51
|
Zoladz JA, Majerczak J, Duda K, Chlopicki S. Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance. Pharmacol Rep 2015; 67:719-27. [PMID: 26321273 DOI: 10.1016/j.pharep.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/08/2015] [Accepted: 06/02/2015] [Indexed: 02/02/2023]
Abstract
In this review, we present the relation between power generation capabilities and pulmonary oxygen uptake during incremental cycling exercise in humans and the effect of exercise intensity on the oxygen cost of work. We also discuss the importance of oxygen delivery to the working muscles as a factor determining maximal oxygen uptake in humans. Subsequently, we outline the importance of coronary blood flow, myocardial oxygen uptake and myocardial metabolic stability for exercise tolerance. Finally, we describe mechanisms of endothelium-dependent regulation of coronary and skeletal muscle blood flow, dysregulation of which may impair exercise capacity and increase the cardiovascular risk of exercise.
Collapse
Affiliation(s)
- Jerzy A Zoladz
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland.
| | - Joanna Majerczak
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
| | - Krzysztof Duda
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
52
|
Casey DP, Ranadive SM, Joyner MJ. Aging is associated with altered vasodilator kinetics in dynamically contracting muscle: role of nitric oxide. J Appl Physiol (1985) 2015; 119:232-41. [PMID: 26023230 DOI: 10.1152/japplphysiol.00787.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that aging would be associated with slowed vasodilator kinetics in contracting muscle in part due to a reduced nitric oxide (NO) bioavailability. Young (n = 10; 24 ± 2 yr) and older (n = 10; 67 ± 2 yr) adults performed rhythmic forearm exercise (4 min each) at 10, 20, and 30% of max during saline infusion (control) and NO synthase (NOS) inhibition. Brachial artery diameter and velocities were measured using Doppler ultrasound. Forearm vascular conductance (FVC) was calculated for each duty cycle (1 s contraction/2 s relaxation) from forearm blood flow (FBF; ml/min) and blood pressure (mmHg) and fit with a monoexponential model. The main parameters derived from the model were the amplitude of the FBF and FVC response and the number of duty cycles for FBF and FVC to change 63% of the steady-state amplitude (τFBF and τFVC). Under control conditions 1) the amplitude of the FVC response at 30% maximal voluntary contraction (MVC) was lower in older compared with young adults (319 ± 33 vs. 462 ± 52 ml·min(-1)·100 mmHg(-1); P < 0.05) and 2) τFVC was slower in older (10 ± 1, 13 ± 1, and 15 ± 1 duty cycles) compared with young (6 ± 1, 9 ± 1, and 11 ± 1 duty cycles) adults at all intensities (P < 0.05). In young adults, NOS inhibition blunted the amplitude of the FVC response at 30% MVC and prolonged the τFVC at all intensities (10 ± 2, 12 ± 1, and 16 ± 2 duty cycles; P < 0.05), whereas it did not change in older adults. Our data indicate that the blood flow and vasodilator kinetics in exercising muscle are altered with aging possibly due to blunted NO signaling.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | | | | |
Collapse
|
53
|
Wray DW, Richardson RS. 'Fine-tuning' blood flow to the exercising muscle with advancing age: an update. Exp Physiol 2015; 100:589-602. [PMID: 25858164 DOI: 10.1113/ep085076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/08/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review focuses on age-related changes in the regulatory pathways that exist at the unique interface between the vascular smooth muscle and the endothelium of the skeletal muscle vasculature, and how these changes contribute to impairments in exercising skeletal muscle blood flow in the elderly. What advances does it highlight? Several recent in vivo human studies from our group and others are highlighted that have examined age-related changes in nitric oxide, endothelin-1, alpha adrenergic, and renin-angiotensin-aldosterone (RAAS) signaling. During dynamic exercise, oxygen demand from the exercising muscle is dramatically elevated, requiring a marked increase in skeletal muscle blood flow that is accomplished through a combination of systemic sympathoexcitation and local metabolic vasodilatation. With advancing age, the balance between these factors appears to be disrupted in favour of vasoconstriction, leading to an impairment in exercising skeletal muscle blood flow in the elderly. This 'hot topic' review aims to provide an update to our current knowledge of age-related changes in the neural and local mechanisms that contribute to this 'fine-tuning' of blood flow during exercise. The focus is on results from recent human studies that have adopted a reductionist approach to explore how age-related changes in both vasodilators (nitric oxide) and vasoconstrictors (endothelin-1, α-adrenergic agonists and angiotensin II) interact and how these changes impact blood flow to the exercising skeletal muscle with advancing age.
Collapse
Affiliation(s)
- D Walter Wray
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,University of Utah Center on Aging, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,University of Utah Center on Aging, Salt Lake City, UT, USA
| |
Collapse
|
54
|
Exercise vasodilation is greater in women: contributions of nitric oxide synthase and cyclooxygenase. Eur J Appl Physiol 2015; 115:1735-46. [PMID: 25820143 DOI: 10.1007/s00421-015-3160-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE We hypothesized exercise vasodilation would be greater in women due to nitric oxide synthase (NOS) and cyclooxygenase (COX) signaling. METHODS 45 healthy adults (23 women, W, 22 men, M, 26 ± 1 years) completed two 10-min trials of dynamic forearm exercise at 15 % intensity. Forearm blood flow (FBF; Doppler ultrasound), arterial pressure (brachial catheter), and forearm lean mass were measured to calculate relative forearm vascular conductance (FVCrel) = FBF 100 mmHg(-1) 100 g(-1) lean mass. Local intra-arterial infusion of L-NMMA or ketorolac acutely inhibited NOS and COX, respectively. In Trial 1, the first 5 min served as control exercise (CON), followed by 5 min of L-NMMA or ketorolac over the last 5 min of exercise. In Trial 2, the remaining drug was infused during 5-10 min, to achieve combined NOS-COX inhibition (double blockade, DB). RESULTS Are mean ± SE. Women exhibited 29 % greater vasodilation in CON (ΔFVCrel, 19 ± 1 vs. 15 ± 1, p = 0.01). L-NMMA reduced ΔFVCrel (p < 0.001) (W: Δ -2.3 ± 1.3 vs. M: Δ -3.7 ± 0.8, p = 0.25); whereas, ketorolac modestly increased ΔFVCrel (p = 0.04) similarly between sexes (W: Δ 1.6 ± 1.1 vs. M: Δ 2.0 ± 1.6, p = 0.78). DB was also found to be similar between the sexes (p = 0.85). CONCLUSION These data clearly indicate women produce a greater exercise vasodilator response. Furthermore, contrary to experiments in animal models, these data are the first to demonstrate vascular control by NOS and COX is similar between sexes.
