51
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
52
|
Miller CR, Shi H, Li D, Goniewicz ML. Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study. TOXICS 2021; 9:toxics9030052. [PMID: 33803457 PMCID: PMC7999635 DOI: 10.3390/toxics9030052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Following their introduction a decade ago, electronic cigarettes (e-cigarettes) have grown in popularity. Given their novelty, knowledge of the health consequences of e-cigarette use remains limited. Epidemiologic studies have not comprehensively explored associations between e-cigarette use and hypertension, a highly prevalent health condition and major contributor to cardiovascular disease burden. In this study, cross-sectional associations of cigarette smoking and e-cigarette use (vaping) with self-reported diagnosed hypertension were evaluated among 19,147 18-55 year old respondents in Wave 3 (2015-2016) of the Population Assessment of Tobacco and Health Study. Multivariable analyses first modeled smoking and vaping as separate 2-category variables, then as a 6-category composite variable accounting for former smoking. After adjusting for potential confounders, current vaping (aOR = 1.31; 95%CI: 1.05-1.63) and current smoking (aOR = 1.27; 95%CI: 1.10-1.47) were both associated with higher odds of hypertension. In analyses modeling smoking and vaping compositely, respondents who were concurrently smoking and vaping had the highest odds of hypertension (aOR = 1.77; 95%CI: 1.32-2.39 [referent: never smokers]). These results differ somewhat from prior epidemiologic studies of vaping and respiratory outcomes, which consistently report smaller point estimates for current vaping than for current smoking. Our findings reinforce the uncertainty surrounding long-term health consequences of vaping, as well as highlight important distinctions between respiratory and cardiovascular outcomes when considering the harm reduction potential of e-cigarettes.
Collapse
Affiliation(s)
- Connor R. Miller
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Buffalo, NY 14263, USA;
- Correspondence:
| | - Hangchuan Shi
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY 14627, USA; (H.S.); (D.L.)
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY 14627, USA; (H.S.); (D.L.)
| | - Maciej L. Goniewicz
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Buffalo, NY 14263, USA;
| |
Collapse
|
53
|
Stokes AC, Xie W, Wilson AE, Yang H, Orimoloye OA, Harlow AF, Fetterman JL, DeFilippis AP, Benjamin EJ, Robertson RM, Bhatnagar A, Hamburg NM, Blaha MJ. Association of Cigarette and Electronic Cigarette Use Patterns With Levels of Inflammatory and Oxidative Stress Biomarkers Among US Adults: Population Assessment of Tobacco and Health Study. Circulation 2021; 143:869-871. [PMID: 33390037 PMCID: PMC8284843 DOI: 10.1161/circulationaha.120.051551] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrew C. Stokes
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Wubin Xie
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Anna E. Wilson
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Hanqi Yang
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Olusola A. Orimoloye
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa F. Harlow
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jessica L. Fetterman
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Andrew P. DeFilippis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emelia J. Benjamin
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Rose Marie Robertson
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Naomi M. Hamburg
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Michael J. Blaha
- American Heart Association Tobacco Regulation and Addiction Center, Dallas, TX, USA
- Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
54
|
Gomes VC, da Silva LFF, Silvestre GC, Queiroz A, Marques MA, Zyngier SP, da Silva ES. Biomechanical Properties of the Periaortic Abdominal Tissue: It is Not as Fragile as It Seems. Ann Vasc Surg 2020; 72:571-577. [PMID: 33385529 DOI: 10.1016/j.avsg.2020.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The perivascular adipose tissue has been studied as a critical element that could influence physiological and disease processes of the vessel covered by it. In terms of anatomy, during the abdominal aorta's dissection, it is possible to identify the periaortic adipose tissue and the periaortic parietal peritoneum lying over it, sealing the retroperitoneal space. They seem to be fragile layers, with apparently no biomechanical role in the abdomen. However, it is well known that most cases of ruptured abdominal aortic aneurysms (AAAs) that reach the emergency department still alive present retroperitoneal bleeding contained by the previously mentioned two-layer combination, eventually allowing time for surgical treatment. In previous studies about aortic wall stress, tension, and AAA rupture prediction, only information concerning the vessel wall itself is highlighted. Therefore, the present work aims to study the biomechanical and histological properties of the periaortic tissue, comparing them to the same variables measured in aortic wall samples described in the medical literature. MATERIALS AND METHODS Samples of periaortic tissue were harvested from 27 individuals during necropsy. Smoking status and the presence of AAAs were observed. Biomechanical uniaxial destructive tests were performed up to samples' rupture. Values of failure stress, tension, and strain were obtained. Samples were also harvested for histological analysis. RESULTS Periaortic tissue presented less amount of collagen in smokers than in nonsmokers (P = 0.017). The periaortic tissue seems to be more elastic than aortic walls described in the literature (strain: 0.75 ± 0.37). Analyzing periaortic tissue failure stress (56.8 ± 101.26 N/cm2) and tension (7.65 ± 4.99 N/cm), it has at least 52% and 55%, respectively, of the stress and tension described in the medical literature for AAA walls. CONCLUSIONS The periaortic tissue presents less collagen fibers in smokers than in nonsmokers. The periaortic tissue seemed very delicate during an autopsy, but the study of its biomechanical properties showed that it presents more than half of the resistance of an AAA wall. This information suggests this tissue might have a mechanical protective role against massive bleeding when it comes to an aortic rupture. Therefore this tissue's biomechanical information should be included in computational models on enlargement and rupture prediction of AAAs.
