51
|
Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell ischemia model involves cooperative activation of adenosine A2A and A2B receptors by endogenous adenosine. J Cardiovasc Pharmacol 2009; 53:424-33. [PMID: 19333129 DOI: 10.1097/fjc.0b013e3181a443e2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular adenosine concentrations increase within the heart during ischemia, and any exogenous adenosine receptor agonists therefore work in the context of significant local agonist concentrations. We evaluated the interactions between A1, A2A, A2B, and A3 receptors in the presence and absence of adenosine deaminase (ADA, which is used to remove endogenous adenosine) in a cardiac cell ischemia model. Simulated ischemia (SI) was induced by incubating H9c2(2-1) cells in SI medium for 12 hours in 100% N2 gas before assessment of necrosis using propidium iodide (5 microM) or apoptosis using AnnexinV-PE flow cytometry. N6-Cyclopentyladenosine (CPA; 10(-7)M) and N6-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA; 10(-7)M) reduced the proportion of nonviable cells to 30.87 +/- 2.49% and 35.18 +/- 10.30%, respectively (% of SI group). In the presence of ADA, the protective effect of CPA was reduced (62.82 +/- 3.52% nonviable), whereas the efficacy of IB-MECA was unchanged (35.81 +/- 3.84% nonviable; P < 0.05, n = 3-5, SI vs. SI + ADA). The protective effects of CPA and IB-MECA were abrogated in the presence of their respective antagonists DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and MRS1191 [3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate], whereas A2A and A2B agonists had no significant effect. CPA-mediated protection was abrogated in the presence of both A2A (ZM241385, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-lamino]ethyl)phenol; 50 nM) and A2B (MRS1754, 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine; 200 nM) antagonists (n = 3-5, P < 0.05). In the absence of endogenous adenosine, significant protection was observed with CPA in presence of CGS21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid) or LUF5834 [2-amino-4-(4-hydroxyphenyl)-6-(1H-imidazol-2-ylmethylsulfanyl)pyridine-3,5-dicarbonitrile] (P < 0.05 vs. SI + ADA + CPA). Apoptosis (14.35 +/- 0.15% of cells in SI + ADA group; P < 0.05 vs. control) was not significantly reduced by CPA or IB-MECA. In conclusion, endogenous adenosine makes a significant contribution to A1 agonist-mediated prevention of necrosis in this SI model by cooperative interactions with both A2A and A2B receptors but does not play a role in A3 agonist-mediated protection.
Collapse
|
52
|
Preconditioning effects of adenosine in patients with severe coronary artery disease but preserved coronary flow reserve. Coron Artery Dis 2009; 20:354-9. [DOI: 10.1097/mca.0b013e32832ac5c1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Fretwell L, Dickenson JM. Role of large-conductance Ca(2+) -activated potassium channels in adenosine A(1) receptor-mediated pharmacological preconditioning in H9c2 cells. Eur J Pharmacol 2009; 618:37-44. [PMID: 19619521 DOI: 10.1016/j.ejphar.2009.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 02/03/2023]
Abstract
Large-conductance Ca(2+)-activated potassium channels, located on the inner mitochondrial membrane, have recently been implicated in cytoprotection. Therefore, the primary aim of this study was to determine the role of large-conductance Ca(2+)-activated potassium channels in adenosine A(1) receptor-induced pharmacological preconditioning in the rat embryonic cardiomyoblast-derived cell line H9c2. For pharmacological preconditioning, H9c2 cells were exposed to the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (100 nM) or the Ca(2+)-activated potassium channel opener NS1619 (10 microM) for 30 min prior to 6 h hypoxia (0.5% O(2)) in glucose-free and serum-free media. Where appropriate cells were treated (15 min) before pharmacological preconditioning with the Ca(2+)-activated potassium channels blockers paxilline (1 microM) or iberiotoxin (100 nM). Cell viability following 6 h hypoxia was assessed by monitoring lactate dehydrogenase (LDH) release and caspase-3 activation. Ca(2+)-activated potassium channel subunit protein expression and cell survival protein kinase (ERK1/2 and PKB/Akt) activation were assessed by Western blotting. The results demonstrate that the adenosine A(1) receptor is functionally expressed in H9c2 cells and when activated protects against hypoxia-induced LDH release and caspase-3 activation. Treatment with paxilline or iberiotoxin attenuated adenosine A(1) receptor and NS1619-induced pharmacological preconditioning. Large-conductance Ca(2+)-activated potassium channel alpha and beta4 protein subunits were detected in mitochondrial fractions isolated from H9c2 cells. NS1619 (10 microM) induced no significant changes in ERK1/2 or PKB phosphorylation. These results have shown for the first time that large-conductance Ca(2+)-activated potassium channels are involved in adenosine A(1) receptor-induced pharmacological preconditioning in a cell model system.
Collapse
Affiliation(s)
- Laurice Fretwell
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | |
Collapse
|
54
|
Hussain A, Karjian P, Maddock H. The role of nitric oxide in A3 adenosine receptor-mediated cardioprotection. ACTA ACUST UNITED AC 2009; 29:97-104. [DOI: 10.1111/j.1474-8673.2009.00438.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Chen CM, Penuelas O, Quinn K, Cheng KC, Li CF, Zhang H, Slutsky AS. Protective effects of adenosine A2A receptor agonist in ventilator-induced lung injury in rats. Crit Care Med 2009; 37:2235-2241. [PMID: 19487932 PMCID: PMC3951985 DOI: 10.1097/ccm.0b013e3181a55273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Mechanical ventilation is associated with overwhelming inflammatory responses that are associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome. The activation of adenosine A2A receptors has been reported to attenuate inflammatory cascades. HYPOTHESIS The administration of A2A receptors agonist ameliorates VILI. METHODS Rats were subjected to hemorrhagic shock and resuscitation as a first hit to induce systemic inflammation. The animals randomly received the selective A2A receptor agonist CGS-21680 or a vehicle control in a blinded fashion at the onset of resuscitation phase. They were then randomized to receive mechanical ventilation as a second hit with a high tidal volume of 20 mL/kg and zero positive end-expiratory pressure, or a low tidal volume of 6 mL/kg with positive end-expiratory pressure of 5 cm H2O. RESULTS The administration of CGS-21680 attenuated lung injury as evidenced by a decrease in respiratory elastance, lung edema, lung injury scores, neutrophil recruitment in the lung, and production of inflammatory cytokines, compared with the vehicle-treated animals. CONCLUSIONS The selective A2A receptor agonist may have a place as a novel therapeutic approach in reducing VILI.
Collapse
Affiliation(s)
- Chin-Ming Chen
- Department of Intensive Care Medicine and Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
56
|
Sadat U. Signaling pathways of cardioprotective ischemic preconditioning. Int J Surg 2009; 7:490-8. [PMID: 19540944 DOI: 10.1016/j.ijsu.2009.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is a major contributory factor to cardiac dysfunction and infarct size that determines patient prognosis after acute myocardial infarction. During the last 20 years, since the appearance of the first publication on ischemic preconditioning (IP), our knowledge of this phenomenon has increased exponentially. RESULTS AND CONCLUSION Basic scientific experiments and preliminary clinical trials in humans suggest that IP confers resistance to subsequent sustained ischemic insults not only in the regional tissue but also in distant organs (remote ischemic preconditioning), which may provide a simple, cost-effective means of reducing the risk of perioperative myocardial ischemia. The mechanism may be humoral, neural, or a combination of both, and involves adenosine, bradykinin, protein kinases and K(ATP) channels, although the precise end-effector remains unclear. This review describes different signaling pathways involved in acute ischemic preconditioning in detail.
