51
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Abstract
Cytochrome P450 eicosanoids play important roles in brain function and disease through their complementary actions on cell-cell communications within the neurovascular unit (NVU) and mechanisms of brain injury. Epoxy- and hydroxyeicosanoids, respectively formed by cytochrome P450 epoxygenases and ω-hydroxylases, play opposing roles in cerebrovascular function and in pathological processes underlying neural injury, including ischemia, neuroinflammation and oxidative injury. P450 eicosanoids also contribute to cerebrovascular disease risk factors, including hypertension and diabetes. We summarize studies investigating the roles P450 eicosanoids in cerebrovascular physiology and disease to highlight the existing balance between these important lipid signaling molecules, as well as their roles in maintaining neurovascular homeostasis and in acute and chronic neurovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
53
|
Ungvari Z, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Fülöp GA, Kiss T, Csiszar A. Connective tissue growth factor (CTGF) in age-related vascular pathologies. GeroScience 2017; 39:491-498. [PMID: 28875415 DOI: 10.1007/s11357-017-9995-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Connective tissue growth factor (CTGF, also known as CCN2) is a matricellular protein expressed in the vascular wall, which regulates diverse cellular functions including cell adhesion, matrix production, structural remodeling, angiogenesis, and cell proliferation and differentiation. CTGF is principally regulated at the level of transcription and is induced by mechanical stresses and a number of cytokines and growth factors, including TGFβ. In this mini-review, the role of age-related dysregulation of CTGF signaling and its role in a range of macro- and microvascular pathologies, including pathogenesis of aorta aneurysms, atherogenesis, and diabetic retinopathy, are discussed. A potential role of CTGF and TGFβ in regulation and non-cell autonomous propagation of cellular senescence is also discussed.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Marta Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor A Fülöp
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
54
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
55
|
Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel-Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A. Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. GeroScience 2017; 39:359-372. [PMID: 28853030 PMCID: PMC5636770 DOI: 10.1007/s11357-017-9991-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension in the elderly substantially increases both the risk of vascular cognitive impairment (VCI) and Alzheimer's disease (AD); however, the underlying mechanisms are not completely understood. This review discusses the effects of hypertension on structural and functional integrity of cerebral microcirculation, including hypertension-induced alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage (capillary rarefaction, blood-brain barrier disruption), and the genesis of cerebral microhemorrhages and their potential role in exacerbation of cognitive decline associated with AD. Understanding and targeting the hypertension-induced cerebromicrovascular alterations that are involved in the onset and progression of AD and contribute to cognitive impairment are expected to have a major role in preserving brain health in high-risk older individuals.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor A Fülöp
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, Barshop Institute for Longevity and Aging Studies University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
56
|
Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. GeroScience 2017; 39:385-406. [PMID: 28664509 DOI: 10.1007/s11357-017-9981-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Strong epidemiological and experimental evidence indicates that hypertension has detrimental effects on the cerebral microcirculation and thereby promotes accelerated brain aging. Hypertension is an independent risk factor for both vascular cognitive impairment (VCI) and Alzheimer's disease (AD). However, the pathophysiological link between hypertension-induced cerebromicrovascular injury (e.g., blood-brain barrier disruption, increased microvascular oxidative stress, and inflammation) and cognitive decline remains elusive. The present study was designed to characterize neuronal functional and morphological alterations induced by chronic hypertension and compare them to those induced by aging. To achieve that goal, we induced hypertension in young C57BL/6 mice by chronic (4 weeks) infusion of angiotensin II. We found that long-term potentiation (LTP) of performant path synapses following high-frequency stimulation of afferent fibers was decreased in hippocampal slices obtained from hypertensive mice, mimicking the aging phenotype. Hypertension and advanced age were associated with comparable decline in synaptic density in the stratum radiatum of the mouse hippocampus. Hypertension, similar to aging, was associated with changes in mRNA expression of several genes involved in regulation of neuronal function, including down-regulation of Bdnf, Homer1, and Dlg4, which may have a role in impaired synaptic plasticity. Collectively, hypertension impairs synaptic plasticity, reduces synaptic density, and promotes dysregulation of genes involved in synaptic function in the mouse hippocampus mimicking the aging phenotype. These hypertension-induced neuronal alterations may impair establishment of memories in the hippocampus and contribute to the pathogenesis and clinical manifestation of both vascular cognitive impairment (VCI) and Alzheimer's disease (AD).
