51
|
Abstract
The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.
Collapse
|
52
|
Fantini S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). Neuroimage 2013; 85 Pt 1:202-21. [PMID: 23583744 DOI: 10.1016/j.neuroimage.2013.03.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022] Open
Abstract
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
53
|
Wigal SB, Polzonetti CM, Stehli A, Gratton E. Phase synchronization of oxygenation waves in the frontal areas of children with attention-deficit hyperactivity disorder detected by optical diffusion spectroscopy correlates with medication. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:127002. [PMID: 23232795 PMCID: PMC3518849 DOI: 10.1117/1.jbo.17.12.127002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The beneficial effects of pharmacotherapy on children with attention-deficit hyperactivity disorder (ADHD) are well documented. We use near-infrared spectroscopy (NIRS) methodology to determine reorganization of brain neurovascular properties following the medication treatment. Twenty-six children with ADHD (ages six through 12) participated in a modified laboratory school protocol to monitor treatment response with lisdexamfetamine dimesylate (LDX; Vyvanse®, Shire US Inc.). All children refrained from taking medication for at least two weeks (washout period). To detect neurovascular reorganization, we measured changes in synchronization of oxy (HbO2) and deoxy (HHb) hemoglobin waves between the two frontal lobes. Participants without medication displayed average baseline HbO2 phase difference at about -7-deg. and HHb differences at about 240-deg.. This phase synchronization index changed after pharmacological intervention. Medication induced an average phase changes of HbO2 after first medication to 280-deg. and after medication optimization to 242-deg.. Instead first medication changed of the average HHb phase difference at 186-deg. and then after medication optimization to 120-deg. In agreement with findings of White et al., and Varela et al., we associated the phase synchronization differences of brain hemodynamics in children with ADHD with lobe specific hemodynamic reorganization of HbO2- and HHB oscillations following medication status.
Collapse
Affiliation(s)
- Sharon B. Wigal
- University of California Irvine, Child Development Center, Department of Pediatrics, 19722 MacArthur Boulevard Irvine, California 92612
| | - Chiara M. Polzonetti
- University of California Irvine, Child Development Center, Department of Pediatrics, 19722 MacArthur Boulevard Irvine, California 92612
| | - Annamarie Stehli
- University of California Irvine, Child Development Center, Department of Pediatrics, 19722 MacArthur Boulevard Irvine, California 92612
| | - Enrico Gratton
- University of California Irvine, Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, 3120 Natural Science II Building, Irvine, California 92697
| |
Collapse
|
54
|
Abstract
The relationship between cerebral hemodynamics and cognitive performance has increasingly become recognized as a major challenge in clinical practice for older adults. Both diabetes and hypertension worsen brain perfusion and are major risk factors for cerebrovascular disease, stroke and dementia. Cerebrovascular reserve has emerged as a potential biomarker for monitoring pressure-perfusion-cognition relationships. Endothelial dysfunction and inflammation, microvascular disease, and mascrovascular disease affect cerebral hemodynamics and play an important role in pathohysiology and severity of multiple medical conditions, presenting as cognitive decline in the old age. Therefore, the identification of cerebrovascular vascular reactivity as a new therapeutic target is needed for prevention of cognitive decline late in life.
Collapse
|
55
|
Wavelet cross-correlation to investigate regional variations in cerebral oxygenation in infants supported on extracorporeal membrane oxygenation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 765:203-209. [PMID: 22879034 PMCID: PMC4038005 DOI: 10.1007/978-1-4614-4989-8_28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracorporeal membrane oxygenation can potentially affect cerebral blood flow dynamics and consequently influence cerebral autoregulation. We applied wavelet cross-correlation (WCC) between multichannel cerebral oxyhemoglobin concentration (HbO(2)) and mean arterial pressure (MAP), to assess regional variations in cerebral autoregulation. Six infants on veno-arterial (VA) ECMO were studied during sequential changes in the ECMO flows. WCC between MAP and HbO(2) for each flow period and each channel was calculated within three different frequency (wavelet scale) bands centered around 0.1, 0.16, and 0.3 Hz chosen to represent low frequency oscillations, ventilation, and respiration rates, respectively. The group data showed a relationship between maximum WCC and ECMO flow. During changes in ECMO flow, statistically significant differences in maximum WCC were found between right and left hemispheres. WCC between HbO(2) and MAP provides a useful method to investigate the dynamics of cerebral autoregulation during ECMO. Manipulations of ECMO flows are associated with regional changes in cerebral autoregulation which may potentially have an important bearing on clinical outcome.