Collapse
Affiliation(s)
- Vivian Carla Gomes
- Vascular and Endovascular Surgery Division, Department of Surgery, Laboratory for Medical Investigation #2, (LIM 02), University of São Paulo School of Medicine (FMUSP), São Paulo, São Paulo, Brazil.
| | | | - Gina Camillo Silvestre
- Vascular and Endovascular Surgery Division, Department of Surgery, Laboratory for Medical Investigation #2, (LIM 02), University of São Paulo School of Medicine (FMUSP), São Paulo, São Paulo, Brazil
| | - Alexandre Queiroz
- Vascular and Endovascular Surgery Division, Department of Surgery, Laboratory for Medical Investigation #2, (LIM 02), University of São Paulo School of Medicine (FMUSP), São Paulo, São Paulo, Brazil
| | - Michele Alberto Marques
- Vascular and Endovascular Surgery Division, Department of Surgery, Laboratory for Medical Investigation #2, (LIM 02), University of São Paulo School of Medicine (FMUSP), São Paulo, São Paulo, Brazil
| | - Selene Perrotti Zyngier
- Department of Pathology, University of São Paulo School of Medicine (FMUSP), São Paulo, São Paulo, Brazil
| | - Erasmo Simão da Silva
- Vascular and Endovascular Surgery Division, Department of Surgery, Laboratory for Medical Investigation #2, (LIM 02), University of São Paulo School of Medicine (FMUSP), São Paulo, São Paulo, Brazil
| |
Collapse
|
55
|
Electronic Cigarette Use and Metabolic Syndrome Development: A Critical Review. TOXICS 2020; 8:toxics8040105. [PMID: 33212878 PMCID: PMC7711672 DOI: 10.3390/toxics8040105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
The metabolic syndrome is a combination of several metabolic disorders, such as cardiovascular disease, atherosclerosis, and type 2 diabetes. Lifestyle modifications, including quitting smoking, are recommended to reduce the risk of metabolic syndrome and its associated complications. Not much research has been conducted in the field of e-cigarettes and the risk of metabolic syndrome. Furthermore, taking into account the influence of e-cigarettes vaping on the individual components of metabolic syndrome, i.e, abdominal obesity, insulin resistance, dyslipidemia and elevated arterial blood pressure, the results are also ambiguous. This article is a review and summary of existing reports on the impact of e-cigarettes on the development of metabolic syndrome as well as its individual components. A critical review for English language articles published until 30 June 2020 was made, using a PubMed (including MEDLINE), Cochrane, CINAHL Plus, and Web of Science data. The current research indicated that e-cigarettes use does not affect the development of insulin resistance, but could influence the level of glucose and pre-diabetic state development. The lipid of profile an increase in the TG level was reported, while the influence on the level of concentration of total cholesterol, LDL fraction, and HDL fraction differed. In most cases, e-cigarettes use increased the risk of developing abdominal obesity or higher arterial blood pressure. Further research is required to provide more evidence on this topic.