Collapse
|
57
|
Alfaras I, Di Germanio C, Bernier M, Csiszar A, Ungvari Z, Lakatta EG, de Cabo R. Pharmacological Strategies to Retard Cardiovascular Aging. Circ Res 2017; 118:1626-42. [PMID: 27174954 DOI: 10.1161/circresaha.116.307475] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 01/10/2023]
Abstract
Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health.
Collapse
Affiliation(s)
- Irene Alfaras
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Clara Di Germanio
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Michel Bernier
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Anna Csiszar
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Zoltan Ungvari
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Edward G Lakatta
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Rafael de Cabo
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.).
| |
Collapse
|
58
|
Szarka N, Amrein K, Horvath P, Ivic I, Czeiter E, Buki A, Koller A, Toth P. Hypertension-Induced Enhanced Myogenic Constriction of Cerebral Arteries Is Preserved after Traumatic Brain Injury. J Neurotrauma 2017; 34:2315-2319. [PMID: 28249552 DOI: 10.1089/neu.2016.4962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) was shown to impair pressure-induced myogenic response of cerebral arteries, which is associated with vascular and neural dysfunction and increased mortality of TBI patients. Hypertension was shown to enhance myogenic tone of cerebral arteries via increased vascular production of 20-hydroxyeicosatrienoic acid (HETE). This adaptive mechanism protects brain tissue from pressure/volume overload; however, it can also lead to increased susceptibility to cerebral ischemia. Although both effects may potentiate the detrimental vascular consequences of TBI, it is not known how hypertension modulates the effect of TBI on myogenic responses of cerebral vessels. We hypothesized that in hypertensive rats, the enhanced myogenic cerebrovascular response is preserved after TBI. Therefore, we investigated the myogenic responses of isolated middle cerebral arteries (MCA) of normotensive and spontaneously hypertensive rats (SHR) after severe impact acceleration diffuse brain injury. TBI diminished myogenic constriction of MCAs isolated from normotensive rats, whereas the 20-HETE-mediated enhanced myogenic response of MCAs isolated from SHRs was not affected by TBI. These results suggest that the optimal cerebral perfusion pressure values and vascular signaling pathways can be different and, therefore, should be targeted differently in normotensive and hypertensive patients following TBI.
Collapse
Affiliation(s)
- Nikolett Szarka
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary .,2 Department of Translational Medicine, University of Pecs , Pecs, Hungary
| | - Krisztina Amrein
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary .,3 MTA-PTE Clinical Neuroscience MR Research Group , Pecs, Hungary
| | - Peter Horvath
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary
| | - Ivan Ivic
- 2 Department of Translational Medicine, University of Pecs , Pecs, Hungary
| | - Endre Czeiter
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary .,3 MTA-PTE Clinical Neuroscience MR Research Group , Pecs, Hungary
| | - Andras Buki
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary .,3 MTA-PTE Clinical Neuroscience MR Research Group , Pecs, Hungary
| | - Akos Koller
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary .,4 Institute of Natural Sciences, University of Physical Education , Budapest, Hungary .,5 Department of Physiology, New York Medical College , Valhalla, New York
| | - Peter Toth
- 1 Department of Neurosurgery and Szentagothai Research Center, University of Pecs , Pecs, Hungary .,2 Department of Translational Medicine, University of Pecs , Pecs, Hungary .,3 MTA-PTE Clinical Neuroscience MR Research Group , Pecs, Hungary .,6 Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
59
|
Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol 2017; 312:H1128-H1143. [PMID: 28314762 PMCID: PMC5495931 DOI: 10.1152/ajpheart.00780.2016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The increasing prevalence of multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds") is a significant, newly recognized problem in the aging population of the Western world. CMHs are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function, potentially contributing to cognitive decline, geriatric psychiatric syndromes, and gait disorders. Clinical studies show that aging and hypertension significantly increase prevalence of CMHs. CMHs are also now recognized by the National Institutes of Health as a major factor in Alzheimer's disease pathology. Moreover, the presence of CMHs is an independent risk factor for subsequent larger intracerebral hemorrhages. In this article, we review the epidemiology, detection, risk factors, clinical significance, and pathogenesis of CMHs. The potential age-related cellular mechanisms underlying the development of CMHs are discussed, with a focus on the structural determinants of microvascular fragility, age-related alterations in cerebrovascular adaptation to hypertension, the role of oxidative stress and matrix metalloproteinase activation, and the deleterious effects of arterial stiffening, increased pulse pressure, and impaired myogenic autoregulatory protection on the brain microvasculature. Finally, we examine potential treatments for the prevention of CMHs based on the proposed model of aging- and hypertension-dependent activation of the reactive oxygen species-matrix metalloproteinases axis, and we discuss critical questions to be addressed by future studies.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; .,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, Oklahoma.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Calin I Prodan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