Collapse
Affiliation(s)
- Umar Sadat
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
57
|
Namdar M, Schepis T, Koepfli P, Gaemperli O, Siegrist PT, Grathwohl R, Valenta I, Delaloye R, Klainguti M, Wyss CA, Lüscher TF, Kaufmann PA. Caffeine impairs myocardial blood flow response to physical exercise in patients with coronary artery disease as well as in age-matched controls. PLoS One 2009; 4:e5665. [PMID: 19479069 PMCID: PMC2682574 DOI: 10.1371/journal.pone.0005665] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 04/25/2009] [Indexed: 01/16/2023] Open
Abstract
Background Caffeine is one of the most widely consumed pharmacologically active substances. Its acute effect on myocardial blood flow is widely unknown. Our aim was to assess the acute effect of caffeine in a dose corresponding to two cups of coffee on myocardial blood flow (MBF) in coronary artery disease (CAD). Methodology/Principal Findings MBF was measured with 15O-labelled H2O and Positron Emission Tomography (PET) at rest and after supine bicycle exercise in controls (n = 15, mean age 58±13 years) and in CAD patients (n = 15, mean age 61±9 years). In the latter, regional MBF was assessed in segments subtended by stenotic and remote coronary arteries. All measurements were repeated fifty minutes after oral caffeine ingestion (200 mg). Myocardial perfusion reserve (MPR) was calculated as ratio of MBF during bicycle stress divided by MBF at rest. Resting MBF was not affected by caffeine in both groups. Exercise-induced MBF response decreased significantly after caffeine in controls (2.26±0.56 vs. 2.02±0.56, P<0.005), remote (2.40±0.70 vs. 1.78±0.46, P<0.001) and in stenotic segments (1.90±0.41 vs. 1.38±0.30, P<0.001). Caffeine decreased MPR significantly by 14% in controls (P<0.05 vs. baseline). In CAD patients MPR decreased by 18% (P<0.05 vs. baseline) in remote and by 25% in stenotic segments (P<0.01 vs. baseline). Conclusions We conclude that caffeine impairs exercise-induced hyperaemic MBF response in patients with CAD to a greater degree than age-matched controls.
Collapse
Affiliation(s)
- Mehdi Namdar
- Cardiac Imaging, University Hospital, Zurich, Switzerland
| | | | - Pascal Koepfli
- Cardiac Imaging, University Hospital, Zurich, Switzerland
| | | | | | | | - Ines Valenta
- Cardiac Imaging, University Hospital, Zurich, Switzerland
| | | | | | | | | | - Philipp A. Kaufmann
- Cardiac Imaging, University Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
58
|
Kaul A, Sethi R, Misra MK. Erythrocytic adenosine deaminase in post myocardial infarction angina patients. Indian J Clin Biochem 2009; 24:49-51. [PMID: 23105806 DOI: 10.1007/s12291-009-0008-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A comparative study on the levels of erythrocyte adenosine deaminase and lipid peroxidation has been undertaken in post myocardial infarction angina patients along with age and sex matched healthy individuals serving as control. Present findings show that levels of adenosine deaminase is highly elevated in post myocardial infarction angina patients compared to healthy persons. Malondialdehyde levels are also significantly increased in post myocardial infarction angina patients. The study shows that adenosine deaminase has an important implication in ischemic myocardial syndrome.
Collapse
Affiliation(s)
- Aiki Kaul
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | | | | |
Collapse
|
59
|
AMP hydrolysis in soluble and microsomal rat cardiac cell fractions: kinetic characterization and molecular identification of 5'-nucleotidase. Biosci Rep 2009; 28:267-73. [PMID: 18684110 DOI: 10.1042/bsr20070039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study describes the enzymatic properties and molecular identification of 5'-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K(m) (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7+/-10.4 microM and 134.8+/-32.1 microM, with V(max) values of 6.7+/-0.4 and 143.8+/-23.8 nmol P(i)/min/mg of protein (means+/-S.D., n=4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5'-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5'-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca(2+) influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.
Collapse
|
60
|
Isoform-specific regulation of the Na+ -K+ pump by adenosine in guinea pig ventricular myocytes. Acta Pharmacol Sin 2009; 30:404-12. [PMID: 19305421 DOI: 10.1038/aps.2009.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM The present study investigated the effect of adenosine on Na(+)-K(+) pumps in acutely isolated guinea pig (Cavia sp.) ventricular myocytes. METHODS The whole-cell, patch-clamp technique was used to record the Na(+)-K(+) pump current (I(p)) in acutely isolated guinea pig ventricular myocytes. RESULTS Adenosine inhibited the high DHO-affinity pump current (I(h)) in a concentration-dependent manner, which was blocked by the selective adenosine A(1) receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists staurosporine, GF 109203X or the specific delta isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A(1) receptor agonist CCPA and a specific activator peptide of PKC-delta, PP114. In contrast, the selective A(2A) receptor agonist CGS21680 and A(3) receptor agonist Cl-IB-MECA did not affect I(h). Application of the selective A(2A) receptor antagonist SCH58261 and A(3) receptor antagonist MRS1191 also failed to block the effect of adenosine. Furthermore, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced I(h) inhibition. CONCLUSION The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of I(h) via adenosine A(1) receptors and the PKC-delta isoform.
Collapse
|
61
|
Synthesis and SAR studies of trisubstituted purinones as potent and selective adenosine A2A receptor antagonists. Bioorg Med Chem Lett 2009; 19:1399-402. [DOI: 10.1016/j.bmcl.2009.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 11/22/2022]
|
62
|
Abstract
Adenosine, a catabolite of ATP, exerts numerous effects in the heart, including modulation of the cardiac response to stress, such as that which occurs during myocardial ischemia and reperfusion. Over the past 20 years, substantial evidence has accumulated that adenosine, administered either prior to ischemia or during reperfusion, reduces both reversible and irreversible myocardial injury. The latter effect results in a reduction of both necrosis or myocardial infarction (MI) and apoptosis. These effects appear to be mediated via the activation of one or more G-protein-coupled receptors (GPCRs), referred to as A(1), A(2A), A(2B) and A(3) adenosine receptor (AR) subtypes. Experimental studies in different species and models suggest that activation of the A(1) or A(3)ARs prior to ischemia is cardioprotective. Further experimental studies reveal that the administration of A(2A)AR agonists during reperfusion can also reduce MI, and recent reports suggest that A(2B)ARs may also play an important role in modulating myocardial reperfusion injury. Despite convincing experimental evidence for AR-mediated cardioprotection, there have been only a limited number of clinical trials examining the beneficial effects of adenosine or adenosine-based therapeutics in humans, and the results of these studies have been equivocal. This review summarizes our current knowledge of AR-mediated cardioprotection, and the roles of the four known ARs in experimental models of ischemia-reperfusion. The chapter concludes with an examination of the clinical trials to date assessing the safety and efficacy of adenosine as a cardioprotective agent during coronary thrombolysis in humans.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, 4217, Australia.
| | | |
Collapse
|
63
|
Cole AG, Stauffer TM, Rokosz LL, Metzger A, Dillard LW, Zeng W, Henderson I. Synthesis of 2-amino-5-benzoyl-4-(2-furyl)thiazoles as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 2009; 19:378-81. [DOI: 10.1016/j.bmcl.2008.11.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 11/25/2022]
|
64
|
Stone GW. Angioplasty strategies in ST-segment-elevation myocardial infarction: part II: intervention after fibrinolytic therapy, integrated treatment recommendations, and future directions. Circulation 2008; 118:552-66. [PMID: 18663103 DOI: 10.1161/circulationaha.107.739243] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gregg W Stone
- Columbia University Medical Center, 111 E 59th St, 11th Floor, New York, NY 10022, USA.