Collapse
|
56
|
Elemam AE, Omer ND, Ibrahim NM, Ali AB. The Effect of Dipping Tobacco on Pulse Wave Analysis among Adult Males. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7382164. [PMID: 33134386 PMCID: PMC7593738 DOI: 10.1155/2020/7382164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The current study investigated the effect of dipping tobacco (DT) use on arterial wall stiffness which is a known marker of increased risk of cardiovascular events. METHODS A case-control study which included 101 adult males was carried out in Al-Shaab Teaching Hospital. Blood pressure and pulse wave analysis parameters were recorded in 51 DT users (study group) before and after 30 minutes of placing tobacco and in 50 nontobacco users (control group). Anthropometric measurements were collected using data collection sheet. Data were entered into a computer and analyzed by using the software Statistical Package for the Social Sciences (SPSS) version 20 (SPSS Inc., Chicago, IL, USA). RESULTS At baseline measurements, heart rate (HR) was significantly lower in the study group compared to the control group (66.15 ± 9.21 vs. 72.87 ± 10.13 beats/min; P value ≤ 0.001). Subendocardial viability ratio (SEVR) was significantly higher in the study group compared to the control group (203.44 ± 30.34 vs. 179.11 ± 30.51%; P value ≤ 0.001). Acute effects of DT compared to pretobacco dipping showed significant increase in HR (72.50 ± 10.89 vs. 66.15 ± 9.21 beats/min; P value ≤ 0.001) and significant decrease in augmentation pressure (AP) (4.30 (2.30-8.00) vs. 3.30 (0.60-6.3) mmHg; P value ≤ 0.001), ejection duration (ED) (271.65 ± 19.42 vs. 279.53 ± 20.47 ms; P value ≤ 0.001), and SEVR (187.11 ± 29.81 vs. 203.44 ± 30.34; P value ≤ 0.001). Linear regression analysis for AP predictor showed that only HR and AIx@75 affect and predict the values of AP (Beta ± SE; -0.242 ± 0.019, P value ≤ 0.001; 0.685 ± 0.014, P value ≤ 0.001). CONCLUSIONS Long-term use of DT was not associated with permanent changes in heart rate and blood pressure. Acute tobacco dipping caused an acute increase in heart rate and oxygen demands of myocardium.
Collapse
Affiliation(s)
- Areeg E. Elemam
- Al Neelain University, Faculty of Medicine, Khartoum, Sudan P.O. Box 12702
| | - Nisreen D. Omer
- University of Khartoum, Faculty of Medicine, Khartoum, Sudan P.O. Box 102
- Almaarefa University, Faculty of Medicine, Riyadh, Saudi Arabia
| | - Neima M. Ibrahim
- University of Khartoum, Faculty of Nursing Sciences, Khartoum, Sudan P.O. Box 102
| | - Ahmed B. Ali
- Cardiology Department, Al-Shaab Teaching Hospital, Khartoum, Sudan
| |
Collapse
|
57
|
Zvolinskaya EY, Mamedov MN, Potievskaya VI, Ivanov SA, Kaprin AD. [Role of modified cardiovascular risk factors in development of oncologic diseases]. KARDIOLOGIIA 2020; 60:110-121. [PMID: 33131482 DOI: 10.18087/cardio.2020.9.n910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
Cardiovascular (CVD) and oncological diseases (OD) are the main causes of death worldwide and account for a heavy burden on economy, disability and mortality in many countries. Clear understanding of the mechanisms shared by CVD and cancer is important for increasing the life span and quality of life in cancer survivors as well as for preventing comorbidities and correct instructing the patients about risk factors and lifestyle modifications. Both groups of diseases share risk factors, including smoking, obesity, diabetes mellitus, alcohol consumption, unhealthy diet, etc. Along with these factors, inflammation may play a key role as it promotes both types of diseases and accompanies obesity, diabetes mellitus, arterial hypertension, and dyslipidemia. Better understanding of the interaction between CVD and cancer will allow creating common effective diagnostic and preventive strategies and safe approaches to the treatment.