60
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
61
|
Feng D, Nan H, Wang W, Yan L, Du P, Zuo L, Zhang K, Zhao M, Cui G. Expression and alteration of BK Ca channels in the sphincter of Oddi's from rabbits with hypercholesterolemia. Channels (Austin) 2017; 11:236-244. [PMID: 28102743 DOI: 10.1080/19336950.2017.1279369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the expression and function of BKCa channels in the Sphincter of Oddi (SO) in a rabbit model of hypercholesterolemia (HC). New Zealand white rabbits were randomly divided into 2 groups: the control group was fed standard chow (n = 18) whereas the high-cholesterol group was fed cholesterol-enriched chow containing 1.5% cholesterol (n = 18). The serum cholesterol level was significantly greater in the HC groups than in the control group, but there was no significant difference in body weight between the control and HC groups. Although the total protein expression of BKCa α- and β1-subunit was not significantly different between the control and HC groups, the Tyr-phosphorylation of BKCa α-subunit was significantly decreased in the HC group than in the control group. In addition, hypercholesterolemia significantly increased Acetylcholine (ACh)-induced contraction of the SO rings. Pretreatment with 30 μM NS1619, a BKCa channel agonist, significantly reduced ACh-induced contraction of the SO rings in HC rabbits. Moreover, pretreatment with 100 μM Na3OV4, a protein tyrosine phosphatase inhibitor, significantly reduced ACh-induced contraction of the SO rings in HC rabbits, whereas it significantly increased upon pretreating with 10 μM Genistein, a tyrosine kinase inhibitor. Whole-cell patch clamp recordings showed that BKCa current density was significantly lower in SOSMCs from HC group than that from control group. Our findings suggest that hypercholesterolemia-induced downregulation of BKCa channel, and Tyr-phosphorylation of BKCa α-subunit may contribute to the hyperresponsiveness of the SO ring in HC rabbits.
Collapse
Affiliation(s)
- Dan Feng
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Haiyan Nan
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Wen Wang
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Linfeng Yan
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Pang Du
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Lin Zuo
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Kun Zhang
- b Department of Pharmacology, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Minggao Zhao
- b Department of Pharmacology, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Guangbin Cui
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
62
|
Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312:H1-H20. [PMID: 27793855 PMCID: PMC5283909 DOI: 10.1152/ajpheart.00581.2016] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary; and
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
63
|
Cseplo P, Vamos Z, Ivic I, Torok O, Toth A, Koller A. The Beta-1-Receptor Blocker Nebivolol Elicits Dilation of Cerebral Arteries by Reducing Smooth Muscle [Ca2+]i. PLoS One 2016; 11:e0164010. [PMID: 27716772 PMCID: PMC5055296 DOI: 10.1371/journal.pone.0164010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
Rationale Nebivolol is known to have beta-1 blocker activity, but it was also suggested that it elicits relaxation of the peripheral arteries in part via release of nitric oxide (NO). However, the effect of nebivolol on the vasomotor tone of cerebral arteries is still unclear. Objective To assess the effects of nebivolol on the diameter of isolated rat basilar arteries (BA) in control, in the presence of inhibitors of vasomotor signaling pathways of know action and hemolysed blood. Methods and Results Vasomotor responses were measured by videomicroscopy and the intracellular Ca2+ by the Fura-2 AM ratiometric method. Under control conditions, nebivolol elicited a substantial dilation of the BA (from 216±22 to 394±20 μm; p<0.05) in a concentration-dependent manner (10−7 to 10−4 M). The dilatation was significantly reduced by endothelium denudation or by L-NAME (inhibitor of NO synthase) or by SQ22536 (adenylyl cyclase blocker). Dilatation of BA was also affected by beta-2 receptor blockade with butoxamine, but not by the guanylate cyclase blocker ODQ. Interestingly, beta-1 blockade by atenolol inhibited nebivolol-induced dilation. Also, the BKCa channel blocker iberiotoxin and KCa channel inhibitor TEA significantly reduced nebivolol-induced dilation. Nebivolol significantly reduced smooth muscle Ca2+ level, which correlated with the increases in diameters and moreover it reversed the hemolysed blood-induced constriction of BA. Conclusions Nebivolol seems to have an important dilator effect in cerebral arteries, which is mediated via several vasomotor mechanisms, converging on the reduction of smooth muscle Ca2+ levels. As such, nebivolol may be effective to improve cerebral circulation in various diseased conditions, such as hemorrhage.