Collapse
|
55
|
Vogiatzis I, Habazettl H, Louvaris Z, Andrianopoulos V, Wagner H, Zakynthinos S, Wagner PD. A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy. J Appl Physiol (1985) 2015; 118:783-93. [PMID: 25593285 DOI: 10.1152/japplphysiol.00458.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterogeneity in the distribution of both blood flow (Q̇) and O2 consumption (V̇O2) has not been assessed by near-infrared spectroscopy in exercising normal human muscle. We used near-infrared spectroscopy to measure the regional distribution of Q̇ and V̇O2 in six trained cyclists at rest and during constant-load exercise (unloaded pedaling, 20%, 50%, and 80% of peak Watts) in both normoxia and hypoxia (inspired O2 fraction = 0.12). Over six optodes over the upper, middle, and lower vastus lateralis, we recorded 1) indocyanine green dye inflow after intravenous injection to measure Q̇; and 2) fractional tissue O2 saturation (StiO2) to estimate local V̇O2-to-Q̇ ratios (V̇o2/Q̇). Varying both exercise intensity and inspired O2 fraction provided a (directly measured) femoral venous O2 saturation range from about 10 to 70%, and a correspondingly wide range in StiO2. Mean Q̇-weighted StiO2 over the six optodes related linearly to femoral venous O2 saturation in each subject. We used this relationship to compute local muscle venous blood O2 saturation from StiO2 recorded at each optode, from which local V̇O2/Q̇ could be calculated by the Fick principle. Multiplying regional V̇O2/Q̇ by Q̇ yielded the corresponding local V̇O2. While six optodes along only in one muscle may not fully capture the extent of heterogeneity, relative dispersion of both Q̇ and V̇O2 was ∼0.4 under all conditions, while that for V̇O2/Q̇ was minimal (only ∼0.1), indicating in fit young subjects 1) a strong capacity to regulate Q̇ according to regional metabolic need; and 2) a likely minimal impact of heterogeneity on muscle O2 availability.
Collapse
Affiliation(s)
- Ioannis Vogiatzis
- Faculty of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Athens, Greece; Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Athens, Greece;
| | - Helmut Habazettl
- Institute of Physiology, Charité Campus Benjamin Franklin, Berlin, Germany; Institute of Anesthesiology, German Heart Institute, Berlin, Germany
| | - Zafeiris Louvaris
- Faculty of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Athens, Greece; Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Athens, Greece
| | - Vasileios Andrianopoulos
- Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Athens, Greece
| | - Harrieth Wagner
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Spyros Zakynthinos
- Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Athens, Greece
| | - Peter D Wagner
- Department of Medicine, University of California San Diego, La Jolla, California; Institute of Clinical Exercise & Health Sciences, University of the West of Scotland, Hamilton, United Kingdom
| |
Collapse
|
56
|
Mathewson KW, Haykowsky MJ, Thompson RB. Feasibility and reproducibility of measurement of whole muscle blood flow, oxygen extraction, and VO2 with dynamic exercise using MRI. Magn Reson Med 2014; 74:1640-51. [PMID: 25533515 DOI: 10.1002/mrm.25564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE Develop an MRI method to estimate skeletal muscle oxygen consumption (VO2 ) with dynamic exercise using simultaneous measurement of venous blood flow (VBF) and venous oxygen saturation (SvO2 ). METHODS Real-time imaging of femoral VBF using a complex-difference method was interleaved with imaging of venous hemoglobin oxygen saturation (SvO2 ) using magnetic susceptometry to estimate muscle VO2 (Fick principle). Nine healthy subjects performed repeated 5-watt knee-extension (quadriceps) exercise within the bore of a 1.5 Tesla MRI scanner, for test/re-test comparison. VBF, SvO2 , and derived VO2 were estimated at baseline and immediately (<1 s) postexercise and every 2.4 s for 4 min. RESULTS Quadriceps muscle mass was 2.43 ± 0.31 kg. Mean baseline values were VBF = 0.13 ± 0.06 L/min/kg, SvO2 = 69.4 ± 10.1%, and VO2 = 6.8 ± 4.1 mL/min/kg. VBF, SvO2 , and VO2 values from peak exercise had good agreement between trials (VBF = 0.9 ± 0.1 versus 1.0 ± 0.1 L/min/kg, R(2) = 0.83, CV = 7.6%; SvO2 = 43.2 ± 13.5 versus 40.9 ± 13.1%, R(2) = 0.88, CV = 15.6%; VO2 = 95.7 ± 18.0 versus 108.9 ± 17.3 mL/min/kg, R(2) = 0.88, CV = 12.3%), as did the VO2 recovery time constant (26.1 ± 3.5 versus 26.0 ± 4.0 s, R(2) = 0.85, CV = 6.0%). CV = coefficient of variation. CONCLUSION Rapid imaging of VBF and SvO2 for the estimation of whole muscle VO2 is compatible with dynamic exercise for the estimation of peak values and recovery dynamics following exercise with good reproducibility.
