ablation of SIRT3 causes coronary microvascular dysfunction, exacerbates post-myocardial ischemia (MI) cardiac dysfunction and impairs cardiac recovery. METHODS AND RESULTS Using endothelial cells (ECs) isolated from SIRT3 knockout (KO) mice, we revealed that the angiogenic capabilities were significantly reduced in SIRT3 deficient ECs. SIRT3 KO mice presented a pre-existing coronary microvascular dysfunction and microvascular rarefaction, as evidenced by a reduction in hyperemic peak diastolic blood flow velocity and coronary flow reserve (CFR), accompanied by loss of capillary-pericytes in the heart. Furthermore, SIRT3 KO mice subjected to myocardial ischemia by the ligation of left anterior descending coronary artery (LAD) exhibited more severe cardiac dysfunction together with decreased pericyte/EC coverage than that of wild type (WT) mice. In contrast, overexpression of SIRT3 preserved cardiac function in post-MI mice. Immunoblot analysis further showed that the expression of angiopoietin-1 (Ang-1), vascular endothelial growth factor (VEGF) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) were significantly decreased in the SIRT3-deficient ischemic hearts than those of WT ischemic hearts. This was accompanied by higher levels of cleaved caspase-3 and apoptosis. CONCLUSION Our results reveal a potential mechanism by which SIRT3 deletion exacerbates post-MI cardiac dysfunction and impairment of cardiac recovery involving microvascular rarefaction and pre-existing coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Xiaochen He
- Dept. of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Heng Zeng
- Dept. of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Jian-Xiong Chen
- Dept. of Pharmacology and Toxicology, University of Mississippi Medical Center, United States.
| |
Collapse
|
75
|
Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 2016; 222:581-589. [PMID: 27513655 DOI: 10.1016/j.ijcard.2016.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023]
Abstract
Obesity is a risk factor of cardiovascular diseases. However, in the case of heart failure, obese and overweight patients have a more favourable prognosis compared to patients who have a normal body weight. This phenomenon is referred to as the "obesity paradox," and it is explained by, among others, a positive effect of adipokines produced by adipose tissue, particularly by the tissue located in the direct vicinity of the heart and blood vessels. The favourable effect on the cardiovascular system is mostly associated with adiponectin and omentin, but the levels of these substances are reduced in obese patients. Among the adipokines which levels are positively correlated with the adipose tissue content, favourable activity is demonstrated by apelin, progranulin, chemerin, TNF-α (tumour necrosis factor-)α, CTRP-3 (C1q/tumour necrosis factor (TNF) related protein), leptin, visfatin and vaspin. This activity is associated with the promotion of regeneration processes in the damaged myocardium, formation of new blood vessels, reduction of the afterload, improvement of metabolic processes in cardiomyocytes and myocardial contractile function, inhibition of apoptosis and fibrosis of the myocardium, as well as anti-inflammatory and anti-atheromatous effects. The potential use of these properties in the treatment of heart failure and ischaemic heart disease, as well as in pulmonary hypertension, arterial hypertension and the limitation of the loss of cardiomyocytes during cardioplegia-requiring cardiosurgical procedures, is studied. The most advanced studies focus on analogues of apelin and progranulin.
Collapse
Affiliation(s)
- Magdalena Sawicka
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, 9 Maria Skłodowska- Curie Street, 41-800 Zabrze, Poland; Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland.
| | - Joanna Janowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| | - Jerzy Chudek
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| |
Collapse
|
76
|
Li L, Xu J, He L, Peng L, Zhong Q, Chen L, Jiang Z. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2016; 48:491-500. [PMID: 27084518 PMCID: PMC4913516 DOI: 10.1093/abbs/gmw025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Lanfang Li
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Children's Hospital and School of Pediatrics, University of South China, Changsha 410007, China
| | - Jin Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lijun Peng
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Children's Hospital and School of Pediatrics, University of South China, Changsha 410007, China
| | - Qiaoqing Zhong
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Zhisheng Jiang
- Post-Doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
77
|
Grigoriadis NG, Grigoriadis IG, Markoula S, Paschopoulos M, Zikopoulos K, Apostolakopoulos PG, Vizirianakis IS, Georgiou I. Pharmacological preconditioning for short-term ex vivo expansion of human umbilical cord blood hematopoietic stem cells by filgrastim. AMERICAN JOURNAL OF STEM CELLS 2016; 5:29-38. [PMID: 27335700 PMCID: PMC4913295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
Although umbilical cord blood (UCB) hematopoietic stem cell transplantation (UCBT) has emerged as a promising haematological reconstitution therapy for leukemias and other related disorders, the insufficient UCB stem cell dosage still hinders better clinical outcomes. Previous research efforts, by focusing on ex vivo UCB expansion capabilities have sought to benefit from well-known mechanisms of self-renewal characteristics of UCB stem cells. However, the long-term (> 21 days) in vitro culture period and the low neutrophil recovery significantly reduce the transplantability of such ex vivo expanded UCB stem cells. To overcome the latter hurdles in this study, a post-thaw, short-term ex vivo expansion methodology of UCB mononuclear (UCB-MN) and CD34(+) cells has been established. Notably, such effort was achieved through pharmacological preconditioned of UCB cultures by filgrastim agent already used in the clinical setting. In crucial cell populations implicated in the promotion of functional engraftment, the progression of free survival rates (PFS), a marked increase of 6.65 to 9.34 fold for UCB-MN and 35 to 49 fold for CD34(+) cells has been noticed. Overall, these results indicate that transplantation of pharmacologically-preconditioned ex vivo expansion of UCB stem and progenitor cells keep high promise upon transplantation to enhance therapeutic potential in everyday clinical practice.