Collapse
Affiliation(s)
- Peter Cseplo
- Institute for Translational Medicine and Szentagothai Research Centre, University of Pecs, Medical School, Pecs, Hungary.,Department of Central Anesthesiology and Intensive Therapy, Petz Aladar County Teaching Hospital, Gyor, Hungary
| | - Zoltan Vamos
- Institute for Translational Medicine and Szentagothai Research Centre, University of Pecs, Medical School, Pecs, Hungary.,Department of Anaesthesiology and Intensive Therapy, University of Pecs, Medical School, Pecs, Hungary
| | - Ivan Ivic
- Institute for Translational Medicine and Szentagothai Research Centre, University of Pecs, Medical School, Pecs, Hungary.,Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary
| | - Orsolya Torok
- Institute for Translational Medicine and Szentagothai Research Centre, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Toth
- Institute of Cardiology, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Akos Koller
- Institute for Translational Medicine and Szentagothai Research Centre, University of Pecs, Medical School, Pecs, Hungary.,Department of Neurosurgery, University of Pecs, Medical School, Pecs, Hungary.,Department of Physiology, New York Medical College, Valhalla, New York, United States of America.,Institute of Natural Sciences, University of Physical Education, Budapest, Hungary
| |
Collapse
|
64
|
Tarantini S, Tucsek Z, Valcarcel-Ares MN, Toth P, Gautam T, Giles CB, Ballabh P, Wei JY, Wren JD, Ashpole NM, Sonntag WE, Ungvari Z, Csiszar A. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:273-289. [PMID: 27613724 PMCID: PMC5061685 DOI: 10.1007/s11357-016-9931-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center- New York Medical College, Valhalla, NY, USA
| | - Jeanne Y Wei
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Science, 4301 West Markham Street, No. 748, Little Rock, AR, 72205, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Pecs, Pecs, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
65
|
Garcia DC, Pereira AC, Gutierrez SJ, Barbosa-Filho JM, Lemos VS, Côrtes SF. Structure-related blockage of calcium channels by vasodilator alkamides in mice mesenteric artery. Vascul Pharmacol 2016; 82:60-5. [DOI: 10.1016/j.vph.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/21/2016] [Accepted: 05/07/2016] [Indexed: 01/06/2023]
|
66
|
Diaz-Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am J Physiol Heart Circ Physiol 2016; 310:H365-75. [PMID: 26637558 PMCID: PMC4796626 DOI: 10.1152/ajpheart.00562.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Artery remodeling, described as a change in artery structure, may be responsible for the increased risk of cardiovascular disease with aging. Although the risk for stroke is known to increase with age, relatively young animals have been used in most stroke studies. Therefore, more information is needed on how aging alters the biomechanical properties of cerebral arteries. Posterior cerebral arteries (PCAs) and parenchymal arterioles (PAs) are important in controlling brain perfusion. We hypothesized that aged (22-24 mo old) C57bl/6 mice would have stiffer PCAs and PAs than young (3-5 mo old) mice. The biomechanical properties of the PCAs and PAs were assessed by pressure myography. Data are presented as means ± SE of young vs. old. In the PCA, older mice had increased outer (155.6 ± 3.2 vs. 169.9 ± 3.2 μm) and lumen (116.4 ± 3.6 vs. 137.1 ± 4.7 μm) diameters. Wall stress (375.6 ± 35.4 vs. 504.7 ± 60.0 dyn/cm(2)) and artery stiffness (β-coefficient: 5.2 ± 0.3 vs. 7.6 ± 0.9) were also increased. However, wall strain (0.8 ± 0.1 vs. 0.6 ± 0.1) was reduced with age. In the PAs from old mice, wall thickness (3.9 ± 0.3 vs. 5.1 ± 0.2 μm) and area (591.1 ± 95.4 vs. 852.8 ± 100 μm(2)) were increased while stress (758.1 ± 100.0 vs. 587.2 ± 35.1 dyn/cm(2)) was reduced. Aging also increased mean arterial and pulse pressures. We conclude that age-associated remodeling occurs in large cerebral arteries and arterioles and may increase the risk of cerebrovascular disease.