| |
Collapse
|
65
|
Di Sole F, Cerull R, Babich V, Casavola V, Helmle-Roth C, Burckhardt G. Short- and long-term A3 adenosine receptor activation inhibits the Na+/H+ exchanger NHE3 activity and expression in opossum kidney cells. J Cell Physiol 2008; 216:221-33. [PMID: 18286509 DOI: 10.1002/jcp.21399] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The renal function of the A(3) adenosine receptor (A3AR) is poorly characterized. In this study, we report that the A3AR-selective agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purine-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide (2-Cl-IBMECA) regulates the Na+/H+ exchanger-3 (NHE3) in a dose- and time-dependent fashion. In opossum kidney (OK) cells, 2-Cl-IBMECA at high (10(-6) M) and low (10(-8) M) dose inhibits NHE3 by a multiphasic time course with an acute phase of NHE3 inhibition from 15 min to 1 h, followed by a chronic phase of NHE3 inhibition from 24 to 48 h. Pre-incubation with either the selective A3AR-antagonist MRS1523 (10(-7) M) or the protein kinase C inhibitor, Calphostin C (10(-8) M) completely blocked 10(-6) M 2-Cl-IBMECA-induced acute (15 min) and chronic (24 h) phases of NHE3 inhibition. In contrast, the acute inhibitory phase (15 min) of 10(-8) M 2-Cl-IBMECA was completely prevented only when Calphostin C (10(-8) M) was added in conjunction with the protein kinase A inhibitor, H89 (10(-7) M). Acute (15 or 30 min depending on the A3AR-agonist concentration) A3AR-dependent inhibition of NHE3 activity was accompanied by decrease in cell surface NHE3 protein with no change in total NHE3 antigen. Chronic (24 h) A3AR-mediated down-regulation of NHE3 was associated with reduction of surface NHE3, decreased total NHE3 protein (70%) and a paradoxical rise of NHE3 RNA (40%). In summary, these results indicate that A3AR directly regulates NHE3 at multiple levels in a complex pattern. A3AR-dependent short- and long-term inhibition of NHE3 may be a fundamental mechanism of net sodium and fluid balance.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
66
|
Human in vivo research on the vascular effects of adenosine. Eur J Pharmacol 2008; 585:220-7. [DOI: 10.1016/j.ejphar.2008.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/21/2007] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
|
67
|
Evaluating the protective role of ischaemic preconditioning in rat hearts using a stationary small-animal SPECT imager and 99mTc-glucarate. Nucl Med Commun 2008; 29:120-8. [PMID: 18094633 DOI: 10.1097/mnm.0b013e3282f29702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the protective role of ischaemic preconditioning (IPC) in rat hearts using Tc-glucarate (GLA) and a stationary SPECT imager, FastSPECT. METHODS Twenty-four rats with 30 min myocardial ischaemia and 150 min reperfusion (IR) were studied as follows. The IPC group (n=6) underwent IPC (five cycles of 4 min ligation of the left coronary artery and reflow) before IR. The control group (n=7) was treated by IR without IPC. The SPT group (n=6) was subjected to IPC and an adenosine antagonist, 8-(p-sulfophenyl)-theophylline (SPT). The vehicle group (n=5) received IPC and SPT carrier vehicle. GLA was delivered intravenously 30 min post-reperfusion, and 2-h dynamic cardiac images were acquired by FastSPECT. RESULTS GLA showed 'hot-spot' accumulation in the ischaemic area-at-risk (IAR) and exhibited lower retention (% 5 min peak) in the IPC and vehicle groups (33.8+/-2.6 vs. 35.7+/-9.2, P>0.05) than in the control and SPT groups (63.1+/-5.3 vs. 54.8+/-4.8, P>0.05). The infarct size (% IAR) was larger in the control and SPT groups (48.2+/-6.3 vs. 41.7+/-6.3, P>0.05) than that in the IPC and vehicle groups (21.0+/-1.9 vs. 19.1+/-4.6, P>0.05). In terms of the ex-vivo IAR-to-normal radioactivity ratio, there was a statistical difference between the control and IPC groups (7.4+/-0.9 vs. 3.0+/-0.4), as well as the SPT and vehicle groups (7.4+/-1.0 vs. 3.4+/-0.5). CONCLUSION IPC offers cardioprotection and relates to the activation of adenosine receptors in rat hearts. FastSPECT GLA imaging is not only useful in detecting early ischaemia-reperfusion injury, but also valuable in evaluating cardioprotection.
Collapse
|
68
|
Ye Y, Abu Said GH, Lin Y, Manickavasagam S, Hughes MG, McAdoo DJ, Perez-Polo RJ, Birnbaum Y. Caffeinated Coffee Blunts the Myocardial Protective Effects of Statins against Ischemia–Reperfusion Injury in the Rat. Cardiovasc Drugs Ther 2008; 22:275-82. [DOI: 10.1007/s10557-008-6105-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/21/2008] [Indexed: 11/24/2022]
|
69
|
Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE. Inhibiting protease-activated receptor 4 limits myocardial ischemia/reperfusion injury in rat hearts by unmasking adenosine signaling. J Pharmacol Exp Ther 2008; 324:1045-54. [PMID: 18055876 PMCID: PMC2935083 DOI: 10.1124/jpet.107.133595] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Harnessing endogenous cardioprotectants is a novel therapeutic strategy to combat ischemia/reperfusion (I/R) injury. Thrombin causes I/R injury, whereas exogenous adenosine prevents I/R injury. We hypothesized that blocking thrombin receptor activation with a protease-activated receptor (PAR) 4 antagonist would unmask the cardioprotective effects of endogenous adenosine. The protective role of two structurally unrelated PAR4 antagonists, trans-cinnamoyl-YPGKF-amide (tc-Y-NH(2)) and palmitoyl-SGRRYGHALR-amide (P4pal10), were evaluated in two rat models of myocardial I/R injury. P4pal10 (10 microg/kg) treatment before ischemia significantly decreased infarct size (IS) by 31, 21, and 19% when given before, during, and after ischemia in the in vivo model. tc-Y-NH(2) (5 microM) treatment before ischemia decreased IS by 51% in the in vitro model and increased recovery of ventricular function by 26%. To assess whether the cardioprotective effects of PAR4 blockade were due to endogenous adenosine, isolated hearts were treated with a nonselective adenosine receptor blocker, 8-sulfaphenyltheophylline (8-SPT), and tc-Y-NH(2) before ischemia. 8-SPT abolished the protective effects of tc-Y-NH(2) but did not affect IS when given alone. Adenosine-mediated survival pathways were then explored. The cardioprotective effects of tc-Y-NH(2) were abolished by inhibition of Akt (wortmannin), extracellular signal-regulated kinase 1/2 [PD98059 (2'-amino-3'-methoxyflavone)], nitric-oxide synthase [N(G)-monomethyl-l-arginine (l-NMA)], and K(ATP) channels (glibenclamide). PD98059, l-NMA, and glibenclamide alone had no effect on cardioprotection in vitro. Furthermore, inhibition of mitochondrial K(ATP) channels [5-hydroxydecanoic acid (5-HD)] and sarcolemmal K(ATP) channels (sodium (5-(2-(5-chloro-2-methoxybenzamido)ethyl)-2-methoxyphenylsulfonyl)(methylcarbamothioyl)amide; HMR 1098) abolished P4pal10-induced cardioprotection in vivo. Thrombin receptor blockade by PAR4 inhibition provides protection against injury from myocardial I/R by unmasking adenosine receptor signaling and supports the hypothesis of a coupling between thrombin receptors and adenosine receptors.
Collapse
Affiliation(s)
- Jennifer L Strande
- Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Rose JB, Coe IR. Physiology of Nucleoside Transporters: Back to the Future. . . . Physiology (Bethesda) 2008; 23:41-8. [DOI: 10.1152/physiol.00036.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleoside transporters (NTs) are integral membrane proteins responsible for mediating and facilitating the flux of nucleosides and nucleobases across cellular membranes. NTs are also responsible for the uptake of nucleoside analog drugs used in the treatment of cancer and viral infections, and they are the target of certain compounds used in the treatment of some types of cardiovascular disease. The important role of NTs as drug transporters and therapeutic targets has necessarily led to intense interest into their structure and function and the relationship between these proteins and drug efficacy. In contrast, we still know relatively little about the fundamental physiology of NTs. In this review, we discuss various aspects of the physiology of NTs in mammalian systems, particularly noting tissues and cells where there has been little recent research. Our central thesis is reference back to some of the older literature, combined with current findings, will provide direction for future research into NT physiology that will lead to a fuller understanding of the role of these intriguing proteins in the everyday lives of cells, tissues, organs, and whole animals.
Collapse
Affiliation(s)
- Jennifer B. Rose
- Department of Biology, York University, Toronto, Ontario, Canada,
| | - Imogen R. Coe
- Department of Biology, York University, Toronto, Ontario, Canada,
| |
Collapse
|
71
|
Li CH, Zhang Q, Teng B, Mustafa SJ, Huang JY, Yu HG. Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531. Am J Physiol Cell Physiol 2008; 294:C355-62. [PMID: 17977941 PMCID: PMC2784909 DOI: 10.1152/ajpcell.00236.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).