Collapse
Affiliation(s)
- Nikolaos G Grigoriadis
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Medical School, Ioannina UniversityGr 45110 Ioannina, Greece
- Biogenea Pharmaceuticals Cord Blood BankGr 546 27 Thessaloniki, Greece
| | | | - Sofia Markoula
- Department of Neurology, University Hospital of IoanninaGr 45110 Ioannina, Greece
| | - Minas Paschopoulos
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Medical School, Ioannina UniversityGr 45110 Ioannina, Greece
| | - Konstantinos Zikopoulos
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Medical School, Ioannina UniversityGr 45110 Ioannina, Greece
| | | | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiGr 54124 Thessaloniki, Greece
- Department of Life and Health Sciences, University of Nicosia1700 Nicosia, Cyprus
| | - Ioannis Georgiou
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Medical School, Ioannina UniversityGr 45110 Ioannina, Greece
| |
Collapse
|
78
|
Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. Mediators Inflamm 2016; 2016:5902947. [PMID: 27242392 PMCID: PMC4868905 DOI: 10.1155/2016/5902947] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.
Collapse
|
79
|
Huang S, Chen L, Lu L, Li L. The apelin-APJ axis: A novel potential therapeutic target for organ fibrosis. Clin Chim Acta 2016; 456:81-88. [PMID: 26944568 DOI: 10.1016/j.cca.2016.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is expressed in a diverse number of organs. The apelin-APJ axis helps to control the processes of pathological and physiological fibrosis, including renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. However, the role of apelin-APJ in organ fibrosis remains controversial due to conflicting study results. The apelin-APJ axis is a detrimental mechanism which promotes liver fibrosis mainly via up-regulation the expression of collagen-II and platelet-derived growth factor receptor β (PDGFRβ). On the contrary, the apelin-APJ axis is beneficial for renal fibrosis, cardiac fibrosis and pulmonary fibrosis. The apelin-APJ axis alleviates renal fibrosis by restraining the expression of transforming growth factor-β1 (TGF-β1). In addition, the apelin-APJ axis attenuates cardiac fibrosis through multiple pathways. Furthermore, the apelin-APJ axis has beneficial effects on experimental bronchopulmonary dysplasia (BPD) and acute respiratory distress syndrome (ARDS) which suggest the apelin-APJ axis potentially alleviates pulmonary fibrosis. In this article, we review the controversies associated with apelin-APJ in organ fibrosis and introduce the drugs that target apelin-APJ. We conclude that future studies should place more emphasis on the relationship among apelin isoforms, APJ receptor subtypes and organ fibrosis. The apelin-APJ axis will be a potential therapeutic target and those drugs targeted for apelin-APJ may constitute a novel therapeutic strategy for renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis.
Collapse
Affiliation(s)
- Shifang Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Liqun Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China.
| |
Collapse
|
80
|
He L, Chen L, Li L. The mechanosensitive APJ internalization via clathrin-mediated endocytosis: A new molecular mechanism of cardiac hypertrophy. Med Hypotheses 2016; 90:6-10. [PMID: 27063076 DOI: 10.1016/j.mehy.2016.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/12/2016] [Accepted: 02/20/2016] [Indexed: 12/13/2022]
Abstract
The G protein-coupled receptor APJ elicits cellular response to diverse extracellular stimulus. Accumulating evidence reveals that APJ receptor plays a prominent role in the cardiomyocyte adapting to hypertrophic stimulation. At present, it remains obscure that the regulatory mechanism of APJ receptor in myocardial hypertrophy. The natural endogenous ligands apelin and Elabela as well as agonists maintain high affinity for the APJ receptor and drive its internalization. Ligand-activated receptor internalization is mainly performed by clathrin-mediated endocytic pathway. Simultaneously, clathrin-mediated endocytosis takes participate in the occurrence and development of cardiac hypertrophy. In this study, we hypothesize that natural ligands and agonists induce the mechanosensitive APJ internalization via clathrin-mediated endocytosis. APJ internalization may contribute to the development of cardiac hypertrophy. The mechanosensitive APJ internalization via clathrin-mediated endocytosis may be a new molecular mechanism of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lu He
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China.