Collapse
Affiliation(s)
- Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
67
|
Chiao YA, Lakatta E, Ungvari Z, Dai DF, Rabinovitch P. Cardiovascular Disease and Aging. ADVANCES IN GEROSCIENCE 2016:121-160. [DOI: 10.1007/978-3-319-23246-1_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
68
|
|
69
|
Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel‐Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 2015; 14:1034-44. [PMID: 26172407 PMCID: PMC4693458 DOI: 10.1111/acel.12372] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2015] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with marked deficiency in circulating IGF‐1, which has been shown to contribute to age‐related cognitive decline. Impairment of moment‐to‐moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age‐related cognitive impairment. To establish the link between IGF‐1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF‐1 deficiency (Igf1f/f‐TBG‐Cre‐AAV8) and accelerated vascular aging. We found that IGF‐1‐deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal‐dependent spatial memory test, mimicking the aging phenotype. IGF‐1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF‐1 deficiency also impaired glutamate‐mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF‐1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment.
Collapse
Affiliation(s)
- Peter Toth
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
- Department of Neurosurgery and Szentagothai Research Center Medical School University of Pecs Pecs 7624 Hungary
| | - Stefano Tarantini
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
- Department of Physiology University of Oklahoma Health Sciences Center 940 S.L. Young Blvd. Rm. 653 Oklahoma City 73104OK USA
| | - Nicole M. Ashpole
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Zsuzsanna Tucsek
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology Vanderbilt University Medical Center D‐3100 Medical Center North Nashville TN USA
| | - Noa M. Valcarcel‐Ares
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Akos Menyhart
- Department of Medical Physics and Informatics Faculty of Medicine and Faculty of Science and Informatics University of Szeged Szeged 6720Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics Faculty of Medicine and Faculty of Science and Informatics University of Szeged Szeged 6720Hungary
| | - William E. Sonntag
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
- The Peggy and Charles Stephenson Cancer Center University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Anna Csiszar
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
- Department of Neurosurgery and Szentagothai Research Center Medical School University of Pecs Pecs 7624 Hungary
- Department of Physiology University of Oklahoma Health Sciences Center 940 S.L. Young Blvd. Rm. 653 Oklahoma City 73104OK USA
- The Peggy and Charles Stephenson Cancer Center University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
| | - Zoltan Ungvari
- Donald W. Reynolds Department of Geriatric Medicine Reynolds Oklahoma Center on Aging University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
- Department of Neurosurgery and Szentagothai Research Center Medical School University of Pecs Pecs 7624 Hungary
- Department of Physiology University of Oklahoma Health Sciences Center 940 S.L. Young Blvd. Rm. 653 Oklahoma City 73104OK USA
- The Peggy and Charles Stephenson Cancer Center University of Oklahoma Health Sciences Center Oklahoma City OK 73104 USA
- Department of Pulmonology 1125 Budapest, Diós árok 1/c Semmelweis University Budapest Hungary
| |
Collapse
|
70
|
Springo Z, Tarantini S, Toth P, Tucsek Z, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Aging Exacerbates Pressure-Induced Mitochondrial Oxidative Stress in Mouse Cerebral Arteries. J Gerontol A Biol Sci Med Sci 2015; 70:1355-9. [PMID: 25631392 PMCID: PMC4612385 DOI: 10.1093/gerona/glu244] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies demonstrate that in addition to the increased prevalence of hypertension in old patients, the deleterious cerebrovascular effects of hypertension (including atherosclerosis, stroke, and vascular cognitive impairment) are also exacerbated in elderly individuals. The cellular mechanisms by which aging and hypertension interact to promote cerebrovascular pathologies are not well understood. To test the hypothesis that aging exacerbates high pressure-induced mitochondrial oxidative stress, we exposed isolated segments of the middle cerebral arteries of young (3 months) and aged (24 months) C57BL/6 mice to 60 or 140 mmHg intraluminal pressure and assessed changes in mitochondrial reactive oxygen species production using a mitochondria-targeted redox-sensitive fluorescent indicator dye (MitoSox) by confocal microscopy. Perinuclear MitoSox fluorescence was significantly stronger in high pressure-exposed middle cerebral arteries compared with middle cerebral arteries of the same animals exposed to 60 mmHg, indicating that high pressure increases mitochondrial reactive oxygen species production in the smooth muscle cells of cerebral arteries. Comparison of young and aged middle cerebral arteries showed that aging exacerbates high pressure-induced mitochondrial reactive oxygen species production in cerebral arteries. We propose that increased mechanosensitive mitochondrial oxidative stress may potentially exacerbate cerebrovascular injury and vascular inflammation in aging.