Collapse
Affiliation(s)
- Chen-Hong Li
- Department of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
72
|
Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC. The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. FRONT BIOSCI-LANDMRK 2008; 13:2588-603. [PMID: 17981736 DOI: 10.2741/2868] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Collapse
Affiliation(s)
- Guido Beldi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Stoel MG, Marques KM, de Cock CC, Bronzwaer JG, Birgelen CV, Zijlstra F. High dose adenosine for suboptimal myocardial reperfusion after primary PCI: A randomized placebo-controlled pilot study. Catheter Cardiovasc Interv 2007; 71:283-9. [DOI: 10.1002/ccd.21334] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
74
|
Morrison RR, Tan XL, Ledent C, Mustafa SJ, Hofmann PA. Targeted deletion of A2A adenosine receptors attenuates the protective effects of myocardial postconditioning. Am J Physiol Heart Circ Physiol 2007; 293:H2523-9. [PMID: 17675570 DOI: 10.1152/ajpheart.00612.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous adenosine is an important ligand trigger for the cardioprotective effects of postconditioning (POC), yet it is unclear which adenosine receptor subtype is primarily responsible. To evaluate the role of A2A adenosine receptors in POC-induced protection, global ischemia-reperfusion was performed with and without POC in isolated wild-type (WT) and A2A adenosine receptor knockout (A2AKO) mouse hearts. Injury was measured in terms of postischemic functional recovery and release of cardiac troponin I (cTnI). Activation of protective signaling with POC was assessed by Akt and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. In WT hearts, POC improved recovery of postischemic developed pressure in early (81.6 ± 6.4% of preischemic baseline vs. 37.5 ± 5.6% for non-POC WT at 1 min) and late (62.2 ± 4.2% of baseline vs. 45.5 ± 5.3% for non-POC WT at 30 min) reperfusion, reduced cTnI release by 37%, and doubled the phosphorylation of both Akt and ERK1/2. These beneficial effects of POC were blocked by treatment with the selective A2A adenosine receptor antagonist ZM-241385 during reperfusion. Postischemic functional recovery, cTnI release, and phosphorylation of Akt and ERK1/2 were not different between non-POC WT and A2AKO hearts. In A2AKO hearts, POC did not improve functional recovery, reduce cTnI release, nor increase phosphorylation of Akt or ERK1/2. Thus the protective effects of POC are attenuated by both selective A2A receptor antagonism and targeted deletion of the gene encoding A2A adenosine receptors. These observations support the conclusion that endogenous activation of A2A adenosine receptors is an essential trigger leading to the protective effects of POC in isolated murine hearts.
Collapse
Affiliation(s)
- R Ray Morrison
- Div. of Critical Care Medicine, St. Jude Children's Research Hospital, 332 N. Lauderdale St., MS 734, Memphis, TN 38105, USA.
| | | | | | | | | |
Collapse
|
75
|
Abstract
No-reflow during percutaneous coronary intervention (PCI) is observed most commonly during saphenous vein graft intervention, rotational atherectomy and primary PCI for acute ST-elevation myocardial infarction. The contributions of distal embolization and ischemia/reperfusion injury to the pathogenesis of no-reflow vary in these settings, as does prevention and management. Prevention of no-reflow in these high-risk groups is the best treatment strategy, employing antiplatelet agents, vasodilators and/or mechanical devices to prevent distal embolization. Once mechanical factors are excluded as a cause for reduced epicardial flow, the treatment of established no-reflow is mainly pharmacologic, since the obstruction occurs at the level of the microvasculature. Compared with patients in whom no-reflow is transient, refractory no-reflow is associated with a markedly increased risk of 30-day mortality.
Collapse
Affiliation(s)
- William J van Gaal
- Department of Cardiology, Level 2, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
76
|
Tang Z, Diamond MA, Chen JM, Holly TA, Bonow RO, Dasgupta A, Hyslop T, Purzycki A, Wagner J, McNamara DM, Kukulski T, Wos S, Velazquez EJ, Ardlie K, Feldman AM. Polymorphisms in Adenosine Receptor Genes are Associated with Infarct Size in Patients with Ischemic Cardiomyopathy. Clin Pharmacol Ther 2007; 82:435-40. [PMID: 17728764 DOI: 10.1038/sj.clpt.6100331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.
Collapse
Affiliation(s)
- Z Tang
- Department of Medicine, The Center for Translational Medicine, The Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lu J, Zhu SM, Zang WJ, Xu XL, Luo HL, Yu XJ, Wang SP, Kong SS, Wu J, Horie M, Sun L. Protective mechanism of adenosine to the rat arterial endothelial dysfunction induced by hydrogen peroxide. Biol Pharm Bull 2007; 30:1206-1211. [PMID: 17603154 DOI: 10.1248/bpb.30.1206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the in vitro effects of adenosine (Ado) on hydrogen peroxide-induced endothelial dysfunction in rats. Endothelial dysfunction was induced by exposing isolated rat mesenteric arteries to hydrogen peroxide (0.5 mM) for 12 h using an organ culture system. The protective effects of adenosine were tested by exposing isolated mesenteric arteries to adenosine (3 x 10(-7) mol/l, 10(-6) mol/l, 3 x 10(-6) mol/l)+hydrogen peroxide (0.5 mM) for 12 h. This exposure to hydrogen peroxide induced a significant concentration-dependent inhibition of endothelium-dependent relaxation (EDR). Coculture of segments of mesenteric artery with adenosine (3 x 10(-7), 10(-6), and 3 x 10(-6) mol/l) attenuated the hydrogen peroxide-induced impairment of vasorelaxation. This impairment was accompanied by a reduction in nitrite/nitrate, nitric oxide (NO) synthase (NOS), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and an increasing in malondislehyde (MDA) and lactate dehydrogenase (LDH) activities in the aorta. These results indicate that adenosine can be used to attenuate hydrogen peroxide-induced endothelial dysfunction, an effect that may be related to antioxidation, thus enhancing NO production by preventing the decrease in NOS.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC. Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. Br J Pharmacol 2007; 151:1033-40. [PMID: 17558440 PMCID: PMC2042923 DOI: 10.1038/sj.bjp.0707311] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Red blood cells (RBCs) are reservoirs of vasodilatory, antiaggregatory, and antiinflammatory lipid mediators-epoxyeicosatrienoic acids (EETs). This study addresses the formation and release of erythrocyte-derived EETs in response to ATP receptor stimulation that may represent an important mechanism regarding circulatory regulation. EXPERIMENTAL APPROACH Erythrocyte EET formation and release were investigated by incubating rat RBCs in physiological salt solution with agents that effected ATP release via P2 receptor stimulation of phospholipase A2 and epoxygenase-like activities with activation of the ATP secretory mechanism. EETs were analyzed by gas and liquid chromatography-mass spectrometry. KEY RESULTS EETs were released from rat RBCs: 14,15-, 11,12-, 8,9- and 5,6-EETs in a ratio of 1.2:1.0:0.9:0.8. EETs were produced by epoxidation of arachidonic acid catalyzed by hemoglobin. Spontaneous release of EETs, 0.66+/-0.14 ng per 10(9) RBCs, was dose-dependently increased by an ATP analog, BzATP, and inhibited by P2X(7) receptor antagonists. 5 microM ATP increased release of EETs over 20% to 0.83+/-0.15 ng per 10(9) RBCs; 10 microM BzATP tripled the amount of EET release to 1.87+/-0.20 ng per 10(9) RBCs. EET release by ATP or BzATP was not associated with hemolysis. Carbenoxolone, a gap junction inhibitor that inhibits ATP release, and glibenclamide, an inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), which is required for ATP release, inhibited the spontaneous and stimulated EET release from RBCs. CONCLUSIONS AND IMPLICATIONS EETs are produced and released from RBCs via a mechanism that is mediated by ATP stimulation of P2X(7) receptors coupled to ATP transporters, pannexin-1 and CFTR.
Collapse
Affiliation(s)
- H Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Minguet G, Joris J, Lamy M. Preconditioning and protection against ischaemia-reperfusion in non-cardiac organs: a place for volatile anaesthetics? Eur J Anaesthesiol 2007; 24:733-45. [PMID: 17555610 DOI: 10.1017/s0265021507000531] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increasing body of evidence that volatile anaesthetics protect myocardium against ischaemic insult by a mechanism termed 'anaesthetic preconditioning'. Anaesthetic preconditioning and ischaemic preconditioning share several common mechanisms of action. Since ischaemic preconditioning has been demonstrated in organs other than the heart, anaesthetic preconditioning might also apply in these organs and have significant clinical applications in surgical procedures carrying a high risk of ischaemia-reperfusion injury. After a brief review on myocardial preconditioning, experimental and clinical data on preconditioning in non-cardiac tissues will be presented. Potential benefits of anaesthetic preconditioning during non-cardiac surgery will be addressed.
Collapse
Affiliation(s)
- G Minguet
- University of Liège, Department of Anaesthesia and Intensive Care Medicine, Belgium.
| | | | | |
Collapse
|
80
|
Abstract
Chronic heart failure is a debilitating condition with significant morbidity, mortality and an increasing economic burden. The past 20 years have witnessed great strides in both medical and device-based therapies for heart failure. Central to these developments has been the ability to favorably reverse the chronic processes by which the failing heart remodels. In addition to pharmacotherapies, such as beta-blockade, and inhibition of the renin-angiotensin-aldosterone system, surgical remodeling, containment devices and new methods to restore synchronous contraction have been added to the armamentarium, in some instances, providing clear improvement to both symptoms and mortality. In more advanced stages of heart failure, left ventricular-assist devices provide marked unloading of the failing ventricle and such therapy has provided unique insights into the molecular and cellular mechanisms underlying reverse remodeling, given the immediate access to cardiac tissue. Genetic and cellular approaches, as well as new small molecule targets, may provide future avenues for reverse remodeling of the failing heart, improving symptoms and disease outcome.