Collapse
|
56
|
Pierro ML, Sassaroli A, Bergethon PR, Ehrenberg BL, Fantini S. Phase-amplitude investigation of spontaneous low-frequency oscillations of cerebral hemodynamics with near-infrared spectroscopy: a sleep study in human subjects. Neuroimage 2012; 63:1571-84. [PMID: 22820416 DOI: 10.1016/j.neuroimage.2012.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 07/10/2012] [Indexed: 11/25/2022] Open
Abstract
We have investigated the amplitude and phase of spontaneous low-frequency oscillations (LFOs) of the cerebral deoxy- and oxy-hemoglobin concentrations ([Hb] and [HbO]) in a human sleep study using near-infrared spectroscopy (NIRS). Amplitude and phase analysis was based on the analytic signal method, and phasor algebra was used to decompose measured [Hb] and [HbO] oscillations into cerebral blood volume (CBV) and flow velocity (CBFV) oscillations. We have found a greater phase lead of [Hb] vs. [HbO] LFOs during non-REM sleep with respect to the awake and REM sleep states (maximum increase in [Hb] phase lead: ~π/2). Furthermore, during non-REM sleep, the amplitudes of [Hb] and [HbO] LFOs are suppressed with respect to the awake and REM sleep states (maximum amplitude decrease: 87%). The associated cerebral blood volume and flow velocity oscillations are found to maintain their relative phase difference during sleep, whereas their amplitudes are attenuated during non-REM sleep. These results show the potential of phase-amplitude analysis of [Hb] and [HbO] oscillations measured by NIRS in the investigation of hemodynamics associated with cerebral physiology, activation, and pathological conditions.
Collapse
Affiliation(s)
- Michele L Pierro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | | | | | | | | |
Collapse
|
57
|
Papademetriou MD, Tachtsidis I, Elliot MJ, Hoskote A, Elwell CE. Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:067008. [PMID: 22734786 DOI: 10.1117/1.jbo.17.6.067008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Assessing noninvasively cerebral autoregulation, the protective mechanism of the brain to maintain constant cerebral blood flow despite changes in blood pressure, is challenging. Infants on life support system (ECMO) for cardiorespiratory failure are at risk of cerebral autoregulation impairment and consequent neurological problems. We measured oxyhaemoglobin concentration (HbO(2)) by multichannel (12 channels) near-infrared spectroscopy (NIRS) in six infants during sequential changes in ECMO flow. Wavelet cross-correlation (WCC) between mean arterial pressure (MAP) and HbO(2) was used to construct a time-frequency representation of the concordance between the two signals to assess the nonstationary aspect of cerebral autoregulation and investigate regional variations. Group data showed that WCC increases with decreasing ECMO flow indicating higher concordance between MAP and HbO(2) and demonstrating loss of cerebral autoregulation at low ECMO flows. Statistically significant differences in WCC were observed between channels placed on the right and left scalp with channels on the right exhibiting higher values of WCC suggesting that the right hemisphere was more susceptible to disruption of cerebral autoregulation. Multichannel NIRS in conjunction with wavelet analysis methods can be used to assess regional variations in dynamic cerebral autoregulation with important clinical application in the management of critically ill children on life support systems.