Collapse
Affiliation(s)
- Kory W Mathewson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mark J Haykowsky
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
57
|
He P, Shao D, Ye M, Zhang G. Analysis of gene expression identifies candidate markers and pathways in pre-eclampsia. J OBSTET GYNAECOL 2014; 35:578-84. [PMID: 25528892 DOI: 10.3109/01443615.2014.990430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pre-eclampsia is a serious multisystem disorder and causes significant increase in both maternal and foetal morbidity and perinatal mortality globally. Due to the limited understanding of the molecular mechanism of pre-eclampsia, the current study conducted bioinformatic analyses to screen key regulators involved in pre-eclampsia. The gene expression profiling dataset GSE44711 containing 8 early-onset pre-eclampsia placentas and 8 gestational-age-matched control placentas was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened by limma software package, which were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the Database for Annotation, Visualization, and Integrated Discovery website. Finally, protein-protein interaction network was constructed using the Search Tool for the Retrieval of Interacting Genes database. In total, 192 DEGs including 106 upregulated and 86 downregulated genes were obtained. Proteoglycan 2 and podoplanin were the most significantly up- and downregulated genes, respectively. In addition, three potential pathways and their related DEGs: spermidine/spermine N1-acetyltransferase 1, amiloride-binding protein 1 and adenosylmethionine decarboxylase 1 were associated with arginine and proline metabolism. Vascular endothelial growth factor C; phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit beta; collagen, type I, alpha 1 (COL1A1); and fibronectin 1 (FN1) were associated with focal adhesion. COL6A1 as well as COL1A1 and FN1 were involved in extra-cellular matrix-receptor interaction. The current study identified several potential genes and three pathways which may be considered as candidate targets for diagnosis and therapy of pre-eclampsia.
Collapse
Affiliation(s)
- P He
- a Department of Physiological Obstetric , Guangzhou Women and Children's Medical Centre, Guangzhou Medical University , Guangzhou , P. R. China
| | - D Shao
- b Guangzhou Medical Research and Development Centre of BGI , Guangzhou , P. R. China
| | - M Ye
- b Guangzhou Medical Research and Development Centre of BGI , Guangzhou , P. R. China
| | - G Zhang
- a Department of Physiological Obstetric , Guangzhou Women and Children's Medical Centre, Guangzhou Medical University , Guangzhou , P. R. China
| |
Collapse
|
58
|
Abstract
Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided.
Collapse
|
59
|
Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 2014; 46:860-76. [PMID: 24091989 DOI: 10.1249/mss.0000000000000178] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resolving the bases for different physiological functioning or exercise performance within a population is dependent on our understanding of control mechanisms. For example, when most young healthy individuals run or cycle at moderate intensities, oxygen uptake (VO2) kinetics are rapid and the amplitude of the VO2 response is not constrained by O2 delivery. For this to occur, muscle O2 delivery (i.e., blood flow × arterial O2 concentration) must be coordinated superbly with muscle O2 requirements (VO2), the efficacy of which may differ among muscles and distinct fiber types. When the O2 transport system succumbs to the predations of aging or disease (emphysema, heart failure, and type 2 diabetes), muscle O2 delivery and O2 delivery-VO2 matching and, therefore, muscle contractile function become impaired. This forces greater influence of the upstream O2 transport pathway on muscle aerobic energy production, and the O2 delivery-VO2 relationship(s) assumes increased importance. This review is the first of its kind to bring a broad range of available techniques, mostly state of the art, including computer modeling, radiolabeled microspheres, positron emission tomography, magnetic resonance imaging, near-infrared spectroscopy, and phosphorescence quenching to resolve the O2 delivery-VO2 relationships and inherent heterogeneities at the whole body, interorgan, muscular, intramuscular, and microvascular/myocyte levels. Emphasis is placed on the following: 1) intact humans and animals as these provide the platform essential for framing and interpreting subsequent investigations, 2) contemporary findings using novel technological approaches to elucidate O2 delivery-VO2 heterogeneities in humans, and 3) future directions for investigating how normal physiological responses can be explained by O2 delivery-VO2 heterogeneities and the impact of aging/disease on these processes.
Collapse
Affiliation(s)
- Shunsaku Koga
- 1Applied Physiology Laboratory, Kobe Design University, JAPAN; 2Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, and School of Biomedical Sciences, University of Leeds, Leeds, UNITED KINGDOM; 3Turku PET Centre and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, FINLAND; Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, THE NETHERLANDS; and 4Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
60
|
Kim JK, Moore DJ, Maurer DG, Kim-Shapiro DB, Basu S, Flanagan MP, Skulas-Ray AC, Kris-Etherton P, Proctor DN. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men. Appl Physiol Nutr Metab 2014; 40:122-8. [PMID: 25536008 DOI: 10.1139/apnm-2014-0228] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the popularity of dietary nitrate supplementation and the growing evidence base of its potential ergogenic and vascular health benefits, there is no direct information about its effects on exercising limb blood flow in humans. We hypothesized that acute dietary nitrate supplementation from beetroot juice would augment the increases in forearm blood flow, as well as the progressive dilation of the brachial artery, during graded handgrip exercise in healthy young men. In a randomized, double-blind, placebo-controlled crossover study, 12 young (22 ± 2 years) healthy men consumed a beetroot juice (140 mL Beet-It Sport, James White Juice Company) that provided 12.9 mmol (0.8 g) of nitrate or placebo (nitrate-depleted Beet-It Sport) on 2 study visits. At 3 h postconsumption, brachial artery diameter, flow, and blood velocity were measured (Doppler ultrasound) at rest and during 6 exercise intensities. Nitrate supplementation raised plasma nitrate (19.5-fold) and nitrite (1.6-fold) concentrations, and lowered resting arterial pulse wave velocity (PWV) versus placebo (all p < 0.05), indicating absorption, conversion, and a biological effect of this supplement. The supplement-associated lowering of PWV was also negatively correlated with plasma nitrite (r = -0.72, p = 0.0127). Despite these systemic effects, nitrate supplementation had no effect on brachial artery diameter, flow, or shear rates at rest (all p ≥ 0.28) or during any exercise workload (all p ≥ 0.18). These findings suggest that acute dietary nitrate supplementation favorably modifies arterial PWV, but does not augment blood flow or brachial artery vasodilation during nonfatiguing forearm exercise in healthy young men.
Collapse
Affiliation(s)
- Jin-Kwang Kim
- a Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hong YH, Betik AC, McConell GK. Role of nitric oxide in skeletal muscle glucose uptake during exercise. Exp Physiol 2014; 99:1569-73. [PMID: 25192731 DOI: 10.1113/expphysiol.2014.079202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed.