| |
Collapse
|
81
|
Zhang NK, Cao Y, Zhu ZM, Zheng N, Wang L, Xu XH, Gao LR. Activation of Endogenous Cardiac Stem Cells by Apelin-13 in Infarcted Rat Heart. Cell Transplant 2016; 25:1645-1652. [PMID: 26924778 DOI: 10.3727/096368916x691123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our previous study demonstrated that the apelin-APJ pathway contributed to myocardial regeneration and functional recovery after bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation during the differentiation of BM-MSCs into cardiomyogenic cells in acute myocardial infarction (AMI) rat models. However, the underlying mechanisms by which apelin promotes cardiac repair and functional recovery have not been completely clarified. In the present study, we investigated whether apelin could mobilize and activate endogenous cardiac stem cells and progenitors, thereby mediating regeneration and repair of the myocardium after AMI in rat models. Six-week-old male Sprague-Dawley rats underwent AMI and received apelin-13 (200 ng, n = 10) or an equivalent volume of saline by intramyocardial injection (n = 10); there was also a sham operation group (n = 8). Proliferation of endogenous cardiac stem cells was analyzed by immunofluorescence staining in rat infarcted myocardium, and heart function was evaluated by echocardiography at 28 days after apelin-13 injection. Treatment with apelin-13 led to a significant increase of Ki-67+-c-kit+/Sca-1+/Flk-1+ endogenous cardiac stem or progenitor cells in the border zone and infarct zone of rat hearts at 28 days after myocardial infarction (MI). Significant increases in the expression of c-kit, Sca-1, and Flk-1 on both levels of transcription and translation were confirmed by real-time polymerase chain reaction (RT-PCR) and Western blot. Treatment of apelin-13 also resulted in a significant reduction of infarct size and improvement of cardiac function post-MI. We conclude that apelin-13 is able to enhance mobilization, survival, and proliferation of endogenous myocardial stem cells in the injured heart, providing a novel mechanistic explanation for how apelin-13 might repair the heart and improve cardiac function. Thus, apelin-13 or pharmacological agonists of the APJ receptor could act as novel therapies for heart regeneration.
Collapse
Affiliation(s)
- Ning Kun Zhang
- Center of Cardiology, Navy General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Liang D, Han D, Fan W, Zhang R, Qiao H, Fan M, Su T, Ma S, Li X, Chen J, Wang Y, Ren J, Cao F. Therapeutic efficacy of apelin on transplanted mesenchymal stem cells in hindlimb ischemic mice via regulation of autophagy. Sci Rep 2016; 6:21914. [PMID: 26902855 PMCID: PMC4763210 DOI: 10.1038/srep21914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs)-based therapy provides a promising avenue for the management of peripheral arterial disease (PAD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment. Apelin has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Here we demonstrated that apelin promoted functional survival of AD-MSCs in ischemic hindlimbs and provoked a synergetic effect with AD-MSCs to restore hindlimb blood perfusion and limb functions. Further in vitro studies revealed that a biphasic response in autophagy was induced by apelin in AD-MSCs during hypoxia and hypoxia/reoxygenation (H/R) stages to exert cytoprotective effects against H/R injury. Mechanistically, apelin increased the viability of AD-MSCs via promoting protective autophagy during hypoxia, which was accompanied with activation of AMPK and inhibition of mammalian target of rapamycin (mTOR). To the contrary, apelin suppressed autophagic cell death during reoxygenation, which was accompanied with activation of Akt and inhibition of Beclin1. Our findings indicated that apelin facilitated AD-MSCs-based therapy in PAD, possibly through promoting survival of AD-MSCs by way of autophagy regulation. Our data support the promises of apelin as a novel strategy to improve MSC-based therapy for PAD, possibly through autophagy modulation in MSCs.