Collapse
Affiliation(s)
- E Yu Zvolinskaya
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare, Moscow, Russia
| | - M N Mamedov
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare, Moscow, Russia
| | - V I Potievskaya
- National Medical Radiology Research Center of the Ministry of Healthcare, Moscow, Russia
| | - S A Ivanov
- Medical Radiological Research Center the branch of National Medical Radiology Research Center of the Ministry of Healthcare, Obninsk, Russia
| | - A D Kaprin
- National Medical Radiology Research Center of the Ministry of Healthcare, Moscow, Russia
| |
Collapse
|
58
|
Wang J, Zhang T, Johnston CJ, Kim SY, Gaffrey MJ, Chalupa D, Feng G, Qian WJ, McGraw MD, Ansong C. Protein thiol oxidation in the rat lung following e-cigarette exposure. Redox Biol 2020; 37:101758. [PMID: 33080441 PMCID: PMC7575796 DOI: 10.1016/j.redox.2020.101758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
E-cigarette (e-cig) aerosols are complex mixtures of various chemicals including humectants (propylene glycol (PG) and vegetable glycerin (VG)), nicotine, and various flavoring additives. Emerging research is beginning to challenge the "relatively safe" perception of e-cigarettes. Recent studies suggest e-cig aerosols provoke oxidative stress; however, details of the underlying molecular mechanisms remain unclear. Here we used a redox proteomics assay of thiol total oxidation to identify signatures of site-specific protein thiol modifications in Sprague-Dawley rat lungs following in vivo e-cig aerosol exposures. Histologic evaluation of rat lungs exposed acutely to e-cig aerosols revealed mild perturbations in lung structure. Bronchoalveolar lavage (BAL) fluid analysis demonstrated no significant change in cell count or differential. Conversely, total lung glutathione decreased significantly in rats exposed to e-cig aerosol compared to air controls. Redox proteomics quantified the levels of total oxidation for 6682 cysteine sites representing 2865 proteins. Protein thiol oxidation and alterations by e-cig exposure induced perturbations of protein quality control, inflammatory responses and redox homeostasis. Perturbations of protein quality control were confirmed with semi-quantification of total lung polyubiquitination and 20S proteasome activity. Our study highlights the importance of redox control in the pulmonary response to e-cig exposure and the utility of thiol-based redox proteomics as a tool for elucidating the molecular mechanisms underlying this response.
Collapse
Affiliation(s)
- Juan Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Carl J Johnston
- Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - So-Young Kim
- Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Guanqiao Feng
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States.
| | - Matthew D McGraw
- Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, NY, 14642, United States; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States.
| |
Collapse
|
59
|
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, Lucia A. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2020; 18:251-275. [PMID: 33037326 DOI: 10.1038/s41569-020-00437-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Hypertension affects approximately one third of the world's adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.
Collapse
Affiliation(s)
| | - Pedro Carrera-Bastos
- Centre for Primary Health Care Research, Lund University/Region Skane, Skane University Hospital, Malmö, Sweden
| | - Beatriz G Gálvez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,IMDEA Alimentacion, Madrid, Spain
| | - Luis M Ruilope
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. .,Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
60
|
Zhang S, Routledge MN. The contribution of PM 2.5 to cardiovascular disease in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37502-37513. [PMID: 32691311 PMCID: PMC7496016 DOI: 10.1007/s11356-020-09996-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 05/02/2023]
Abstract
China is experiencing rapid urbanization and industrialization with correspondingly high levels of air pollution. Although the harm of PM2.5 has been long reported, it is only quite recently that there is increasing concern in China for its possible adverse health effects on cardiovascular disease. We reviewed the epidemiologic evidence of potential health effects of PM2.5 on cardiovascular disease reported from recent studies in China (2013 onwards). There is clear evidence for the contribution of PM2.5 to cardiovascular outcomes, including mortality, ischemic heart disease, and stroke from studies based in various regions in China. This evidence adds to the global evidence that PM2.5 contributes to adverse cardiovascular health risk and highlights the need for improved air quality in China.