Collapse
Affiliation(s)
- Zsolt Springo
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentágothai Research Center, University of Pecs, Hungary. The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center.
| |
Collapse
|
71
|
Iddings JA, Kim KJ, Zhou Y, Higashimori H, Filosa JA. Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat. J Cereb Blood Flow Metab 2015; 35:1127-36. [PMID: 25757753 PMCID: PMC4640269 DOI: 10.1038/jcbfm.2015.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 01/14/2023]
Abstract
Functional hyperemia is the regional increase in cerebral blood flow upon increases in neuronal activity which ensures that the metabolic demands of the neurons are met. Hypertension is known to impair the hyperemic response; however, the neurovascular coupling mechanisms by which this cerebrovascular dysfunction occurs have yet to be fully elucidated. To determine whether altered cortical parenchymal arteriole function or astrocyte signaling contribute to blunted neurovascular coupling in hypertension, we measured parenchymal arteriole reactivity and vascular smooth muscle cell Ca(2+) dynamics in cortical brain slices from normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. We found that vasoconstriction in response to the thromboxane A2 receptor agonist U46619 and basal vascular smooth muscle cell Ca(2+) oscillation frequency were significantly increased in parenchymal arterioles from SHR. In perfused and pressurized parenchymal arterioles, myogenic tone was significantly increased in SHR. Although K(+)-induced parenchymal arteriole dilations were similar in WKY and SHR, metabotropic glutamate receptor activation-induced parenchymal arteriole dilations were enhanced in SHR. Further, neuronal stimulation-evoked parenchymal arteriole dilations were similar in SHR and WKY. Our data indicate that neurovascular coupling is not impaired in SHR, at least at the level of the parenchymal arterioles.
Collapse
Affiliation(s)
- Jennifer A Iddings
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Ki Jung Kim
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Yiqiang Zhou
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Haruki Higashimori
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Jessica A Filosa
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
72
|
Toth P, Tarantini S, Springo Z, Tucsek Z, Gautam T, Giles CB, Wren JD, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell 2015; 14:400-8. [PMID: 25677910 PMCID: PMC4406669 DOI: 10.1111/acel.12315] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2014] [Indexed: 12/15/2022] Open
Abstract
Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 months) mice were treated with angiotensin II plus L-NAME. We found that the same level of hypertension leads to significantly earlier onset and increased incidence of CMHs in aged mice than in young mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Hypertension-induced cerebrovascular oxidative stress and redox-sensitive activation of matrix metalloproteinases (MMPs) were increased in aging. Treatment of aged mice with resveratrol significantly attenuated hypertension-induced oxidative stress, inhibited vascular MMP activation, significantly delayed the onset, and reduced the incidence of CMHs. Collectively, aging promotes CMHs in mice likely by exacerbating hypertension-induced oxidative stress and MMP activation. Therapeutic strategies that reduce microvascular oxidative stress and MMP activation may be useful for the prevention of CMHs, protecting neurocognitive function in high-risk elderly patients.
Collapse
Affiliation(s)
- Peter Toth
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Department of Pathophysiology and Gerontology and Szentagothai Research Center University of Pecs Szigeti Street 12 7624 Pecs Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Department of Physiology University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Zsolt Springo
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Department of Pathophysiology and Gerontology and Szentagothai Research Center University of Pecs Szigeti Street 12 7624 Pecs Hungary
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Cory B. Giles
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Oklahoma Medical Research Foundation Arthritis & Clinical Immunology Research Program 825 Northeast 13th Street Oklahoma City OK USA
- Department of Biochemistry and Molecular Biology University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Jonathan D. Wren
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Oklahoma Medical Research Foundation Arthritis & Clinical Immunology Research Program 825 Northeast 13th Street Oklahoma City OK USA
- Department of Biochemistry and Molecular Biology University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Akos Koller
- Department of Pathophysiology and Gerontology and Szentagothai Research Center University of Pecs Szigeti Street 12 7624 Pecs Hungary
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- The Peggy and Charles Stephenson Cancer Center University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Department of Pathophysiology and Gerontology and Szentagothai Research Center University of Pecs Szigeti Street 12 7624 Pecs Hungary
- Department of Physiology University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- The Peggy and Charles Stephenson Cancer Center University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging Department of Geriatric Medicine University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- Department of Pathophysiology and Gerontology and Szentagothai Research Center University of Pecs Szigeti Street 12 7624 Pecs Hungary
- Department of Physiology University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
- The Peggy and Charles Stephenson Cancer Center University of Oklahoma Health Sciences Center 975 NE 10th Street Oklahoma City OK 73104USA
| |
Collapse
|
73
|
Springo Z, Toth P, Tarantini S, Ashpole NM, Tucsek Z, Sonntag WE, Csiszar A, Koller A, Ungvari ZI. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J Cereb Blood Flow Metab 2015; 35:527-30. [PMID: 25605292 PMCID: PMC4420893 DOI: 10.1038/jcbfm.2014.256] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/21/2014] [Accepted: 12/17/2014] [Indexed: 01/15/2023]
Abstract
Stability of myogenic tone in middle cerebral arteries (MCA) is essential for adequate control over penetration of pressure waves into the distal portion of the cerebral microcirculation. Because the increased pulse pressure observed in advanced aging is associated with cerebromicrovascular injury, the effect of aging on myogenic response of mouse MCAs was determined. Aging did not affect the myogenic constriction in response to static increases in pressure, whereas it significantly impaired pulsatile pressure-induced myogenic tone. Impaired myogenic adaptation of MCAs to pulsatile pressure may allow high pressure to penetrate the distal portion of the cerebral microcirculation, contributing to microvascular damage.