Collapse
Affiliation(s)
- Dong Liang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Armed Police Corps Hospital of Shaanxi, Xi'an, Shaanxi 710032, China
| | - Dong Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiwei Fan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, the 175th Hospital of Chinese PLA, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, China
| | - Ran Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyu Qiao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiujuan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yabin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
83
|
Zhou Y, Deng L, Zhao D, Chen L, Yao Z, Guo X, Liu X, Lv L, Leng B, Xu W, Qiao G, Shan H. MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J Cell Mol Med 2016; 20:495-505. [PMID: 26756969 PMCID: PMC4759464 DOI: 10.1111/jcmm.12754] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022] Open
Abstract
Cardiac fibrosis is a major cause of heart failure. MicroRNAs (miRs) are important epigenetic regulators of cardiac function and cardiovascular diseases, including cardiac fibrosis. This study aimed to explore the role of miR‐503 and its mechanisms in regulating cardiac fibrosis. miR‐503 was found up‐regulated in the mouse LV tissues subjected to transverse aortic constriction (TAC) and in neonatal cardiac fibroblasts (CFs) cultured with Angiotension II. The role of miR‐503 in regulating CF cell proliferation and/or collagen production in mice neonatal CFs were determined using an MTT assay and RT‐PCR respectively. Forced expression of miR‐503 increased the cellular proliferation and collagen production in mice neonatal CFs. The effects were abrogated by cotransfection with AMO‐503 (a specific inhibitor of miR‐503). Injection of antagomiR‐503 elevated cardiac function and inhibited the expression of connective tissue growth factor (CTGF) and transforming growth factor (TGF)‐β in the TAC mice. Additional analysis revealed that Apelin‐13 is a direct target of miR‐503, as the overexpression of miR‐503 decreased the protein and mRNA expression levels of Apelin‐13. In the CFs with pre‐treatment of AngII, we transfected AMO‐503 into the cells treated with siRNA‐APLN. siRNA‐APLN abolished the effects of AMO‐503 on the production of collagen I and III and the expression of TGF‐β and CTGF. Furthermore, pre‐treatment of CFs with Apelin‐13 (1–100 nmol/l) inhibited angiotensin II‐mediated collagen production and activation of CTGF and TGF‐β. So we conclude that miR‐503 promotes cardiac fibrosis via miR‐503‐Apelin‐13‐TGF‐β‐CTGF‐collagen production pathway. Thus, miR‐503 is a promising therapeutic target for reducing cardiac fibrosis.
Collapse
Affiliation(s)
- Yuhong Zhou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lin Deng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Dandan Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lanlan Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zhen Yao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaowei Guo
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xue Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lifang Lv
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Bing Leng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Wei Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Guofen Qiao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongli Shan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
84
|
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol 2016; 76:1-10. [DOI: 10.1016/j.vph.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
|
85
|
Zhang J, Liu Q, Fang Z, Hu X, Huang F, Tang L, Zhou S. Hypoxia induces the proliferation of endothelial progenitor cells via upregulation of Apelin/APLNR/MAPK signaling. Mol Med Rep 2015; 13:1801-6. [PMID: 26676468 DOI: 10.3892/mmr.2015.4691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/11/2015] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) can form new vessels through differentiation into endothelial cells (ECs), thus being important in the prevention of hypoxia/ischemia. Apelin can activate different signaling pathways through its receptor, APLNR, which regulate diverse biological functions, including cardiovascular function. However, the molecular mechanism by which Apelin mediates hypoxia-induced EPCs proliferation remain to be fully elucidated. The present study aimed to determine the role of Apelin/APLNR signaling in hypoxia-induced proliferation of EPCs. MTT assay was used to determine cell proliferation. Reverse transcription-quantitative polymerase chain reaction and western blotting analysis were conducted to examine mRNA and protein expression. It was revealed that hypoxia promoted the proliferation of the EPCs. Further investigation demonstrated that hypoxia promoted the expression levels of hypoxia-inducible factor (HIF)-1α, Apelin and APLNR in the EPCs. In addition, upregulation of Apelin or APLNR promoted the hypoxia-induced proliferation of the EPCs, while knockdown of Apelin or APLNR by small interfering RNA suppressed the hypoxia-induced proliferation of the EPCs, suggesting that the Apelin/APLNR axis is involved in hypoxia-induced proliferation of EPCs. Furthermore, pretreatment of the EPCs with SB-239063 or PD98059, two inhibitors of mitogen-activated protein kinase (MAPK), eliminated the Apelin upregulation-induced EPC proliferation, suggesting that MAPK signaling is a downstream effecter of Apelin/APLNR in EPCs. Therefore, the findings of the present study indicated that the production of HIF-1α, induced by hypoxia, activated the Apelin/APLNR and the downstream MAPK signaling pathways, leading to upregulated proliferation of the EPCs. These findings suggested that Apelin/APLNR signaling may be used as a potential therapeutic target for hypoxic/ischemic injury.