Collapse
Affiliation(s)
- Yet Hoi Hong
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia Department of Physiology, Faculty of Medicine, University of Malaya, Malaysia
| | - Andrew C Betik
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Glenn K McConell
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sports Exerc 2014; 45:1798-806. [PMID: 23475164 DOI: 10.1249/mss.0b013e31828e885c] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The power asymptote (critical power [CP]) and curvature constant (W') of the power-duration relationship dictate the tolerance to severe-intensity exercise. We tested the hypothesis that dietary nitrate supplementation would increase the CP and/or the W' during cycling exercise. METHODS In a double-blind, randomized, crossover study, nine recreationally active male subjects supplemented their diet with either nitrate-rich concentrated beetroot juice (BR; 2 × 250 mL·d, ∼8.2 mmol·d nitrate) or a nitrate-depleted BR placebo (PL; 2 × 250 mL·d, ∼0.006 mmol·d nitrate). In each condition, the subjects completed four separate severe-intensity exercise bouts to exhaustion at 60% of the difference between the gas exchange threshold and the peak power attained during incremental exercise (60% Δ), 70% Δ, 80% Δ, and 100% peak power, and the results were used to establish CP and W'. RESULTS Nitrate supplementation improved exercise tolerance during exercise at 60% Δ (BR, 696 ± 120 vs PL, 593 ± 68 s; P < 0.05), 70% Δ (BR, 452 ± 106 vs PL, 390 ± 86 s; P < 0.05), and 80% Δ (BR, 294 ± 50 vs PL, 263 ± 50 s; P < 0.05) but not 100% peak power (BR, 182 ± 37 vs PL, 166 ± 26 s; P = 0.10). Neither CP (BR, 221 ± 27 vs PL, 218 ± 26 W) nor W' (BR, 19.3 ± 4.6 vs PL, 17.8 ± 3 kJ) were significantly altered by BR. CONCLUSION Dietary nitrate supplementation improved endurance during severe-intensity exercise in recreationally active subjects without significantly increasing either the CP or the W'.
Collapse
Affiliation(s)
- James Kelly
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | | | | |
Collapse
|
63
|
Heinonen I, Kemppainen J, Kaskinoro K, Knuuti J, Boushel R, Kalliokoski KK. Capacity and hypoxic response of subcutaneous adipose tissue blood flow in humans. Circ J 2014; 78:1501-6. [PMID: 24759795 DOI: 10.1253/circj.cj-13-1273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The blood flow capacity in subcutaneous adipose tissue in humans remains largely unknown, and therefore the aim of this study was to determine the physiological range of blood flow in this tissue. METHODS AND RESULTS The subcutaneous adipose tissue blood flow (ATBF) was measured in 9 healthy young men by positron emission tomography using radiowater tracer. Subcutaneous ATBF was determined in regions adjacent to knee extensors at rest and during dynamic knee extensor exercise, and with 2 physiological perturbations: while breathing moderate systemic hypoxic air (14% O2) at rest and during exercise, and during intra-femoral artery infusion of high-dose adenosine infusion. ATBF was 1.3±0.6ml·100g(-1)·min(-1) at rest and increased with exercise (8.0±3.0ml·100g(-1)·min(-1), P<0.001) and adenosine infusion (10.5±4.9ml·100g(-1)·min(-1), P=0.001), but not when breathing moderate systemic hypoxic air (1.5±0.4ml·100g(-1)·min(-1)). ATBF was similar during exercise and adenosine infusion, but vascular conductance was lower during adenosine infusion. Finally, ATBF during exercise in moderate systemic hypoxia was reduced (6.3±2.2ml·100g(-1)·min(-1)) compared to normoxic exercise (P=0.004). CONCLUSIONS The vasodilatation capacity of human subcutaneous adipose blood flow appears to be comparable to, or even higher, than that induced by moderate intensity exercise. Furthermore, the reduced blood flow response in subcutaneous adipose tissue during systemic hypoxia is likely to contribute, in part, to the redistribution of blood flow to exercising muscle in a condition of reduced oxygen availability.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital
| | | | | | | | | | | |
Collapse
|
64
|
Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 2014; 38:45-57. [PMID: 24650698 DOI: 10.1016/j.niox.2014.03.162] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 02/03/2023]
Abstract
The discovery of nitric oxide and its role in almost every facet of human biology opened a new avenue for treatment through manipulation of its canonical signaling and by attempts to augment endogenous nitric oxide generation through provision of substrate and co-factors to the endothelial nitric oxide synthase complex. This has been particularly so in the cardiovascular system and it is well recognized that there is reduced bioavailable nitric oxide in patients with both cardiovascular risk factors and manifest vascular disease. However, these attempts have failed to deliver the expected benefits of such an approach. Recently, an alternative pathway for nitric oxide synthesis has been elucidated that can produce authentic nitric oxide from the 1 electron reduction of inorganic nitrite. Furthermore, it has long been known that symbiotic, facultative, oral microflora can facilitate the reduction of inorganic nitrate, that is ingested in the average diet in millimolar amounts, to inorganic nitrite itself. Thus, there exists an alternative reductive pathway from nitrate, via nitrite as an intermediate, to nitric oxide that provides a novel pathway that may be amenable to therapeutic manipulation. As such, various research groups have explored the utility of manipulation of this nitrate-nitrite-nitric oxide pathway in situations in which nitric oxide is known to have a prominent role. Animal and early-phase human studies of both inorganic nitrite and nitrate supplementation have shown beneficial effects in blood pressure control, platelet function, vascular health and exercise capacity. This review considers in detail the pathways of inorganic nitrate bioactivation and the evidence of clinical utility to date on the cardiovascular system.