Collapse
Affiliation(s)
- Zsolt Springo
- 1] Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [2] Department of Pathophysiology and Gerontology and Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Peter Toth
- 1] Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [2] Department of Pathophysiology and Gerontology and Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- 1] Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [2] Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicole M Ashpole
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zsuzsanna Tucsek
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - William E Sonntag
- 1] Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [2] Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [3] The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Anna Csiszar
- 1] Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [2] Department of Pathophysiology and Gerontology and Szentagothai Research Center, University of Pecs, Pecs, Hungary [3] Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [4] The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Akos Koller
- 1] Department of Pathophysiology and Gerontology and Szentagothai Research Center, University of Pecs, Pecs, Hungary [2] Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Zoltan I Ungvari
- 1] Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [2] Department of Pathophysiology and Gerontology and Szentagothai Research Center, University of Pecs, Pecs, Hungary [3] Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA [4] The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
74
|
Fan F, Geurts AM, Murphy SR, Pabbidi MR, Jacob HJ, Roman RJ. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol 2014; 308:R379-90. [PMID: 25540098 DOI: 10.1152/ajpregu.00256.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reported that a reduction in renal production of 20-HETE contributes to development of hypertension in Dahl salt-sensitive (SS) rats. The present study examined whether 20-HETE production is also reduced in the cerebral vasculature of SS rats and whether this impairs the myogenic response and autoregulation of cerebral blood flow (CBF). The production of 20-HETE, the myogenic response of middle cerebral arteries (MCA), and autoregulation of CBF were compared in SS, SS-5(BN) rats and a newly generated CYP4A1 transgenic rat. 20-HETE production was 6-fold higher in cerebral arteries of CYP4A1 and SS-5(BN) than in SS rats. The diameter of the MCA decreased to 70 ± 3% to 65 ± 6% in CYP4A1 and SS-5(BN) rats when pressure was increased from 40 to 140 mmHg. In contrast, the myogenic response of MCA isolated from SS rats did not constrict. Administration of a 20-HETE synthesis inhibitor, HET0016, abolished the myogenic response of MCA in CYP4A1 and SS-5(BN) rats but had no effect in SS rats. Autoregulation of CBF was impaired in SS rats compared with CYP4A1 and SS-5(BN) rats. Blood-brain barrier leakage was 5-fold higher in the brain of SS rats than in SS-5(BN) and SS.CYP4A1 rats. These findings indicate that a genetic deficiency in the formation of 20-HETE contributes to an impaired myogenic response in MCA and autoregulation of CBF in SS rats and this may contribute to vascular remodeling and cerebral injury following the onset of hypertension.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Aron M Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
75
|
IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab 2014; 34:1887-97. [PMID: 25248835 PMCID: PMC4269740 DOI: 10.1038/jcbfm.2014.156] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.