Collapse
Affiliation(s)
- Jingchang Zhang
- Department of Cardiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Zhenfei Fang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Liang Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
86
|
Xie F, Liu W, Feng F, Li X, He L, Lv D, Qin X, Li L, Li L, Chen L. Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. Acta Biochim Biophys Sin (Shanghai) 2015; 47:969-80. [PMID: 26607438 DOI: 10.1093/abbs/gmv111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apelin is highly expressed in rat left ventricular hypertrophy Sprague Dawley rat models, and it plays a crucial role in the cardiovascular system. The aim this study was to clarify whether apelin-13 promotes hypertrophy in H9c2 rat cardiomyocytes and to investigate its underlying mechanism. The cardiomyocyte hypertrophy was observed by measuring the diameter, volume, and protein content of H9c2 cells. The activation of autophagy was evaluated by observing the morphology of autophagosomes by transmission electron microscopy, observing the subcellular localization of LC3 by light microscopy, and detecting the membrane-associated form of LC3 by western blot analysis. The phosphatidylinositol 3-kinase (PI3K) signaling pathway was identified and the proteins expression was detected using western blot analysis. The results revealed that apelin-13 increased the diameter, volume, and protein content of H9c2 cells and promoted the phosphorylation of PI3K, Akt, ERK1/2, and p70S6K. Apelin-13 activated the PI3K-Akt-ERK1/2-p70S6K pathway. PI3K inhibitor LY294002, Akt inhibitor 1701-1, ERK1/2 inhibitor PD98059 attenuated the increase of the cell diameter, volume, protein content induced by apelin-13. Apelin-13 increased the autophagosomes and up-regulated the expressions of beclin 1 and LC3-II/I both transiently and stably. The autophagy inhibitor 3MA ameliorated the increase of cell diameter, volume, and protein content that were induced by apelin-13. These results suggested that apelin-13 promotes H9c2 rat cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy.
Collapse
Affiliation(s)
- Feng Xie
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Wei Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Fen Feng
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Xin Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Deguan Lv
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lifang Li
- Departments of Microbiology and Immunology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| |
Collapse
|
87
|
Finan A, Richard S. Stimulating endogenous cardiac repair. Front Cell Dev Biol 2015; 3:57. [PMID: 26484341 PMCID: PMC4586501 DOI: 10.3389/fcell.2015.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023] Open
Abstract
The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players.
Collapse
Affiliation(s)
- Amanda Finan
- Centre National de la Recherche Scientifique United Medical Resource 9214, Institut National de la Santé et de la Recherche Médicale U1046, Physiology and Experimental Medicine of the Heart and Muscles, University of Montpellier Montpellier, France
| | - Sylvain Richard
- Centre National de la Recherche Scientifique United Medical Resource 9214, Institut National de la Santé et de la Recherche Médicale U1046, Physiology and Experimental Medicine of the Heart and Muscles, University of Montpellier Montpellier, France
| |
Collapse
|
88
|
Hou X, Zeng H, Tuo QH, Liao DF, Chen JX. Apelin Gene Therapy Increases Autophagy via Activation of Sirtuin 3 in Diabetic Heart. ACTA ACUST UNITED AC 2015; 1:84-91. [PMID: 29167823 PMCID: PMC5695036 DOI: 10.17140/droj-1-115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure is the leading cause of death in diabetic patients. Recently we showed that apelin gene therapy attenuates heart failure following myocardial infarction. This study further explored the potential mechanisms by which apelin may reduce cardiac injury in Postmyocardial infarction (MI)) model of diabetes. Wild type and Sirt3 knockout (Sirt3 KO) mice were induced into diabetes by intra-peritoneal (i.p.) Streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with Adenovirus-apelin (Ad-apelin). Ad-apelin treatment resulted in over expression of apelin in the ischemic hearts of STZ mice. Apelin over expression led to a significant increase in Sirt3 expression. Apelin over expression significantly reduced gp91phox expression. This was accompanied by a significant reduction of reactive oxygen species formation. Ad-apelin treatment also dramatically reduced NF-κb-p65 expression in WT-STZ mice. Over expression of apelin further enhanced autophagy markers (LC3-II and beclin-1) expression in post-MI heart. Most intriguingly, knockout of Sirt3 in STZ mice abolished these beneficial effects of apelin treatment. In vitro, knockout of Sirt3 in EPCs significantly enhanced high glucose-induced ROS formation. Conversely, treatment of Sirt3 KO-EPCs with NADPH oxidase inhibitor led to two fold increase in LC3-II levels. Our studies demonstrate that apelin increases autophagy via up regulation of Sirt3 and suppression of ROS-NF-κb pathway in diabetic heart.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Daun-Fang Liao