Collapse
Affiliation(s)
- James O Mudd
- Johns Hopkins Medical Institutions, Division of Cardiology, Department of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
81
|
Peart JN, Headrick JP. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol Ther 2007; 114:208-21. [PMID: 17408751 DOI: 10.1016/j.pharmthera.2007.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/18/2022]
Abstract
Adenosine, formed primarily via hydrolysis of 5'-AMP, has been historically dubbed a "retaliatory" metabolite due to enhanced local release and beneficial actions during cellular/metabolic stress. From a cardiovascular perspective, evidence indicates the adenosinergic system is essential in mediation of intrinsic protection (e.g., pre- and postconditioning) and determining myocardial resistance to insult. Modulation of adenosine and its receptors thus remains a promising, though as yet not well-realized, approach to amelioration of injury in ischemic-reperfused myocardium. Adenosine exerts effects through A(1), A(2A), A(2B), and A(3) adenosine receptor subtypes (A(1)AR, A(2A)AR, A(2B)AR, and A(3)AR), which are all expressed in myocardial and vascular cells, and couple to G proteins to trigger a range of responses (generally, but not always, beneficial). Adenosine can also enhance tolerance to injurious stimuli via receptor-independent metabolic effects. Given adenosines contribution to preconditioning, it is no surprise that postreceptor signaling typically mimics that associated with preconditioning. This involves activation/translocation of PKC, PI3 kinase, and MAPKs, with ultimate effects at the level of mitochondrial targets-the mitochondrial K(ATP) channel and/or the mitochondrial permeability transition pore (mPTP). Nonetheless, differences in cytoprotective signaling and actions of the different adenosine receptor subtypes have been recently revealed. Our understanding of adenosinergic cytoprotection continues to evolve, with roles for the A(2) subtypes emerging, together with evidence of essential receptor "cross-talk" in mediation of protection. This review focuses on current research into adenosine-mediated cardioprotection, highlighting recent findings which, together with a wealth of prior knowledge, may ultimately facilitate adenosinergic approaches to clinical cardiac protection.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Center, Griffith University, PMB 50 Gold Coast Mail Center, QLD, 4217, Australia.
| | | |
Collapse
|
82
|
Yang JN, Tiselius C, Daré E, Johansson B, Valen G, Fredholm BB. Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol (Oxf) 2007; 190:63-75. [PMID: 17428234 DOI: 10.1111/j.1365-201x.2007.01690.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To examine cardiac function, body temperature and locomotor behaviour in the awake adenosine A(1) receptor knock out mouse of both sexes. METHODS Male and female A(1)R (+/+) and (-/-) mice, instrumented with telemetric devices, were recorded during basal conditions and after drug administration. RESULTS Female mice had higher heart rate, body temperature and locomotion, both during daytime and during the night. Awake A(1)R (-/-) mice had a slightly elevated heart rate, and this was more clear-cut in males. Heart rate was also higher in Langendorff-perfused denervated A(1)R (-/-) hearts. Body temperature was higher in A(1)R (-/-) males and females; locomotor activity was higher in A(1)R (-/-) females, but not in males. The adenosine receptor agonist R-PIA (0.2 mg kg(-1)) decreased heart rate and body temperature, but less in A(1)R (-/-) animals than in A(1)R (+/+) mice (P < 0.001 in both parameters). The unselective adenosine receptor antagonist caffeine had a minor stimulatory effect on heart rate in lower doses, but depressed it at a dose of 75 mg kg(-1). Body temperature was increased after a low dose (7.5 mg kg(-1)) of caffeine in both sexes and genotypes, and markedly reduced after a high dose (75 mg kg(-1)) of caffeine. An intermediary dose of caffeine 30 mg kg(-1) increased or decreased body temperature depending on genotype and sex. Locomotor responses to caffeine were variable depending both on genotype and sex. CONCLUSION Thus, the adenosine A(1) receptor is involved in the regulation of heart rate, body temperature and locomotor activity, but the magnitude of the involvement is different in males and females.
Collapse
Affiliation(s)
- J-N Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
83
|
Schulze K, Duschek C, Lasley RD, Bünger R. Adenosine enhances cytosolic phosphorylation potential and ventricular contractility in stunned guinea pig heart: receptor-mediated and metabolic protection. J Appl Physiol (1985) 2007; 102:1202-13. [PMID: 17341737 DOI: 10.1152/japplphysiol.00245.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of adenosine (ADO) protection of reperfused myocardium are not fully understood. We tested the hypothesis that ADO (0.1 mM) alleviates ventricular stunning by ADO A(1)-receptor stimulation combined with purine metabolic enhancements. Langendorff guinea pig hearts were stunned at constant left ventricular end-diastolic pressure by low-flow ischemia. Myocardial phosphate metabolites were measured by (31)P-NMR, with phosphorylation potential {[ATP]/([ADP].[P(i)]), where brackets indicate concentration} estimated from creatine kinase equilibrium. Creatine and IMP, glycolytic intermediates, were measured enzymatically and glycolytic flux and extracellular spaces were measured by radiotracers. All treatment interventions started after a 10-min normoxic stabilization period. At 30 min reperfusion, ventricular contractility (dP/dt, left ventricular pressure) was reduced 17-26%, ventricular power (rate-pressure product) by 37%, and [ATP]/([ADP].[P(i)]) by 53%. The selective A(1) agonist 2-chloro-N(6)-cyclo-pentyladenosine marginally preserved [ATP]/([ADP].[P(i)]) and ventricular contractility but not rate-pressure product. Purine salvage precursor inosine (0.1 mM) substantially raised [ATP]/([ADP].[P(i)]) but weakly affected contractility. The ATP-sensitive potassium channel blocker glibenclamide (50 microM) abolished ADO protection of [ATP]/([ADP].[P(i)]) and contractility. ADO raised myocardial IMP and glucose-6-phosphate, demonstrating increased purine salvage and pentose phosphate pathway flux potential. Coronary hyperemia alone (papaverine) was not cardioprotective. We found that ADO protected energy metabolism and contractility in stunned myocardium more effectively than both the A(1)-receptor agonist 2-chloro-N(6)-cyclo-pentyladenosine and the purine salvage precursor inosine. Because ADO failed to stimulate glycolytic flux, the enhancement of reperfusion, [ATP]/([ADP].[P(i)]), indicates protection of mitochondrial function. Reduced ventricular dysfunction at enhanced [ATP]/([ADP].[P(i)]) argues against opening of mitochondrial ATP-sensitive potassium channel. The results establish a multifactorial mechanism of ADO antistunning, which appears to combine ADO A(1)-receptor signaling with metabolic adenylate and antioxidant enhancements.
Collapse
Affiliation(s)
- Karsten Schulze
- Abteilung für Kardiologie und Pneumologie, Campus Benjamin Franklin, Charité Berlin, 12200 Berlin, Germany.
| | | | | | | |
Collapse
|
84
|
Funakoshi H, Zacharia LC, Tang Z, Zhang J, Lee LL, Good JC, Herrmann DE, Higuchi Y, Koch WJ, Jackson EK, Chan TO, Feldman AM. A1 adenosine receptor upregulation accompanies decreasing myocardial adenosine levels in mice with left ventricular dysfunction. Circulation 2007; 115:2307-15. [PMID: 17438146 DOI: 10.1161/circulationaha.107.694596] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is well known that adenosine levels are increased during ischemia and protect the heart during ischemia/reperfusion. However, less is known about the role of adenosine-adenosine receptor (AR) pathways in hearts with left ventricular dilation and dysfunction. Therefore, we assessed adenosine levels and selective AR expression in transgenic mice with left ventricular systolic dysfunction secondary to overexpression of tumor necrosis factor-alpha (TNF 1.6). METHODS AND RESULTS Cardiac adenosine levels were reduced by 70% at 3 and 6 weeks of age in TNF 1.6 mice. This change was accompanied by a 4-fold increase in the levels of A1-AR and a 50% reduction in the levels of A2A-AR. That the increase in A1-AR density was of physiological significance was shown by the fact that chronotropic responsiveness to the A1-AR selective agonist 2-chloro-N6-cyclopentanyladenosine was enhanced in the TNF 1.6 mice. Similar changes in adenosine levels were found in 2 other models of heart failure, mice overexpressing calsequestrin and mice after chronic pressure overload, suggesting that the changes in adenosine-AR signaling were secondary to myocardial dysfunction rather than to TNF overexpression. CONCLUSIONS Cardiac dysfunction secondary to the overexpression of TNF is associated with marked alterations in myocardial levels of adenosine and ARs. Modulation of the myocardial adenosine system and its signaling pathways may be a novel therapeutic target in patients with heart failure.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Diphosphate/metabolism
- Adenosine Monophosphate/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Disease Models, Animal
- Female
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Myocardium/metabolism
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Signal Transduction/physiology
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/physiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Hajime Funakoshi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007; 14:1315-23. [PMID: 17396131 DOI: 10.1038/sj.cdd.4402132] [Citation(s) in RCA: 529] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly coupled to G(s) like G proteins. These receptors are antagonized by xanthines including caffeine. Via these receptors it affects many cells and organs, usually having a cytoprotective function. Joel Linden recently grouped these protective effects into four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects and stimulation of angiogenesis. This review will briefly summarize what is known and what is not in this regard. It is argued that drugs targeting adenosine receptors might be useful adjuncts in many therapeutic approaches.