Collapse
Affiliation(s)
- Maria D Papademetriou
- University College London, Medical Physics and Biomedical Engineering, London, United Kingdom.
| | | | | | | | | |
Collapse
|
58
|
Panerai RB, Dineen NE, Brodie FG, Robinson TG. Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2. J Appl Physiol (1985) 2010; 109:1860-8. [DOI: 10.1152/japplphysiol.00857.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the temporal variability of dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow to rapid changes in arterial blood pressure, a new approach was introduced to improve the temporal resolution of dynamic CA assessment. Continuous bilateral recordings of cerebral blood flow velocity (transcranial Doppler, middle cerebral artery), end-tidal Pco2 (PetCO2, infrared capnograph), and blood pressure (Finapres) were obtained at rest and during breath hold in 30 young subjects (25 ± 6 yr old) and 30 older subjects (64 ± 4 yr old). Time-varying estimates of the autoregulation index [ARI( t)] were obtained with an autoregressive-moving average model with coefficients expanded by orthogonal decomposition. The temporal pattern of ARI( t) varied inversely with PetCO2, decreasing with hypercapnia. At rest, ARI( t) showed spontaneous fluctuations that were significantly different from noise and significantly correlated with spontaneous fluctuations in PetCO2 in the majority of recordings (young: 72% and old: 65%). No significant differences were found in ARI( t) due to aging. This new approach to improve the temporal resolution of dynamic CA parameters allows the identification of physiologically meaningful fluctuations in dynamic CA efficiency at rest and in response to changes in arterial CO2.
Collapse
Affiliation(s)
- R. B. Panerai
- Medical Physics Group and
- Leicester National Institute of Health Research Biomedical Research Unit in Cardiovascular Science, Glenfield Hospital, Leicester, United Kingdom
| | - N. E. Dineen
- Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester National Health Service Trust, Leicester; and
| | - F. G. Brodie
- Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester National Health Service Trust, Leicester; and
| | - T. G. Robinson
- Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester National Health Service Trust, Leicester; and
- Leicester National Institute of Health Research Biomedical Research Unit in Cardiovascular Science, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
59
|
Ocon AJ, Medow MS, Taneja I, Stewart JM. Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope. Am J Physiol Heart Circ Physiol 2010; 300:H527-40. [PMID: 21076019 DOI: 10.1152/ajpheart.00257.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of the cardiovagal baroreflex (CVB), thoracic hypovolemia, and hyperpnea contribute to the nonlinear time-dependent hemodynamic instability of vasovagal syncope. We used a nonlinear phase synchronization index (PhSI) to describe the extent of coupling between cardiorespiratory parameters, systolic blood pressure (SBP) or arterial pressure (AP), RR interval (RR), and ventilation, and a directional index (DI) measuring the direction of coupling. We also examined phase differences directly. We hypothesized that AP-RR interval PhSI would be normal during early upright tilt, indicating intact CVB, but would progressively decrease as faint approached and CVB failed. Continuous measurements of AP, RR interval, respiratory plethysomography, and end-tidal CO2 were recorded supine and during 70-degree head-up tilt in 15 control subjects and 15 fainters. Data were evaluated during five distinct times: baseline, early tilt, late tilt, faint, and recovery. During late tilt to faint, fainters exhibited a biphasic change in SBP-RR interval PhSI. Initially in fainters during late tilt, SBP-RR interval PhSI decreased (fainters, from 0.65±0.04 to 0.24±0.03 vs. control subjects, from 0.51±0.03 to 0.48±0.03; P<0.01) but then increased at the time of faint (fainters=0.80±0.03 vs. control subjects=0.42±0.04; P<0.001) coinciding with a change in phase difference from positive to negative. Starting in late tilt and continuing through faint, fainters exhibited increasing phase coupling between respiration and AP PhSI (fainters=0.54±0.06 vs. control subjects=0.27±0.03; P<0.001) and between respiration and RR interval (fainters=0.54±0.05 vs. control subjects=0.37±0.04; P<0.01). DI indicated respiratory driven AP (fainters=0.84±0.04 vs. control subjects=0.39±0.09; P<0.01) and RR interval (fainters=0.73±0.10 vs. control subjects=0.23±0.11; P<0.001) in fainters. The initial drop in the SBP-RR interval PhSI and directional change of phase difference at late tilt indicates loss of cardiovagal baroreflex. The subsequent increase in SBP-RR interval PhSI is due to a respiratory synchronization and drive on both AP and RR interval. Cardiovagal baroreflex is lost before syncope and supplanted by respiratory reflexes, producing hypotension and bradycardia.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, New York Medical College, The Center for Hypotension, 19 Bradhurst Ave., Ste. 1600S, Hawthorne, NY 10532, USA
| | | | | | | |
Collapse
|
60
|
Abstract
The relationship between blood pressure (BP) and cognitive outcomes in elderly adults has implications for global health care. Both hypertension and hypotension affect brain perfusion and worsen cognitive outcomes. The presence of hypertension and other vascular risk factors has been associated with decreased performance in executive function and attention tests. Cerebrovascular reserve has emerged as a potential biomarker for monitoring pressure-perfusion-cognition relationships. A decline in vascular reserve capacity can lead to impaired neurovascular coupling and decreased cognitive ability. Endothelial dysfunction, microvascular disease, and mascrovascular disease in midlife could also have an important role in the manifestations and severity of multiple medical conditions underlying cognitive decline late in life. However, questions remain about the role of antihypertensive therapies for long-term prevention of cognitive decline. In this Review, we address the underlying pathophysiology and the existing evidence supporting the role of vascular factors in late-life cognitive decline.