Collapse
|
65
|
Eghbalzadeh K, Brixius K, Bloch W, Brinkmann C. Skeletal muscle nitric oxide (NO) synthases and NO-signaling in "diabesity"--what about the relevance of exercise training interventions? Nitric Oxide 2013; 37:28-40. [PMID: 24368322 DOI: 10.1016/j.niox.2013.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/30/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus associated with obesity, or "diabesity", coincides with an altered nitric oxide (NO) metabolism in skeletal muscle. Three isoforms of nitric oxide synthase (NOS) exist in human skeletal muscle tissue. Both neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) are constitutively expressed under physiological conditions, producing low levels of NO, while the inducible nitric oxide synthase (iNOS) is strongly up-regulated only under pathophysiological conditions, excessively increasing NO concentrations. Due to chronic inflammation, overweight/obese type 2 diabetic patients exhibit up-regulated protein contents of iNOS and concomitant elevated amounts of NO in skeletal muscle. Low muscular NO levels are important for attaining an adequate cellular redox state--thereby maintaining metabolic integrity--while high NO levels are believed to destroy cellular components and to disturb metabolic processes, e.g., through strongly augmented posttranslational protein S-nitrosylation. Physical training with submaximal intensity has been shown to attenuate inflammatory profiles and iNOS protein contents in the long term. The present review summarizes signaling pathways which induce iNOS up-regulation under pathophysiological conditions and describes molecular mechanisms by which high NO concentrations are likely to contribute to triggering skeletal muscle insulin resistance and to reducing mitochondrial capacity during the development and progression of type 2 diabetes. Based on this information, it discusses the beneficial effects of regular physical exercise on the altered NO metabolism in the skeletal muscle of overweight/obese type 2 diabetic subjects, thus unearthing new perspectives on training strategies for this particular patient group.
Collapse
Affiliation(s)
- Kaveh Eghbalzadeh
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Klara Brixius
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Christian Brinkmann
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany.
| |
Collapse
|
66
|
Gliemann L, Nyberg M, Hellsten Y. Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity? Free Radic Res 2013; 48:71-83. [PMID: 23962038 DOI: 10.3109/10715762.2013.835045] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitric oxide (NO) is known to be one of the most important regulatory compounds within the cardiovascular system where it is central for functions such as regulation of blood pressure, blood flow, and vascular growth. The bioavailability of NO is determined by a balance between, on one hand, the extent of enzymatic and non-enzymatic formation of NO and on the other hand, removal of NO, which in part is dependent on the reaction of NO with reactive oxygen species (ROS). The presence of ROS is dependent on the extent of ROS formation via mitochondria and/or enzymes such as NAD(P)H oxidase (NOX) and xanthine oxidase (XO) and the degree of ROS removal through the antioxidant defense system or other reactions. The development of cardiovascular disease has been proposed to be closely related to a reduced bioavailability of NO in parallel with an increased presence of ROS. Excessive levels of ROS not only lower the bioavailability of NO but may also cause cellular damage in the cardiovascular system. Physical activity has been shown to greatly improve cardiovascular function, in part through improved bioavailability of NO, enhanced endogenous antioxidant defense and a lowering of the expression of ROS-forming enzymes. Regular physical activity is therefore likely to be a highly useful tool in the treatment of cardiovascular disease. Future studies should focus on which form of exercise may be most optimal for enhancing NO bioavailability and improving cardiovascular health.
Collapse
Affiliation(s)
- L Gliemann
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, Cardiovascular Physiology, University of Copenhagen , Copenhagen , Denmark
| | | | | |
Collapse
|
67
|
Heinonen I, Saltin B, Kemppainen J, Nuutila P, Knuuti J, Kalliokoski K, Hellsten Y. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle. Nutr Metab (Lond) 2013; 10:43. [PMID: 23773265 PMCID: PMC3686616 DOI: 10.1186/1743-7075-10-43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/10/2013] [Indexed: 12/03/2022] Open
Abstract
Background The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood. Methods The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA). Results Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions. Conclusion In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle.
Collapse
|
68
|
Benson AP, Grassi B, Rossiter HB. A validated model of oxygen uptake and circulatory dynamic interactions at exercise onset in humans. J Appl Physiol (1985) 2013; 115:743-55. [PMID: 23766506 DOI: 10.1152/japplphysiol.00184.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
At the onset of muscular exercise, the kinetics of pulmonary O2 uptake (Vo2P) reflect the integrated dynamic responses of the ventilatory, circulatory, and neuromuscular systems for O2 transport and utilization. Muscle O2 uptake (Vo2m) kinetics, however, are dissociated from Vo2P kinetics by intervening O2 capacitances and the dynamics of the circulation and ventilation. We developed a multicompartment computational model (MCM) to investigate these dynamic interactions and optimized and validated the MCM using previously published, simultaneously measured Vo2m, alveolar O2 uptake (Vo2A), and muscle blood flow (Qm) in healthy young men during cycle ergometry. The model was used to show that 1) the kinetics of Vo2A during exercise transients are very sensitive to preexercise blood flow distribution and the absolute value of Qm, 2) a low preexercise Qm exaggerates the magnitude of the transient fall in venous O2 concentration for any given Vo2m kinetics, necessitating a tighter coupling of Qm/Vo2m (or a reduction in the available work rate range) during the exercise transient to avoid limits to O2 extraction, and 3) information regarding exercise-related alterations in O2 uptake and blood flow in nonexercising tissues and their effects on mixed venous O2 concentration is required to accurately predict Vo2A kinetics from knowledge of Vo2m and Qm dynamics. Importantly, these data clearly demonstrate that Vo2A kinetics are nonexponential, nonlinear distortions of Vo2m kinetics that can be explained in a MCM by interactions among circulatory and cellular respiratory control processes before and during exercise.