Collapse
Affiliation(s)
- B B Fredholm
- Department of Physiology and Pharmacology, Karolinska Insitutet, Stockholm, Sweden.
| |
Collapse
|
86
|
Feldman AM, Koch WJ, Force TL. Developing Strategies to Link Basic Cardiovascular Sciences with Clinical Drug Development: Another Opportunity for Translational Sciences. Clin Pharmacol Ther 2007; 81:887-92. [PMID: 17392727 DOI: 10.1038/sj.clpt.6100160] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Driven, at least in part, by the National Institutes of Health roadmap, an increasing number of studies has bridged the chasm between observations in the basic research laboratory and the clinical bedside. These studies have been an integral part in "translating" new discoveries into therapeutic initiatives. However, "translational medicine" has been used less frequently in the development of cardiovascular drugs or in predicting the potential cardiovascular toxicity of non-cardiac agents. Studies in animal models can provide important clues as to the potential cardiotoxicity of new therapeutic agents, as well as providing a template for the rational design of clinical trials. Three examples of drug development programs that might have been altered by clues available from laboratory studies include the development programs for the anti-cancer drug trastuzumab, the cyclooxygenase inhibitors, and the adenosine-receptor agonists and antagonists. Although mouse models may not always represent the physiology of humans, they provide important information that clinical scientists can utilize in designing safe programs for the evaluation of new pharmacologic agents.
Collapse
Affiliation(s)
- A M Feldman
- Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
87
|
Zhu Z, Hofmann PA, Buolamwini JK. Cardioprotective effects of novel tetrahydroisoquinoline analogs of nitrobenzylmercaptopurine riboside in an isolated perfused rat heart model of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2007; 292:H2921-6. [PMID: 17293492 DOI: 10.1152/ajpheart.01191.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the cardioprotective effects of novel tetrahydroisoquinoline nitrobenzylmercaptopurine riboside (NBMPR) analog nucleoside transport (NT) inhibitors, compounds 2 and 4, in isolated perfused rat hearts. Langendorff-perfused heart preparations were subjected to 10 min of treatment with compound 2, compound 4, or vehicle (control) followed by 30 min of global ischemia and 120 min of reperfusion. For determination of infarct size, reperfusion time was 180 min. At 1 microM, compounds 2 and 4 provided excellent cardioprotection, with left ventricular developed pressure (LVDP) recovery and end-diastolic pressure (EDP) increase of 82.9 +/- 4.0% (P<0.001) and 14.1 +/- 2.0 mmHg (P<0.03) for compound 2-treated hearts and 79.2 +/- 5.9% (P<0.002) and 7.5 +/- 2.7 mmHg (P<0.01) for compound 4-treated hearts compared with 41.6 +/- 5.2% and 42.5 +/- 6.5 mmHg for control hearts. LVDP recovery and EDP increase were 64.1 +/- 4.2% and 29.1 +/- 2.5 mmHg for hearts treated with 1 microM NBMPR. Compound 4 was the best cardioprotective agent, affording significant cardioprotection, even at 0.1 microM, with LVDP recovery and EDP increase of 76.0 +/- 4.9% (P<0.003) and 14.1 +/- 1.0 mmHg (P<0.03). At 1 microM, compound 4 and NBMPR reduced infarct size, with infarct area-to-total risk area ratios of 29.13 +/- 3.17 (P<0.001) for compound 4 and 37.5 +/- 3.42 (P<0.01) for NBMPR vs. 51.08 +/- 5.06% for control hearts. Infarct size was more effectively reduced by compound 4 than by NBMPR (P<0.02). These new tetrahydroisoquinoline NBMPR analogs are not only potent cardioprotective agents but are, also, more effective than NBMPR in this model.
Collapse
Affiliation(s)
- Z Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Ave., Suite 327, Memphis, TN 38163, USA
| | | | | |
Collapse
|
88
|
Ozacmak VH, Sayan H. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat. World J Gastroenterol 2007; 13:538-47. [PMID: 17278219 PMCID: PMC4065975 DOI: 10.3748/wjg.v13.i4.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.
METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase, malondialdehyde, and reduced glutathione levels were measured.
RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.
CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.
Collapse
Affiliation(s)
- V Haktan Ozacmak
- Department of Physiology, School of Medicine, Zonguldak Karaelmas University, Kozlu 67600, Zonguldak, Turkey.
| | | |
Collapse
|
89
|
Kaul A, Chandra M, Misra MK. Adenosine deaminase in ischemia reperfusion injury in patients with myocardial infarction. J Enzyme Inhib Med Chem 2006; 21:543-6. [PMID: 17194025 DOI: 10.1080/14756360600774520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A comparative study on the levels of erythrocyte adenosine deaminase and lipid peroxidation has been undertaken in patients with myocardial infarction before and after thrombolysis along with matched healthy individuals. Our findings show that adenosine deaminase activity is highly elevated in post-reperfused patients when compared to pre- thrombolysed and healthy persons. Malondialdehyde(MDA) levels are also significantly increased in post-thrombolysed patients. The study reveals an important role of adenosine deaminase in reperfusion injury in patients with myocardial infarction.
Collapse
Affiliation(s)
- Aiki Kaul
- Department of Biochemistry, Lucknow University, Lucknow 226 007, India
| | | | | |
Collapse
|
90
|
Funakoshi H, Chan TO, Good JC, Libonati JR, Piuhola J, Chen X, MacDonnell SM, Lee LL, Herrmann DE, Zhang J, Martini J, Palmer TM, Sanbe A, Robbins J, Houser SR, Koch WJ, Feldman AM. Regulated Overexpression of the A
1
-Adenosine Receptor in Mice Results in Adverse but Reversible Changes in Cardiac Morphology and Function. Circulation 2006; 114:2240-50. [PMID: 17088462 DOI: 10.1161/circulationaha.106.620211] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background—
Both the A
1
- and A
3
-adenosine receptors (ARs) have been implicated in mediating the cardioprotective effects of adenosine. Paradoxically, overexpression of both A
1
-AR and A
3
-AR is associated with changes in the cardiac phenotype. To evaluate the temporal relationship between AR signaling and cardiac remodeling, we studied the effects of controlled overexpression of the A
1
-AR using a cardiac-specific and tetracycline-transactivating factor–regulated promoter.
Methods and Results—
Constitutive A
1
-AR overexpression caused the development of cardiac dilatation and death within 6 to 12 weeks. These mice developed diminished ventricular function and decreased heart rate. In contrast, when A
1
-AR expression was delayed until 3 weeks of age, mice remained phenotypically normal at 6 weeks, and >90% of the mice survived at 30 weeks. However, late induction of A
1
-AR still caused mild cardiomyopathy at older ages (20 weeks) and accelerated cardiac hypertrophy and the development of dilatation after pressure overload. These changes were accompanied by gene expression changes associated with cardiomyopathy and fibrosis and by decreased Akt phosphorylation. Discontinuation of A
1
-AR induction mitigated cardiac dysfunction and significantly improved survival rate.
Conclusions—
These data suggest that robust constitutive myocardial A
1
-AR overexpression induces a dilated cardiomyopathy, whereas delaying A
1
-AR expression until adulthood ameliorated but did not eliminate the development of cardiac pathology. Thus, the inducible A
1
-AR transgenic mouse model provides novel insights into the role of adenosine signaling in heart failure and illustrates the potentially deleterious consequences of selective versus nonselective activation of adenosine-signaling pathways in the heart.