Collapse
Affiliation(s)
- Vera Novak
- Division of Gerontology, Beth Israel Deaconess Medical Center and Harvard Medical School, 110 Francis Street, LMOB Suite 1b, Boston, MA 02215, USA.
| | | |
Collapse
|
61
|
Liu J, Simpson MD, Yan J, Allen R. Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2. Physiol Meas 2010; 31:1291-307. [DOI: 10.1088/0967-3334/31/10/001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
62
|
Tingying Peng, Rowley A, Ainslie P, Poulin M, Payne S. Wavelet Phase Synchronization Analysis of Cerebral Blood Flow Autoregulation. IEEE Trans Biomed Eng 2010; 57:960-8. [DOI: 10.1109/tbme.2009.2024265] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Dineen NE, Brodie FG, Robinson TG, Panerai RB. Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia. J Appl Physiol (1985) 2009; 108:604-13. [PMID: 20035062 DOI: 10.1152/japplphysiol.01157.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic cerebral autoregulation (CA) is the transient response of cerebral blood flow (CBF) to rapid blood pressure changes: it improves in hypocapnia and becomes impaired during hypercapnia. Batch-processing techniques have mostly been used to measure CA, providing a single estimate for an entire recording. A new approach to increase the temporal resolution of dynamic CA parameters was applied to transient hypercapnia and hypocapnia to describe the time-varying properties of dynamic CA during these conditions. Thirty healthy subjects (mean +/- SD: 25 +/- 6 yr, 9 men) were recruited. CBF velocity was recorded in both middle cerebral arteries (MCAs) with transcranial Doppler ultrasound. Arterial blood pressure (Finapres), end-tidal CO(2) (ET(CO(2)); infrared capnograph), and a three-lead ECG were also measured at rest and during repeated breath hold and hyperventilation. A moving window autoregressive moving average model provided continuous values of the dynamic CA index [autoregulation index (ARI)] and unconstrained gain. Breath hold led to significant increase in ET(CO(2)) (+5.4 +/- 6.1 mmHg), with concomitant increase in CBF velocity in both MCAs. Continuous dynamic CA parameters showed highly significant changes (P < 0.001), with a temporal pattern reflecting a delayed dynamic response of CA to changes in arterial Pco(2) and a maximal reduction in ARI of -5.1 +/- 2.4 and -5.1 +/- 2.3 for the right and left MCA, respectively. Hyperventilation led to a marked decrease in ET(CO(2)) (-7.2 +/- 4.1 mmHg, P < 0.001). Unexpectedly, CA efficiency dropped significantly with the inception of the metronome-controlled hyperventilation, but, after approximately 30 s, the ARI increased gradually to show a maximum change of 5.7 +/- 2.9 and 5.3 +/- 3.0 for the right and left MCA, respectively (P < 0.001). These results confirm the potential of continuous estimates of dynamic CA to improve our understanding of human cerebrovascular physiology and represent a promising new approach to improve the sensitivity of clinical applications of dynamic CA modeling.