Collapse
Affiliation(s)
- Shuqi Zhang
- School of Public Health, Fudan University, Shanghai, 200032 China
| | - Michael N. Routledge
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, LS2 9JT UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
61
|
Jian J, Zhang P, Li Y, Liu B, Zhang Y, Zhang L, Shao XM, Zhuang J, Xiao D. Reprogramming of miR-181a/DNA methylation patterns contribute to the maternal nicotine exposure-induced fetal programming of cardiac ischemia-sensitive phenotype in postnatal life. Theranostics 2020; 10:11820-11836. [PMID: 33052248 PMCID: PMC7546014 DOI: 10.7150/thno.48297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: E-cigarette and other novel electronic nicotine delivery systems (ENDS) have recently entered the market at a rapid pace. The community desperately needs answers about the health effects of ENDS. The present study tested the hypothesis that perinatal nicotine exposure (PNE) causes a gender-dependent increase in vulnerability of the heart to ischemia-reperfusion (I/R) injury and cardiac dysfunction in male rat offspring via reprogramming of the miRNA-181a (miR-181a)-mediated signaling pathway and that miR-181a antisense could rescue this phenotype. Methods: Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Cardiac function and molecular biological experiments were conducted in ~3- month-old offspring. Results: PNE enhanced I/R-induced cardiac dysfunction and infarction in adult male but not in female offspring, which was associated with miR-181a over-expression in left ventricle tissues. In addition, PNE enhanced offspring cardiac angiotensin receptor (ATR) expressions via specific CpG hypomethylation of AT1R/AT2R promoter. Furthermore, PNE attenuated cardiac lncRNA H19 levels, but up-regulated cardiac TGF-β/Smads family proteins and consequently up-regulated autophagy-related protein (Atg-5, beclin-1, LC3 II, p62) expression in the male offspring. Of importance, treatment with miR-181a antisense eliminated the PNE's effect on miR-181a expression/H19 levels and reversed PNE-mediated I/R-induced cardiac infarction and dysfunction in male offspring. Furthermore, miR-181a antisense also attenuated the effect of PNE on AT1R/AT2R/TGF-β/Smads/autophagy-related biomarkers in the male offspring. Conclusion: Our data suggest that PNE could induce a reprogramming of cardiac miR-181a expression/DNA methylation pattern, which epigenetically modulates ATR/TGF-β/autophagy signaling pathways, leading to gender-dependent development of ischemia-sensitive phenotype in postnatal life. Furthermore, miR-181a could severe as a potential therapeutic target for rescuing this phenotype.
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW Tobacco smoking is the most significant modifiable risk factor in the development of cardiovascular disease (CVD). Exposure to mainstream cigarette smoke (MCS) is associated with CVD through the development of endothelial dysfunction, a condition characterized by an imbalance of vasoactive factors in the vasculature. This dysfunction is thought to be induced in part by aldehydes generated at high levels in MCS. RECENT FINDINGS Electronic cigarettes (e-cigs) may also pose CVD risk. Although the health effects of e-cigs are still largely unknown, the presence of aldehydes in e-cig aerosol suggests that e-cigs may induce adverse cardiovascular outcomes similar to those seen with MCS exposure. Herein, we review studies of traditional and emerging tobacco product use, shared harmful and potentially harmful constituents, and measures of biomarkers of harm (endothelial dysfunction) to examine a potential and distinct role of aldehydes in cardiovascular harm associated with cigarette and e-cig use.
Collapse
Affiliation(s)
- Jordan Lynch
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA.
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA.
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA.
| | - Lexiao Jin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andre Richardson
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
63
|
Lynch J, Jin L, Richardson A, Jagatheesan G, Lorkiewicz P, Xie Z, Theis WS, Shirk G, Malovichko MV, Bhatnagar A, Srivastava S, Conklin DJ. Acute and chronic vascular effects of inhaled crotonaldehyde in mice: Role of TRPA1. Toxicol Appl Pharmacol 2020; 402:115120. [PMID: 32634517 DOI: 10.1016/j.taap.2020.115120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Although crotonaldehyde (CR) is an abundant α,β-unsaturated aldehyde in mainstream cigarette smoke (MCS), the cardiovascular toxicity of inhaled CR is largely unexplored. Thus, male C57BL/6 J mice were exposed acutely (1 h, 6 h, and 4d) and chronically (12 weeks) to CR (at levels relevant to MCS; 1 and 3 ppm), and cardiovascular and systemic outcomes were measured in vivo and in vitro. Diastolic blood pressure was decreased (hypotension) by both acute and chronic CR exposure. Vascular toxicity of inhaled CR was quantified in isolated aorta in response to agonists of contraction (phenylephrine, PE) and relaxation (acetylcholine, ACh; sodium nitroprusside, SNP). Although no change in contractility was observed, ACh-induced relaxations were augmented after both acute and chronic CR exposures whereas SNP-induced relaxation was enhanced only following 3 ppm CR exposure. Because CR is a known agonist of the transient receptor potential ankyrin 1 (TRPA1) channel, male TRPA1-null mice were exposed to air or CR (4d, 1 ppm) and aortic function assessed in vitro. CR exposure had no effect on TRPA1-null aortic function indicating a role of TRPA1 in CR effects in C57BL/6 J mice. Notably, CR exposure (4d, 1 ppm) had no effect on aortic function in female C57BL/6 J mice. This study shows that CR inhalation exposure induces real-time and persistent vascular changes that promote hypotension-a known risk factor for stroke. Because of continued widespread exposures of humans to combustion-derived CR (environmental and tobacco products), CR may be an important cardiovascular disease risk factor.