Collapse
Affiliation(s)
- Hajime Funakoshi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Reichelt ME, Willems L, Peart JN, Ashton KJ, Matherne GP, Blackburn MR, Headrick JP. Modulation of ischaemic contracture in mouse hearts: a 'supraphysiological' response to adenosine. Exp Physiol 2006; 92:175-85. [PMID: 17099061 DOI: 10.1113/expphysiol.2006.035568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While inhibition of ischaemic contracture was one of the first documented cardioprotective actions of exogenously applied adenosine, it is not known whether this is a normal function of endogenous adenosine generated during ischaemic stress. Additionally, the relevance of delayed contracture to postischaemic outcome is unclear. We tested the ability of endogenous versus exogenous adenosine to modify contracture (and postischaemic outcomes) in C57/Bl6 mouse hearts. During ischaemia, untreated hearts developed peak contracture (PC) of 85 +/- 5 mmHg at 8.9 +/- 0.8 min, with time to reach 20 mmHg (time to onset of contracture; TOC) of 4.4 +/- 0.3 min. Adenosine (50 microm) delayed TOC to 6.7 +/- 0.6 min, as did pretreatment with 10 microm 2-chloroadenosine (7.2 +/- 0.5 min) or 50 nm of A(1) adenosine receptor (AR) agonist N(6)-cyclohexyladenosine (CHA) (6.7 +/- 0.3 min), but not A(2A)AR or A(3)AR agonists (20 nm 2-[4-(2-carboxyethyl) phenethylamino]-5' N-methylcarboxamidoadenosine (CGS21680) or 150 nm 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), respectively). Adenosinergic contracture inhibition was eliminated by A(1)AR gene knockout (KO), mimicked by A(1)AR overexpression, and was associated with preservation of myocardial [ATP]. This adenosine-mediated inhibition of contracture was, however, only evident after prolonged (10 or 15 min) and not brief (3 min) pretreatment. Ischaemic contracture was also insensitive to endogenously generated adenosine, since A(1)AR KO, and non-selective and A(1)AR-selective antagonists (50 microm 8-sulphophenyltheophylline and 150 nm 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX), respectively), all failed to alter intrinsic contracture development. Finally, delayed contracture with A(1)AR agonism/overexpression or ischaemic 2,3-butanedione monoxime (BDM; 5 microm to target Ca(2+) cross-bridge formation) was linked to enhanced postischaemic outcomes. In summary, adenosinergic inhibition of contracture is solely A(1)AR mediated; the response is 'supraphysiological', evident only with significant periods of pre-ischaemic AR agonism (or increased A(1)AR density); and ischaemic contracture appears insensitive to locally generated adenosine, potentially owing to the rapidity of contracture development versus the finite time necessary for expression of AR-mediated cardioprotection.
Collapse
Affiliation(s)
- Melissa E Reichelt
- Heart Foundation Research Centre, Griffith University, Southport, QLD 4217, Australia.
| | | | | | | | | | | | | |
Collapse
|
92
|
Willems L, Headrick JP. Contractile effects of adenosine, coronary flow and perfusion pressure in murine myocardium. Pflugers Arch 2006; 453:433-41. [PMID: 17072640 DOI: 10.1007/s00424-006-0119-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
There is mixed evidence adenosine receptors (ARs) may enhance myocardial contractility, although this remains contentious. We assessed inotropic actions of adenosine (50 muM) and selective AR activation with 100 nM N (6)-cyclohexyladenosine (CHA; A(1)AR agonist), 25 nM 2-[p-(2-carboxyethyl) phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS-21680; A(2A)AR agonist) and 100 nM 2-chloro-N (6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; A(3)AR agonist) in mouse hearts perfused at constant pressure, constant flow, or conditions of stable flow and pressure (following maximal nitroprusside-mediated dilatation at constant flow). Adenosine and CGS-21680 significantly (although modestly) increased force in constant-pressure perfused hearts (</=10 mmHg elevations in systolic pressure), effects paralleled by coronary vasodilatation (</=10 ml min(-1) g(-1) elevations in flow). Neither CHA nor Cl-IB-MECA altered force or flow. With constant-flow perfusion, adenosine and CGS-21680 reduced systolic pressure in parallel with perfusion pressure. When changes in coronary flow and pressure were prevented, CGS-21680 failed to alter contractility. However, adenosine still enhanced systolic pressure up to 10 mmHg. Relations between flow, perfusion pressure and ventricular force evidence substantial Gregg effects in murine myocardium: systolic force increases transiently by approximately 1 mmHg ml(-1) min(-1) g(-1) rise in flow during the first minutes of hyperaemia and in a sustained manner (by approximately 1 mmHg mmHg(-1)) during altered perfusion pressure. These effects contribute to inotropism with AR agonism when flow/pressure is uncontrolled. In summary, we find no evidence of direct A(1) or A(3)AR-mediated inotropic responses in intact myocardium. Inotropic actions of A(2A)AR agonism appear entirely Gregg-related. Nonetheless, the endogenous agonist adenosine exerts a modest inotropic action independently of flow and perfusion pressure. The basis of this response remains to be identified.
Collapse
Affiliation(s)
- Laura Willems
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, 4217, Australia
| | | |
Collapse
|
93
|
Grden M, Podgorska M, Kocbuch K, Szutowicz A, Pawelczyk T. Expression of adenosine receptors in cardiac fibroblasts as a function of insulin and glucose level. Arch Biochem Biophys 2006; 455:10-7. [PMID: 17011509 DOI: 10.1016/j.abb.2006.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/28/2006] [Accepted: 08/28/2006] [Indexed: 11/26/2022]
Abstract
Adenosine among other factors is known to regulate the growth and function of cardiac fibroblasts (CFs). Its action is mediated by cell-surface receptors linked to a variety of signaling systems. The goal of present work was to examine the effects of glucose and insulin on adenosine receptors (ARs) mRNA and protein level in primary culture of rat CFs by means of real-time PCR and Western blot. Elevated glucose level increased the expression of A(1)-AR, A(2A)-AR, decreased the expression of A(3)-AR, and had no effect on A(2B)-AR expression. On the other hand insulin suppressed the expression of A(1)-AR, and A(2B)-AR, and had no effect on A(2A)-AR and A(3)-AR expression. Our measurements showed that accumulation of cAMP in response to ARs agonists correlated well with the changes in receptors expression level. These results indicate that changes in glucose and insulin level independently and differentially regulate the ARs expression and functional state in CFs.
Collapse
Affiliation(s)
- Marzena Grden
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | | | | | | |
Collapse
|
94
|
Tzeng HF, Hung CH, Wang JY, Chou CH, Hung HP. Simultaneous determination of adenosine and its metabolites by capillary electrophoresis as a rapid monitoring tool for 5′-nucleotidase activity. J Chromatogr A 2006; 1129:149-52. [PMID: 16942776 DOI: 10.1016/j.chroma.2006.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/24/2006] [Accepted: 08/11/2006] [Indexed: 02/02/2023]
Abstract
A simple and rapid capillary electrophoretic method was developed for the simultaneous determination of micro-molar adenosine, hypoxanthine and inosine in enzyme assays without using radioactive labeled substrates. Prior to electrophoretic separation, addition of acetonitrile and sodium chloride to the assay solution and brief centrifugation are recommended for the purpose of sample cleanup and sample stacking. Under the optimal condition, the good separation with high efficiency was achieved in 6 min. Using deoxyadenylate as an internal standard, the linear range of the method was 5-200 microM, and the concentration limits of detection of adenosine, hypoxanthine and inosine were 2.2, 3.6 and 1.4 microM, respectively. Application of the proposed method was demonstrated by the activity assay of 5'-nucleotidase from Hep G2 cells.
Collapse
Affiliation(s)
- Huey-Fen Tzeng
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
95
|
Uchino K, Ebina T, Nihei T, Ishigami T, Ishikawa T, Kimura K, Umemura S. Adenosine concentration in great cardiac vein is increased in non-ventricular fibrillation dogs. Heart Vessels 2006; 21:247-50. [PMID: 16865301 DOI: 10.1007/s00380-005-0881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 10/29/2005] [Indexed: 10/24/2022]
Abstract
This study was conducted to clarify the relationship between myocardial endogenous adenosine concentration in the great cardiac vein during ischemia and reperfusion-induced ventricular fibrillation (VF) and the occurrence rate of ischemia and reperfusion-induced VF. Sixty anesthetized mongrel dogs were subjected to 10-min left anterior descending artery occlusion and reperfusion. Blood from the great cardiac vein was sampled for the determination of adenosine and catecholamine concentrations. Hemodynamic parameters (blood pressure, lift ventricular dp/dt, left ventricular end-diastolic pressure, and cardiac output) were monitored throughout the experimental period. During coronary occlusion and reperfusion, VF occurred in 25 dogs (VF group). Ventricular fibrillation did not occur in 35 other dogs (non-VF group). Adenosine concentration in the great cardiac vein before the coronary occlusion did not differ between the two groups. However, the adenosine concentration in the great cardiac vein of the non-VF group significantly increased compared with that of the VF group (2,343 vs 65 pmol/ml, P = 0.026) during coronary occlusion and reperfusion. In contrast, hemodynamic parameters did not differ between the two groups. The study results demonstrated that adenosine concentration in the great cardiac vein was higher in the non-VF group than in the VF group, suggesting that myocardial endogenous adenosine may have a role in the suppression of ischemia and reperfusion-induced VF in dogs.