Collapse
|
76
|
Fan F, Geurts AM, Pabbidi MR, Smith SV, Harder DR, Jacob H, Roman RJ. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One 2014; 9:e112878. [PMID: 25397684 PMCID: PMC4232417 DOI: 10.1371/journal.pone.0112878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/18/2014] [Indexed: 12/11/2022] Open
Abstract
We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5) were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO) rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2), were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Aron M. Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Stanley V. Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David R. Harder
- Department of Physiology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Howard Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
77
|
Banki E, Sosnowska D, Tucsek Z, Gautam T, Toth P, Tarantini S, Tamas A, Helyes Z, Reglodi D, Sonntag WE, Csiszar A, Ungvari Z. Age-related decline of autocrine pituitary adenylate cyclase-activating polypeptide impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol A Biol Sci Med Sci 2014; 70:665-74. [PMID: 25136000 DOI: 10.1093/gerona/glu116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 01/16/2023] Open
Abstract
Aging impairs angiogenic capacity of cerebromicrovascular endothelial cells (CMVECs) promoting microvascular rarefaction, but the underlying mechanisms remain elusive. PACAP is an evolutionarily conserved neuropeptide secreted by endothelial cells and neurons, which confers important antiaging effects. To test the hypothesis that age-related changes in autocrine PACAP signaling contributes to dysregulation of endothelial angiogenic capacity, primary CMVECs were isolated from 3-month-old (young) and 24-month-old (aged) Fischer 344 x Brown Norway rats. In aged CMVECs, expression of PACAP was decreased, which was associated with impaired capacity to form capillary-like structures, impaired adhesiveness to collagen (assessed using electric cell-substrate impedance sensing [ECIS] technology), and increased apoptosis (caspase3 activity) when compared with young cells. Overexpression of PACAP in aged CMVECs resulted in increased formation of capillary-like structures, whereas it did not affect cell adhesion. Treatment with recombinant PACAP also significantly increased endothelial tube formation and inhibited apoptosis in aged CMVECs. In young CMVECs shRNA knockdown of autocrine PACAP expression significantly impaired tube formation capacity, mimicking the aging phenotype. Cellular and mitochondrial reactive oxygen species production (dihydroethidium and MitoSox fluorescence, respectively) were increased in aged CMVECs and were unaffected by PACAP. Collectively, PACAP exerts proangiogenic effects and age-related dysregulation of autocrine PACAP signaling may contribute to impaired angiogenic capacity of CMVECs in aging.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Anatomy, MTA-PTE PACAP Lendulet Research Team
| | - Danuta Sosnowska
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Zsuzsanna Tucsek
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Tripti Gautam
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Lendulet Research Team
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Szentágothai Research Center, and
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Lendulet Research Team
| | - William E Sonntag
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center, University of Pécs, Hungary. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center. Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center, University of Pécs, Hungary. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center.
| |
Collapse
|
78
|
Yan H, Mitschelen M, Toth P, Ashpole NM, Farley JA, Hodges EL, Warrington JP, Han S, Fung KM, Csiszar A, Ungvari Z, Sonntag WE. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat. J Gerontol A Biol Sci Med Sci 2014; 69:1353-62. [PMID: 25098324 DOI: 10.1093/gerona/glu118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia.
Collapse
Affiliation(s)
- Han Yan
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Erik L Hodges
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Junie P Warrington
- Present address: Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Song Han
- Present address: Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
79
|
Csiszar A, Gautam T, Sosnowska D, Tarantini S, Banki E, Tucsek Z, Toth P, Losonczy G, Koller A, Reglodi D, Giles CB, Wren JD, Sonntag WE, Ungvari Z. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol 2014; 307:H292-306. [PMID: 24906921 DOI: 10.1152/ajpheart.00307.2014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 mo old) and aged (24 mo old) ad libitum-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR. Expression and transcriptional activity of Nrf2 are both significantly reduced in aged CMVECs, whereas CR prevents age-related Nrf2 dysfunction. Expression of miR-144 was upregulated in aged CMVECs, and overexpression of miR-144 significantly decreased expression of Nrf2 in cells derived from both young animals and aged CR rats. Overexpression of a miR-144 antagomir in aged CMVECs significantly decreases expression of miR-144 and upregulates Nrf2. We found that CR prevents age-related impairment of angiogenic processes, including cell proliferation, adhesion to collagen, and formation of capillary-like structures and inhibits apoptosis in CMVECs. CR also exerts significant anti-inflammatory effects, preventing age-related increases in the transcriptional activity of NF-κB and age-associated pro-inflammatory shift in the endothelial secretome. Characterization of CR-induced changes in miRNA expression suggests that they likely affect several critical functions in endothelial cell homeostasis. The predicted regulatory effects of CR-related differentially expressed miRNAs in aged CMVECs are consistent with the anti-aging endothelial effects of CR observed in vivo. Collectively, we find that CR confers persisting anti-oxidative, pro-angiogenic, and anti-inflammatory cellular effects, preserving a youthful phenotype in rat cerebromicrovascular endothelial cells, suggesting that through these effects CR may improve cerebrovascular function and prevent vascular cognitive impairment.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center University of Pecs, Pecs, Hungary;
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Eszter Banki
- Department of Anatomy, MTA-PTE Lendulet Research Group, Medical School, University of Pecs, Pecs, Hungary
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gyorgy Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE Lendulet Research Group, Medical School, University of Pecs, Pecs, Hungary
| | - Cory B Giles
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Research Program and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Research Program and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Pathophysiology and Gerontology, Medical School and Szentagothai Research Center University of Pecs, Pecs, Hungary
| |
Collapse
|