Collapse
Affiliation(s)
- Jordan Lynch
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America.
| | - Lexiao Jin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Andre Richardson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Ganapathy Jagatheesan
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Department of Chemistry, University of Louisville, United States of America.
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America.
| | - Whitney S Theis
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Gregg Shirk
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America.
| | - Marina V Malovichko
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Aruni Bhatnagar
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| | - Daniel J Conklin
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, United States of America; Christina Lee Brown Envirome Institute, University of Louisville, United States of America; Diabetes & Obesity Center, University of Louisville, United States of America; Superfund Research Center, University of Louisville, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| |
Collapse
|
64
|
Frati G, Carnevale R, Nocella C, Peruzzi M, Marullo AGM, De Falco E, Chimenti I, Cammisotto V, Valenti V, Cavarretta E, Carrizzo A, Versaci F, Vitali M, Protano C, Roever L, Giordano A, Sciarretta S, Biondi-Zoccai G. Profiling the Acute Effects of Modified Risk Products: Evidence from the SUR-VAPES (Sapienza University of Rome-Vascular Assessment of Proatherosclerotic Effects of Smoking) Cluster Study. Curr Atheroscler Rep 2020; 22:8. [PMID: 32034541 DOI: 10.1007/s11883-020-0824-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Modified risk products (MRP) are promoted as a safer alternative to traditional combustion cigarettes (TCC) in chronic smokers. Evidence for their lower hazardous profile is building, despite several controversies. Yet, it is unclear whether individual responses to MRP differ among consumers. We hypothesized that different clusters of subjects exist in terms of acute effects of MRP. RECENT FINDINGS Pooling data from a total of 60 individuals, cluster analysis identified at least three clusters (labelled 1 to 3) of subjects with different electronic vaping cigarettes (EVC) effects and at least two clusters (labelled 4 to 5) of subjects with different heat-not-burn cigarettes (HNBC) effects. Specifically, oxidative stress, platelet aggregation, and endothelial dysfunction after EVC were significantly different cluster-wise (all p < 0.05), and oxidative stress and platelet aggregation after HNBC were significantly different (all p < 0.05). In particular, subjects belonging to Cluster 1 appeared to have less detrimental responses to EVC usage than subjects in Cluster 2 and 3, as shown by non-significant changes in flow-mediated dilation (FMD) and less marked increase in Nox2-derived peptide (NOX). Conversely, those assigned to Cluster 3 had the worst reaction in terms of changes in FMD, NOX, and P-selectin. Furthermore, individuals belonging to Cluster 4 responded unfavorably to both HNBC and EVC, whereas those in Cluster 5 interestingly showed less adverse results after using HNBC than EVC. Results for main analyses were consistent employing different clusters, tests, and bootstrap. Individual responses to MRP differ and smokers aiming at using EVC or HNBC as a risk reduction strategy should consider trying different MRP aiming at finding the one which is less detrimental, with subjects resembling those in Cluster 1 preferably using EVC and those resembling Cluster 5 preferably using HNBC.
Collapse
Affiliation(s)
- Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy.
- IRCCS NEUROMED, Pozzilli, Italy.
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Cristina Nocella
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
| | - Mariangela Peruzzi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Antonino G M Marullo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
| | - Elena De Falco
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Isotta Chimenti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Vittoria Cammisotto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
| | | | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | | | | | - Matteo Vitali
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Rome, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Rome, Italy
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Arturo Giordano
- Interventional Cardiology Unit, Pineta Grande Hospital, Castel Volturno, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy
- IRCCS NEUROMED, Pozzilli, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100, Latina, Italy.
- Mediterranea Cardiocentro, Naples, Italy.
| |
Collapse
|