Collapse
Affiliation(s)
- Alan P Benson
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
69
|
Nyberg M, Al-Khazraji BK, Mortensen SP, Jackson DN, Ellis CG, Hellsten Y. Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. Am J Physiol Regul Integr Comp Physiol 2013; 305:R281-90. [PMID: 23761642 DOI: 10.1152/ajpregu.00189.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During skeletal muscle contractions, the concentration of ATP increases in muscle interstitial fluid as measured by microdialysis probes. This increase is associated with the magnitude of blood flow, suggesting that interstitial ATP may be important for contraction-induced vasodilation. However, interstitial ATP has solely been described to induce vasoconstriction in skeletal muscle. To examine whether interstitial ATP induces vasodilation in skeletal muscle and to what extent this vasoactive effect is mediated by formation of nitric oxide (NO) and prostanoids, three different experimental models were studied. The rat gluteus maximus skeletal muscle model was used to study changes in local skeletal muscle hemodynamics. Superfused ATP at concentrations found during muscle contractions (1-10 μM) increased blood flow by up to 400%. In this model, the underlying mechanism was also examined by inhibition of NO and prostanoid formation. Inhibition of these systems abolished the vasodilator effect of ATP. Cell-culture experiments verified ATP-induced formation of NO and prostacyclin in rat skeletal muscle microvascular endothelial cells, and ATP-induced formation of NO in rat skeletal muscle cells. To confirm these findings in humans, ATP was infused into skeletal muscle interstitium of healthy subjects via microdialysis probes and found to increase muscle interstitial concentrations of NO and prostacyclin by ~60% and ~40%, respectively. Collectively, these data suggest that a physiologically relevant elevation in interstitial ATP concentrations increases muscle blood flow, indicating that the contraction-induced increase in skeletal muscle interstitial [ATP] is important for exercise hyperemia. The vasodilator effect of ATP application is mediated by NO and prostanoid formation.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
70
|
Christensen PM, Nyberg M, Mortensen SP, Nielsen JJ, Secher NH, Damsgaard R, Hellsten Y, Bangsbo J. Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery. Am J Physiol Regul Integr Comp Physiol 2013; 305:R313-21. [PMID: 23720134 DOI: 10.1152/ajpregu.00048.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined whether a marked reduction in oxygen delivery, unlike findings in moderate-intensity exercise, would slow leg oxygen uptake (Vo2) kinetics during intense exercise (86 ± 3% of incremental test peak power). Seven healthy males (26 ± 1 years, means ± SE) performed one-legged knee-extensor exercise (60 ± 3 W) for 4 min in a control setting (CON) and with arterial infusion of N(G)-monomethyl-l-arginine and indomethacin in the working leg to reduce blood flow by inhibiting formation of nitric oxide and prostanoids (double blockade; DB). In DB leg blood flow (LBF) and oxygen delivery during the first minute of exercise were 25-50% lower (P < 0.01) compared with CON (LBF after 10 s: 1.1 ± 0.2 vs. 2.5 ± 0.3 l/min and 45 s: 2.7 ± 0.2 vs. 3.8 ± 0.4 l/min) and 15% lower (P < 0.05) after 2 min of exercise. Leg Vo2 in DB was attenuated (P < 0.05) during the first 2 min of exercise (10 s: 161 ± 26 vs. 288 ± 34 ml/min and 45 s: 459 ± 48 vs. 566 ± 81 ml/min) despite a higher (P < 0.01) oxygen extraction in DB. Net leg lactate release was the same in DB and CON. The present study shows that a marked reduction in oxygen delivery can limit the rise in Vo2 during the initial part of intense exercise. This is in contrast to previous observations during moderate-intensity exercise using the same DB procedure, which suggests that fast-twitch muscle fibers are more sensitive to a reduction in oxygen delivery than slow-twitch fibers.
Collapse
Affiliation(s)
- Peter M Christensen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Heinonen I, Wendelin-Saarenhovi M, Kaskinoro K, Knuuti J, Scheinin M, Kalliokoski KK. Inhibition of α-adrenergic tone disturbs the distribution of blood flow in the exercising human limb. Am J Physiol Heart Circ Physiol 2013; 305:H163-72. [PMID: 23666670 DOI: 10.1152/ajpheart.00925.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
72
|
Stanley WC, Keehan KH. Update on innovative initiatives for the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1045-9. [PMID: 23457015 DOI: 10.1152/ajpheart.00082.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
73
|
Cocks M, Shepherd SO, Shaw CS, Achten J, Costa ML, Wagenmakers AJM. Immunofluorescence microscopy to assess enzymes controlling nitric oxide availability and microvascular blood flow in muscle. Microcirculation 2013; 19:642-51. [PMID: 22642427 DOI: 10.1111/j.1549-8719.2012.00199.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The net production of NO by the muscle microvascular endothelium is a key regulator of muscle microvascular blood flow. Here, we describe the development of a method to quantify the protein content and phosphorylation of endothelial NO synthase (eNOS content and eNOS ser(1177) phosphorylation) and NAD(P)H oxidase expression. METHODS Human muscle cryosections were stained using antibodies targeting eNOS, p-eNOS ser(1177) and NOX2 in combination with markers of the endothelium and the sarcolemma. Quantitation was achieved by analyzing fluorescence intensity within the area stained positive for the microvascular endothelium. Analysis was performed in duplicate and repeated five times to investigate CV. In addition, eight healthy males (age 21 ± 1 year, BMI 24.4 ± 1.0 kg/m(2)) completed one hour of cycling exercise at ~65%VO(2max) . Muscle biopsies were taken from the m. vastus lateralis before and immediately after exercise and analyzed using the new methods. RESULTS The CV of all methods was between 6.5 and 9.5%. Acute exercise increased eNOS serine(1177) phosphorylation (fold change 1.29 ± 0.05, p < 0.05). CONCLUSIONS These novel methodologies will allow direct investigations of the molecular mechanisms underpinning the microvascular responses to insulin and exercise, the impairments that occur in sedentary, obese and elderly individuals and the effect of lifestyle interventions.