Collapse
Affiliation(s)
- Kazuaki Uchino
- Second Department of Internal Medicine, Yokohama City University School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | |
Collapse
|
96
|
Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 2006; 397:1-14. [PMID: 16761954 PMCID: PMC1479757 DOI: 10.1042/bj20060175] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 02/07/2023]
Abstract
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.
Collapse
Affiliation(s)
- W Howard Evans
- Department of Medical Biochemistry and Immunology and the Wales Heart Research Institute, Cardiff University Medical School, Cardiff CF14 4XN, Wales, UK.
| | | | | |
Collapse
|
97
|
Colgan SP, Eltzschig HK, Eckle T, Thompson LF. Physiological roles for ecto-5'-nucleotidase (CD73). Purinergic Signal 2006; 2:351-60. [PMID: 18404475 PMCID: PMC2254482 DOI: 10.1007/s11302-005-5302-5] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 02/07/2023] Open
Abstract
Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl phosphatidylinositol-linked membrane protein found on the surface of a variety of cell types. Recent in vivo studies implicating CD73 in a number of tissue protective mechanisms have provided new insight into its regulation and function and have generated considerable interest. Here, we review contributions of CD73 to cell and tissue stress responses, with a particular emphasis on physiologic responses to regulated CD73 expression and function, as well as new findings utilizing Cd73-deficient animals.
Collapse
Affiliation(s)
- Sean P Colgan
- Center for Experimental Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Thorn Building 704, 75 Francis Street, Boston, Massachusetts, 02115, USA,
| | | | | | | |
Collapse
|
98
|
Hack B, Witting PK, Rayner BS, Stocker R, Headrick JP. Oxidant Stress and Damage in Post-Ischemic Mouse Hearts: Effects of Adenosine. Mol Cell Biochem 2006; 287:165-75. [PMID: 16718382 DOI: 10.1007/s11010-005-9093-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Despite the general understanding that ischemia-reperfusion (I/R) promotes oxidant stress, specific contributions of oxidant stress or damage to myocardial I/R injury remain poorly defined. Moreover, whether endogenous 'cardioprotectants' such as adenosine act via limiting this oxidant injury is unclear. Herein we characterized effects of 20 min ischemia and 45 min reperfusion on cardiovascular function, oxidative stress and damage in isolated perfused mouse hearts (with glucose or pyruvate as substrate), and examined whether 10 microM adenosine modified these processes. In glucose-perfused hearts post-ischemic contractile function was markedly impaired (< 50% of pre-ischemia), cell damage assessed by lactate dehydrogenase (LDH) release was increased (12 +/- 2 IU/g vs. 0.2 +/- 0.1 IU/g in normoxic hearts), endothelial-dependent dilation in response to ADP was impaired while endothelial-independent dilation in response to nitroprusside was unaltered. Myocardial oxidative stress increased significantly, based on decreased glutathione redox status ([GSSG]/[GSG + GSSH] = 7.8 +/- 0.3% vs. 1.3 +/- 0.1% in normoxic hearts). Tissue cholesterol, native cholesteryl esters (CE) and the lipid-soluble antioxidant alpha-tocopherol (alpha-TOH, the most biologically active form of vitamin E) were unaffected by I/R, whereas markers of primary lipid peroxidation (CE-derived lipid hydroperoxides and hydroxides; CE-O(O)H) increased significantly (14 +/- 2 vs. 2 +/- 1 pmol/mg in normoxic hearts). Myocardial alpha -tocopherylquinone (alpha-TQ; an oxidation product of alpha -TOH) also increased (10.3 +/- 1.0 vs. 1.7 +/- 0.2 pmol/mg in normoxic hearts). Adenosine treatment improved functional recovery and vascular function, and limited LDH efflux. These effects were associated with an anti-oxidant effect of adenosine, as judged by inhibition of I/R-mediated changes in glutathione redox status (by 60%), alpha-TQ (80%) and CE-O(O)H (100%). Provision of 10 mM pyruvate as sole substrate (to by-pass glycolysis) modestly reduced I/R injury and changes in glutathione redox status and alpha-TQ, but not CE-O(O)H. Adenosine exerted further protection and anti-oxidant actions in these hearts. Functional recoveries and LDH efflux correlated inversely with oxidative stress and alpha -TQ (but not CE-O(O)H) levels. Collectively, our data reveal selective oxidative events in post-ischemic murine hearts, which are effectively limited by adenosine (independent of substrate). Correlation of post-ischemic cardiovascular outcomes with specific oxidative events (glutathione redox state, alpha-TQ) supports an important anti-oxidant component to adenosinergic protection.
Collapse
Affiliation(s)
- Benjamin Hack
- Heart Foundation Research Center, Griffith University, Gold Coast Campus, Southport, QLD, 4217, Australia.
| | | | | | | | | |
Collapse
|
99
|
Morrison RR, Teng B, Oldenburg PJ, Katwa LC, Schnermann JB, Mustafa SJ. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Am J Physiol Heart Circ Physiol 2006; 291:H1875-82. [PMID: 16679400 DOI: 10.1152/ajpheart.00158.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.
Collapse
MESH Headings
- Animals
- Coronary Vessels/physiology
- Female
- Gene Deletion
- Gene Expression Regulation/physiology
- Lactate Dehydrogenases/metabolism
- Male
- Mice
- Mice, Knockout
- Myocardial Contraction/physiology
- Myocardial Ischemia/genetics
- Myocardial Ischemia/metabolism
- Myocardium/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Regional Blood Flow/physiology
- Reperfusion Injury/physiopathology
- Vasodilation/physiology
Collapse
Affiliation(s)
- R Ray Morrison
- Division of Critical Care Medicine, St. Jude Children's Research Hospital, 332 N. Lauderdale St., MS 734, Memphis, TN 38105, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Lankford AR, Yang JN, Rose'Meyer R, French BA, Matherne GP, Fredholm BB, Yang Z. Effect of modulating cardiac A1adenosine receptor expression on protection with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2006; 290:H1469-73. [PMID: 16299262 DOI: 10.1152/ajpheart.00181.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of A1adenosine receptors (A1ARs) may be a crucial step in protection against myocardial ischemia-reperfusion (I/R) injury; however, the use of pharmacological A1AR antagonists to inhibit myocardial protection has yielded inconclusive results. In the current study, we have used mice with genetically modified A1AR expression to define the role of A1AR in intrinsic protection and ischemic preconditioning (IPC) against I/R injury. Normal wild-type (WT) mice, knockout mice with deleted (A1KO−/−) or single-copy (A1KO+/−) A1AR, and transgenic mice (A1TG) with increased cardiac A1AR expression underwent 45 min of left anterior descending coronary artery occlusion, followed by 60 min of reperfusion. Subsets of each group were preconditioned with short durations of ischemia (3 cycles of 5 min of occlusion and 5 min of reperfusion) before index ischemia. Infarct size (IF) in WT, A1KO+/−, and A1KO−/−mice was (in % of risk region) 58 ± 3, 60 ± 4, and 61 ± 2, respectively, and was less in A1TG mice (39 ± 4, P < 0.05). A strong correlation was observed between A1AR expression level and response to IPC. IF was significantly reduced by IPC in WT mice (35 ± 3, P < 0.05 vs. WT), A1KO+/−+ IPC (48 ± 4, P < 0.05 vs. A1KO+/−), and A1TG + IPC mice (24 ± 2, P < 0.05 vs. A1TG). However, IPC did not decrease IF in A1KO−/−+ IPC mice (63 ± 2). In addition, A1KO−/−hearts subjected to global I/R injury demonstrated diminished recovery of developed pressure and diastolic function compared with WT controls. These findings demonstrate that A1ARs are critical for protection from myocardial I/R injury and that cardioprotection with IPC is relative to the level of A1AR gene expression.
Collapse
Affiliation(s)
- Amy R Lankford
- Dept. of Pediatrics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|