- Division of Stem Cell Regulation and Application, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.,Division of Stem Cell Regulation and Application, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
89
|
Stöhr R, Kappel BA, Carnevale D, Cavalera M, Mavilio M, Arisi I, Fardella V, Cifelli G, Casagrande V, Rizza S, Cattaneo A, Mauriello A, Menghini R, Lembo G, Federici M. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Mol Metab 2015; 4:741-52. [PMID: 26500845 PMCID: PMC4588459 DOI: 10.1016/j.molmet.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase 3 (TIMP3) is an extracellular matrix (ECM) bound protein, which has been shown to be downregulated in human subjects and experimental models with cardiometabolic disorders, including type 2 diabetes mellitus, hypertension and atherosclerosis. The aim of this study was to investigate the effects of TIMP3 on cardiac energy homeostasis during increased metabolic stress conditions. METHODS ApoE(-/-)TIMP3(-/-) and ApoE(-/-) mice on a C57BL/6 background were subjected to telemetric ECG analysis and experimental myocardial infarction as models of cardiac stress induction. We used Western blot, qRT-PCR, histology, metabolomics, RNA-sequencing and in vivo phenotypical analysis to investigate the molecular mechanisms of altered cardiac energy metabolism. RESULTS ApoE(-/-)TIMP3(-/-) revealed decreased lifespan. Telemetric ECG analysis showed increased arrhythmic episodes, and experimental myocardial infarction by left anterior descending artery (LAD) ligation resulted in increased peri-operative mortality together with increased scar formation, ventricular dilatation and a reduction of cardiac function after 4 weeks in the few survivors. Hearts of ApoE(-/-)TIMP3(-/-) exhibited accumulation of neutral lipids when fed a chow diet, which was exacerbated by a high fat, high cholesterol diet. Metabolomics analysis revealed an increase in circulating markers of oxidative stress with a reduction in long chain fatty acids. Using whole heart mRNA sequencing, we identified apelin as a putative modulator of these metabolic defects. Apelin is a regulator of fatty acid oxidation, and we found a reduction in the levels of enzymes involved in fatty acid oxidation in the left ventricle of ApoE(-/-)TIMP3(-/-) mice. Injection of apelin restored the hitherto identified metabolic defects of lipid oxidation. CONCLUSION TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ben Arpad Kappel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Cavalera
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivan Arisi
- Genomics Facility, European Brain Research Institute, Rome, Italy
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Rizza
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Center for Atherosclerosis, Department of Medicine, Policlinico Tor Vergata, 00133 Rome, Italy
- Corresponding author. Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy. Tel.: +39 06 72596889; fax: +39 06 72596890.
| |
Collapse
|
90
|
Azizi Y, Faghihi M, Imani A, Roghani M, Zekri A, Mobasheri MB, Rastgar T, Moghimian M. Post-infarct treatment with [Pyr1]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur J Pharmacol 2015; 761:101-8. [DOI: 10.1016/j.ejphar.2015.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
|
91
|
Zhang J, Liu Q, Hu X, Fang Z, Huang F, Tang L, Zhou S. Apelin/APJ signaling promotes hypoxia-induced proliferation of endothelial progenitor cells via phosphoinositide-3 kinase/Akt signaling. Mol Med Rep 2015; 12:3829-3834. [PMID: 26018184 DOI: 10.3892/mmr.2015.3866] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Endothelial progenitor cells (EPCs) can adhere to the endothelium at sites of hypoxia/ischemia and participate in the formation of novel vessels through differentiating into endothelial cells (ECs). Apelin is an endogenous ligand for the G protein‑coupled receptor APJ, and apelin/APJ signaling has a role in cardiovascular function. The present study aimed to investigate the role of apelin/APJ signaling in the regulation of EPC proliferation under hypoxia. The results showed that hypoxia was able to induce EPC proliferation, accompanied with an upregulation of hypoxia‑inducible factor (HIF)‑1α as well as apelin/APJ signaling. Further investigation indicated that siRNA‑mediated knockdown of apelin or APJ expression attenuated the hypoxia‑induced proliferation of EPCs, suggesting that apelin/APJ signaling has an important role in hypoxia‑induced EPC proliferation. Moreover, the phosphoinositide‑3 kinase (PI3K)/Akt signaling pathway was found to be involved in the apelin/APJ‑mediated EPC proliferation under hypoxia. Based on these findings, the present study suggested that hypoxia‑induced upregulation of HIF‑1α promotes the expression of apelin and APJ, which further activate the downstream PI3K/Akt signaling pathway, a key promoter of EPC proliferation. In conclusion, the present study highlighted the role of apelin/APJ in the regulation of EPC proliferation, and apelin/APJ may therefore serve as a potential target for the prevention of hypoxic ischemic injury.