Collapse
Affiliation(s)
- Matthew Cocks
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
74
|
Zheng J, An H, Coggan AR, Zhang X, Bashir A, Muccigrosso D, Peterson LR, Gropler RJ. Noncontrast skeletal muscle oximetry. Magn Reson Med 2013; 71:318-25. [PMID: 23424006 DOI: 10.1002/mrm.24669] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/04/2012] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Abstract
PURPOSE The objective of this study was to develop a new noncontrast method to directly quantify regional skeletal muscle oxygenation. METHODS The feasibility of the method was examined in five healthy volunteers using a 3 T clinical MRI scanner, at rest and during a sustained isometric contraction. The perfusion of skeletal muscle of the calf was measured using an arterial spin labeling method, whereas the oxygen extraction fraction of the muscle was measured using a susceptibility-based MRI technique. RESULTS In all volunteers, the perfusion in soleus muscle increased significantly from 6.5 ± 2.0 mL (100 g min)(-1) at rest to 47.9 ± 7.7 mL (100 g min)(-1) during exercise (P < 0.05). Although the corresponding oxygen extraction fraction did not change significantly, the rate of oxygen consumption increased from 0.43 ± 0.13 to 4.2 ± 1.5 mL (100 g min)(-1) (P < 0.05). Similar results were observed in gastrocnemius muscle but with greater oxygen extraction fraction increase than the soleus muscle. CONCLUSION This is the first MR oximetry developed for quantification of regional skeletal muscle oxygenation. A broad range of medical conditions could benefit from these techniques, including cardiology, gerontology, kinesiology, and physical therapy.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Regional differences in blood flow, glucose uptake and fatty acid uptake within quadriceps femoris muscle during dynamic knee-extension exercise. Eur J Appl Physiol 2013; 113:1775-82. [DOI: 10.1007/s00421-013-2609-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/06/2013] [Indexed: 11/27/2022]
|
76
|
Larsen FJ, Schiffer TA, Weitzberg E, Lundberg JO. Regulation of mitochondrial function and energetics by reactive nitrogen oxides. Free Radic Biol Med 2012; 53:1919-28. [PMID: 22989554 DOI: 10.1016/j.freeradbiomed.2012.08.580] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 01/14/2023]
Abstract
Endogenous nitric oxide (NO) generated from L-arginine by NO synthase regulates mitochondrial function by binding to cytochrome c oxidase in competition with oxygen. This interaction can elicit a variety of intracellular signaling events of both physiological and pathophysiological significance. Recent lines of research demonstrate that inorganic nitrate and nitrite, derived from oxidized NO or from the diet, are metabolized in vivo to form NO and other bioactive nitrogen oxides with intriguing effects on cellular energetics and cytoprotection. Here we discuss the latest advances in our understanding of the roles of nitrate, nitrite, and NO in the modulation of mitochondrial function, with a particular focus on dietary nitrate and exercise.
Collapse
Affiliation(s)
- Filip J Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
77
|
Impaired formation of vasodilators in peripheral tissue in essential hypertension is normalized by exercise training. J Hypertens 2012; 30:2007-14. [DOI: 10.1097/hjh.0b013e328356dd57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
78
|
Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 2012; 590:6297-305. [PMID: 22988140 DOI: 10.1113/jphysiol.2012.240762] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or on the extraluminal side of the blood vessels. A number of vasodilators have been shown to bring about this increase in blood flow and, importantly, interactions between these compounds seem to be essential for the precise regulation of blood flow. Two compounds stand out as central in these vasodilator interactions: nitric oxide (NO) and prostacyclin. These two vasodilators are both stimulated by several compounds, e.g. adenosine, ATP, acetylcholine and bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperaemic response remains unexplained. It is plausible that this remaining hyperaemia may be explained by cAMP- and cGMP-independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow regulation remain to be further explored to fully elucidate the regulation of exercise hyperaemia.
Collapse
Affiliation(s)
- Y Hellsten
- Department of Exercise and Sport Sciences, Division of Integrated Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
79
|
Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on microvascular and contractile function in skeletal muscle of aged rats. Am J Physiol Heart Circ Physiol 2012; 303:H1076-84. [PMID: 22923618 DOI: 10.1152/ajpheart.00477.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced age is associated with derangements in skeletal muscle microvascular function during the transition from rest to contractions. We tested the hypothesis that, contrary to what was reported previously in young rats, selective neuronal nitric oxide (NO) synthase (nNOS) inhibition would result in attenuated or absent alterations in skeletal muscle microvascular oxygenation (Po(2)(mv)), which reflects the matching between muscle O(2) delivery and utilization, following the onset of contractions in old rats. Spinotrapezius muscle blood flow (radiolabeled microspheres), Po(2)(mv) (phosphorescence quenching), O(2) utilization (Vo(2); Fick calculation), and submaximal force production were measured at rest and following the onset of contractions in anesthetized old male Fischer 344 × Brown Norway rats (27 to 28 mo) pre- and postselective nNOS inhibition (2.1 μmol/kg S-methyl-l-thiocitrulline; SMTC). At rest, SMTC had no effects on muscle blood flow (P > 0.05) but reduced Vo(2) by ∼23% (P < 0.05), which elevated basal Po(2)(mv) by ∼18% (P < 0.05). During contractions, steady-state muscle blood flow, Vo(2), Po(2)(mv), and force production were not altered after SMTC (P > 0.05 for all). The overall Po(2)(mv) dynamics following onset of contractions was also unaffected by SMTC (mean response time: pre, 19.7 ± 1.5; and post, 20.0 ± 2.0 s; P > 0.05). These results indicate that the locus of nNOS-derived NO control in skeletal muscle depends on age and metabolic rate (i.e., rest vs. contractions). Alterations in nNOS-mediated regulation of contracting skeletal muscle microvascular function with aging may contribute to poor exercise capacity in this population.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
80
|
McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL. Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am J Physiol Endocrinol Metab 2012; 303:E301-7. [PMID: 22550064 DOI: 10.1152/ajpendo.00667.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is an important vasodilator and regulator in the cardiovascular system, and this link was the subject of a Nobel prize in 1998. However, NO also plays many other regulatory roles, including thrombosis, immune function, neural activity, and gastrointestinal function. Low concentrations of NO are thought to have important signaling effects. In contrast, high concentrations of NO can interact with reactive oxygen species, causing damage to cells and cellular components. A less-recognized site of NO production is within skeletal muscle, where small increases are thought to have beneficial effects such as regulating glucose uptake and possibly blood flow, but higher levels of production are thought to lead to deleterious effects such as an association with insulin resistance. This review will discuss the role of NO in skeletal muscle during and following exercise, including in mitochondrial biogenesis, muscle efficiency, and blood flow with a particular focus on its potential role in regulating skeletal muscle glucose uptake during exercise.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute of Sport, Exercise and Active Living and the School of Biomedical and Health Sciences, Victoria University, Footscray, Victoria, Australia.