Collapse
Affiliation(s)
- Jingchang Zhang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhenfei Fang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liang Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
92
|
Li L, Li L, Zhang Z, Jiang Z. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta Biochim Biophys Sin (Shanghai) 2015; 47:362-7. [PMID: 25736405 DOI: 10.1093/abbs/gmv014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are a population of multipotent progenitors that have the capacity of proliferation and differentiation into mesenchymal lineage cells. The regulatory peptide apelin is the endogenous ligand for the G protein-coupled receptor APJ. Apelin, which can enhance BMSC proliferation, has mitogenic effects on a wide variety of cell types. We hypothesized that the increased apelin/APJ might be involved in the occurrence and development of hypoxia-induced BMSC proliferation. BMSCs from the bone marrow of 8- to 10-week-old C57BL/6J mice were cultured under either normoxia (21% oxygen) or hypoxia (1% oxygen) condition. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 5-bromo-2'-deoxyuridine assay. Expressions of hypoxia-inducible factor (HIF)-1α, apelin, APJ, Beclin-1, and LC3II/LC3I were detected by western blot analysis. Results suggested that hypoxia enhanced the proliferation of BMSC in a time-dependent manner. The expressions of HIF-1α, apelin, APJ, Beclin-1, and LC3II/LC3I were increased in BMSCs induced by hypoxia. Small interfering RNA (siRNA)-HIF-1α that inhibited the hypoxia-induced expressions of apelin, APJ, Beclin-1, and LC3II/LC3I prevented hypoxia-induced BMSC proliferation. siRNA-APJ that inhibited the hypoxia-induced expressions of Beclin-1 and LC3II/LC3I reversed hypoxia-induced BMSC proliferation. siRNA-Beclin-1 also abolished hypoxia-induced cell proliferation. These data suggested that the apelin/APJ/autophagy signaling pathway might be involved in hypoxia-induced BMSC proliferation.
Collapse
Affiliation(s)
- Lanfang Li
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lifang Li
- Institute of Pathogenic Biology, University of South China, Hengyang 421001, China
| | - Zidong Zhang
- College of Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63108, USA
| | - Zhisheng Jiang
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
93
|
Frump AL, Goss KN, Vayl A, Albrecht M, Fisher A, Tursunova R, Fierst J, Whitson J, Cucci AR, Brown MB, Lahm T. Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones. Am J Physiol Lung Cell Mol Physiol 2015; 308:L873-90. [PMID: 25713318 DOI: 10.1152/ajplung.00006.2015] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
Estrogens are disease modifiers in PAH. Even though female patients exhibit better right ventricular (RV) function than men, estrogen effects on RV function (a major determinant of survival in PAH) are incompletely characterized. We sought to determine whether sex differences exist in RV function in the SuHx model of PAH, whether hormone depletion in females worsens RV function, and whether E2 repletion improves RV adaptation. Furthermore, we studied the contribution of ERs in mediating E2's RV effects. SuHx-induced pulmonary hypertension (SuHx-PH) was induced in male and female Sprague-Dawley rats as well as OVX females with or without concomitant E2 repletion (75 μg·kg(-1)·day(-1)). Female SuHx rats exhibited superior CI than SuHx males. OVX worsened SuHx-induced decreases in CI and SuHx-induced increases in RVH and inflammation (MCP-1 and IL-6). E2 repletion in OVX rats attenuated SuHx-induced increases in RV systolic pressure (RVSP), RVH, and pulmonary artery remodeling and improved CI and exercise capacity (V̇o2max). Furthermore, E2 repletion ameliorated SuHx-induced alterations in RV glutathione activation, proapoptotic signaling, cytoplasmic glycolysis, and proinflammatory cytokine expression. Expression of ERα in RV was decreased in SuHx-OVX but was restored upon E2 repletion. RV ERα expression was inversely correlated with RVSP and RVH and positively correlated with CO and apelin RNA levels. RV-protective E2 effects observed in females were recapitulated in male SuHx rats treated with E2 or with pharmacological ERα or ERβ agonists. Our data suggest significant RV-protective ER-mediated effects of E2 in a model of severe PH.
Collapse
Affiliation(s)
- Andrea L Frump
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kara N Goss
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexandra Vayl
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marjorie Albrecht
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda Fisher
- Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Roziya Tursunova
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - John Fierst
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jordan Whitson
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony R Cucci
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - M Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana; and Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
94
|
Hou X, Zeng H, He X, Chen JX. Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes. J Cell Mol Med 2014; 19:53-61. [PMID: 25311234 PMCID: PMC4288349 DOI: 10.1111/jcmm.12453] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022] Open
Abstract
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post-MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN-induced angiogenesis in post-MI model of diabetes. Wild-type (WT) and Sirt3 knockout (Sirt3KO) mice were induced into diabetes by i.p. streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with adenovirus-apelin (Ad-APLN). Our studies showed that Sirt3 expression was significantly reduced in the hearts of STZ mice. Ad-APLN treatment resulted in up-regulation of Sirt3, angiopoietins/Tie-2 and VEGF/VEGFR2 expression together with increased myocardial vascular densities in WT-STZ+MI mice, but these alterations were not observed in Sirt3KO-STZ+MI mice. In vitro, overexpression of APLN increased Sirt3 expression and angiogenesis in endothelial progenitor cells (EPC) from WT mice, but not in EPC from Sirt3KO mice. APLN gene therapy increases angiogenesis and improves cardiac functional recovery in diabetic hearts via up-regulation of Sirt3 pathway.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
95
|
Loss of Sirt3 limits bone marrow cell-mediated angiogenesis and cardiac repair in post-myocardial infarction. PLoS One 2014; 9:e107011. [PMID: 25192254 PMCID: PMC4156371 DOI: 10.1371/journal.pone.0107011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022] Open
Abstract
Sirtuin-3 (Sirt3) has a critical role in the regulation of human aging and reactive oxygen species (ROS) formation. A recent study has identified Sirt3 as an essential regulator of stem cell aging. This study investigated whether Sirt3 is necessary for bone marrow cell (BMC)-mediated cardiac repair in post-myocardial infarction (MI). In vitro, BMC-derived endothelial progenitor cells (EPCs) from wild type (WT) and Sirt3KO mice were cultured. EPC angiogenesis, ROS formation and apoptosis were assessed. In vivo, WT and Sirt3 KO mice were subjected to MI and BMCs from WT and Sirt3 KO mice were injected into ischemic area immediately. The expression of VEGF and VEGFR2 was reduced in Sirt3KO-EPCs. Angiogenic capacities and colony formation were significantly impaired in Sirt3KO-EPCs compared to WT-EPCs. Loss of Sirt3 further enhanced ROS formation and apoptosis in EPCs. Overexpression of Sirt3 or treatment with NADPH oxidase inhibitor apocynin (Apo, 200 and 400 microM) rescued these abnormalities. In post-MI mice, BMC treatment increased number of Sca1+/c-kit+ cells; enhanced VEGF expression and angiogenesis whereas Sirt3KO-BMC treatment had little effects. BMC treatment also attenuated NADPH oxidase subunits p47phox and gp91phox expression, and significantly reduced ROS formation, apoptosis, fibrosis and hypertrophy in post-MI mice. Sirt3KO-BMC treatment did not display these beneficial effects. In contrast, Sirt3KO mice treated with BMCs from WT mice attenuated myocardial apoptosis, fibrosis and improved cardiac function. Our data demonstrate that Sirt3 is essential for BMC therapy; and loss of Sirt3 limits BMC-mediated angiogenesis and cardiac repair in post-MI.
Collapse
|
96
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
97
|
Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Russo PE, Riegler L, Bianchi R, Crisci M, Palma GD, Golino P, Russo MG, Calabrò R, Calabrò P. Adipose tissue and vascular inflammation in coronary artery disease. World J Cardiol 2014; 6:539-554. [PMID: 25068015 PMCID: PMC4110603 DOI: 10.4330/wjc.v6.i7.539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/25/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Obesity has become an important public health issue in Western and developing countries, with well known metabolic and cardiovascular complications. In the last decades, evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences. As a consequence of the expansion of fat depots, in obese subjects, adipose tissue cells develope a phenotypic modification, which turns into a change of the secretory output. Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling, vascular biology and, moreover, participate to the systemic inflammatory response, which characterizes obesity and metabolic syndrome. This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events. A great number of adipocytokines have been described recently, linking inflammatory mileu and vascular pathology. The understanding of these pathways is crucial not only from a pathophysiological point of view, but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets. The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.
Collapse
|
98
|
Xie F, Lv D, Chen L. ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin (Shanghai) 2014; 46:620-2. [PMID: 24829400 DOI: 10.1093/abbs/gmu032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Feng Xie
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Deguan Lv
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
99
|
Momiyama Y. Association between plasma apelin levels and coronary collateral development in patients with stable angina pectoris. Atherosclerosis 2014; 235:349-50. [PMID: 24922407 DOI: 10.1016/j.atherosclerosis.2014.05.930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/11/2014] [Indexed: 11/25/2022]
Abstract
Apelin is an endogenous ligand for the orphan G protein-coupled receptor (APJ receptor). Apelin is predominantly expressed in endocardial and vascular endothelial cells, while APJ receptor is localized to endothelial and smooth muscle cells, and cardiomyocytes. Apelin has recently attracted much attention due to its promotive effects on angiogenesis and its protective effects against mycardial infarction. In this issue of Atherosclerosis, Akboga et al. investigated plasma apelin levels in patients with stable angina and severe coronary artery stenosis and provided the first evidence that higher plasma apelin levels are associated with better coronary collateral development, suggesting that apelin plays a role in coronary collateral development.
Collapse
Affiliation(s)
- Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| |
Collapse
|
100
|
Effects of Apelin-13 on Rat Bone Marrow-Derived Mesenchymal Stem Cell Proliferation Through the AKT/GSK3β/Cyclin D1 Pathway. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9404-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|