| | | | | | | | | |
Collapse
|
81
|
Casey DP, Mohamed EA, Joyner MJ. Role of nitric oxide and adenosine in the onset of vasodilation during dynamic forearm exercise. Eur J Appl Physiol 2012; 113:295-303. [PMID: 22692759 DOI: 10.1007/s00421-012-2439-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/30/2012] [Indexed: 10/27/2022]
Abstract
We tested the hypothesis that nitric oxide (NO) and adenosine contribute to the onset of vasodilation during dynamic forearm exercise. Twenty-two subjects performed rhythmic forearm exercise (20 % of maximum) during control and NO synthase (NOS) inhibition (N (G)-monomethyl-L-arginine; L-NMMA) trials. A subset of subjects performed a third trial of forearm exercise during combined inhibition of NOS and adenosine (aminophylline; n = 9). Additionally, a separate group of subjects (n = 7) performed rhythmic forearm exercise during control, inhibition of adenosine alone and combined inhibition of adenosine and NOS. Forearm vascular conductance (FVC; ml min(-1) · 100 mmHg(-1)) was calculated from blood flow and mean arterial pressure (mmHg). The onset of vasodilation was assessed by calculating the slope of the FVC response for every duty cycle between baseline and steady state, and the number of duty cycles (1-s contraction/2-s relaxation) to reach steady state. NOS inhibition blunted vasodilation at the onset of exercise (11.1 ± 0.8 vs. 8.5 ± 0.6 FVC units/duty cycle; P < 0.001 vs. control) and increased the time to reach steady state (25 ± 1 vs. 32 ± 1 duty cycles; P < 0.001 vs. control). Vasodilation was blunted further with combined inhibition of NOS and adenosine (7.5 ± 0.6 vs. 6.2 ± 0.8 FVC units/duty cycle; P < 0.05 vs. L-NMMA alone), but not with aminophylline alone (16.0 ± 2.2 vs. 14.7 ± 2.0 FVC units/duty cycle; P = 0.67 vs. control). Our data indicate that NO and adenosine (in the absence of NO) contribute to the onset of vasodilation during dynamic forearm exercise.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Anesthesiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
82
|
Boushel R, Fuentes T, Hellsten Y, Saltin B. Opposing effects of nitric oxide and prostaglandin inhibition on muscle mitochondrial Vo(2) during exercise. Am J Physiol Regul Integr Comp Physiol 2012; 303:R94-100. [PMID: 22552792 DOI: 10.1152/ajpregu.00044.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) and prostaglandins (PG) together play a role in regulating blood flow during exercise. NO also regulates mitochondrial oxygen consumption through competitive binding to cytochrome-c oxidase. Indomethacin uncouples and inhibits the electron transport chain in a concentration-dependent manner, and thus, inhibition of NO and PG synthesis may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG synthesis blockade (L-NMMA and indomethacin, respectively) on mitochondrial respiration in human muscle following knee extension exercise (KEE). Specifically, this study examined the physiological effect of NO, and the pharmacological effect of indomethacin, on muscle mitochondrial function. Consistent with their mechanism of action, we hypothesized that inhibition of nitric oxide synthase (NOS) and PG synthesis would have opposite effects on muscle mitochondrial respiration. Mitochondrial respiration was measured ex vivo by high-resolution respirometry in saponin-permeabilized fibers following 6 min KEE in control (CON; n = 8), arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA; n = 4) and Indo (n = 4) followed by combined inhibition of NOS and PG synthesis (L-NMMA + Indo, n = 8). ADP-stimulated state 3 respiration (OXPHOS) with substrates for complex I (glutamate, malate) was reduced 50% by Indo. State 3 O(2) flux with complex I and II substrates was reduced less with both Indo (20%) and L-NMMA + Indo (15%) compared with CON. The results indicate that indomethacin reduces state 3 mitochondrial respiration primarily at complex I of the respiratory chain, while blockade of NOS by L-NMMA counteracts the inhibition by Indo. This effect on muscle mitochondria, in concert with a reduction of blood flow accounts for in vivo changes in muscle O(2) consumption during combined blockade of NOS and PG synthesis.
Collapse
Affiliation(s)
- Robert Boushel
- Heart and Circulatory Unit, Department of Biomedical Sciences; Mitochondrial Research Laboratory, Department of Anaesthesia Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
83
|
Moore DJ, Gonzales JU, Tucker SH, Elavsky S, Proctor DN. Exercise-induced vasodilation is associated with menopause stage in healthy middle-aged women. Appl Physiol Nutr Metab 2012; 37:418-24. [PMID: 22486379 DOI: 10.1139/h2012-015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leg exercise hemodynamics during single-leg knee extensions were compared among healthy groups of early perimenopausal (n = 15), late perimenopausal (n = 12), and early postmenopausal (n = 11) women. Femoral blood flow (FBF) and vascular conductance (FVC) at rest and during very light work rates (0 and 5 W) were similar among all three menopause stage groups. Vascular responses at 10 W (FBF) and 20 W (FBF and FVC) were significantly higher (P < 0.05) in early perimenopausal compared with late perimenopausal women. At 15 and 25 W, FBF and FVC were similar between late perimenopausal and early postmenopausal groups but higher (P < 0.05) in early perimenopausal women as compared with the other two menopausal groups. In the combined sample of all three menopause stage groups, follicle-stimulating hormone was significantly correlated with vascular conductance during submaximal (15 W) exercise (R = -0.56, P < 0.001), even after adjustment for age, fitness, LDL cholesterol, and abdominal fat (R = -0.46, P = 0.005). Collectively, these findings suggest that in middle-aged women, there is an association between menopause stage and leg vascular responsiveness during exercise.
Collapse
Affiliation(s)
- David J Moore
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
84
|
Heinonen I, Duncker DJ, Knuuti J, Kalliokoski KK. The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans. Eur J Appl Physiol 2012; 112:3503-9. [DOI: 10.1007/s00421-012-2329-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/13/2012] [Indexed: 11/28/2022]
|
85
|
Heinonen I, Bucci M, Kemppainen J, Knuuti J, Nuutila P, Boushel R, Kalliokoski KK. Regulation of subcutaneous adipose tissue blood flow during exercise in humans. J Appl Physiol (1985) 2012; 112:1059-63. [PMID: 22223450 DOI: 10.1152/japplphysiol.00732.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (∼1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.
Collapse
|
86
|
Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol 2011; 589:5517-28. [PMID: 21911616 DOI: 10.1113/jphysiol.2011.216341] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter School of Sport and Health Sciences, Heavitree Road, St Luke's Campus, Exeter EX1 2LU, UK.
| | | | | | | | | | | |
Collapse
|