Collapse
Affiliation(s)
- N E Dineen
- Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, UK
| | | | | | | |
Collapse
|
64
|
Ocon AJ, Kulesa J, Clarke D, Taneja I, Medow MS, Stewart JM. Increased phase synchronization and decreased cerebral autoregulation during fainting in the young. Am J Physiol Heart Circ Physiol 2009; 297:H2084-95. [PMID: 19820196 DOI: 10.1152/ajpheart.00705.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasovagal syncope may be due to a transient cerebral hypoperfusion that accompanies frequency entrainment between arterial pressure (AP) and cerebral blood flow velocity (CBFV). We hypothesized that cerebral autoregulation fails during fainting; a phase synchronization index (PhSI) between AP and CBFV was used as a nonlinear, nonstationary, time-dependent measurement of cerebral autoregulation. Twelve healthy control subjects and twelve subjects with a history of vasovagal syncope underwent 10-min tilt table testing with the continuous measurement of AP, CBFV, heart rate (HR), end-tidal CO2 (ETCO2), and respiratory frequency. Time intervals were defined to compare physiologically equivalent periods in fainters and control subjects. A PhSI value of 0 corresponds to an absence of phase synchronization and efficient cerebral autoregulation, whereas a PhSI value of 1 corresponds to complete phase synchronization and inefficient cerebral autoregulation. During supine baseline conditions, both control and syncope groups demonstrated similar oscillatory changes in phase, with mean PhSI values of 0.58+/-0.04 and 0.54+/-0.02, respectively. Throughout tilt, control subjects demonstrated similar PhSI values compared with supine conditions. Approximately 2 min before fainting, syncopal subjects demonstrated a sharp decrease in PhSI (0.23+/-0.06), representing efficient cerebral autoregulation. Immediately after this period, PhSI increased sharply, suggesting inefficient cerebral autoregulation, and remained elevated at the time of faint (0.92+/-0.02) and during the early recovery period (0.79+/-0.04) immediately after the return to the supine position. Our data demonstrate rapid, biphasic changes in cerebral autoregulation, which are temporally related to vasovagal syncope. Thus, a sudden period of highly efficient cerebral autoregulation precedes the virtual loss of autoregulation, which continued during and after the faint.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, The Center for Hypotension, New York Medical College, 19 Bradhurst Ave., Suite 1600S, Hawthorne, NY 10532, USA
| | | | | | | | | | | |
Collapse
|
65
|
Ocon AJ, Medow MS, Taneja I, Clarke D, Stewart JM. Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2009; 297:H664-73. [PMID: 19502561 DOI: 10.1152/ajpheart.00138.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Postural tachycardia syndrome (POTS), a chronic form of orthostatic intolerance, has signs and symptoms of lightheadedness, loss of vision, headache, fatigue, and neurocognitive deficits consistent with reductions in cerebrovascular perfusion. We hypothesized that young, normocapnic POTS patients exhibit abnormal cerebral autoregulation (CA) that results in decreased static and dynamic cerebral blood flow (CBF) autoregulation. All subjects had continuous recordings of mean arterial pressure (MAP) and CBF velocity (CBFV) using transcranial Doppler sonography in both the supine supine position and during a 70 degrees head-up tilt. During tilt, POTS patients (n = 9) demonstrated a higher heart rate than controls (n = 7) (109 +/- 6 vs. 80 +/- 2 beats/min, P < 0.05), whereas controls demonstrated a higher MAP than POTS (87 +/- 2 vs. 77 +/- 3 mmHg, P < 0.05). Also during tilt, mean CBFV decreased 19.5 +/- 2.6% in POTS patients versus 10.3 +/- 2.0% in controls (P < 0.05). We then used a transfer function analysis of MAP and CFBV in the frequency domain to quantify these changes. The low-frequency (LF; 0.04-0.15 Hz) component of CBFV variability increased during tilt in POTS patients (supine: 3 +/- 0.9 vs. tilt: 9 +/- 2, P < 0.02). In POTS patients, there was an increase in LF and high-frequency coherence between MAP and CBFV, an increase in LF gain, and a lack of significant change in phase. Static CA may be less effective in POTS patients compared with controls, since immediately after tilt CBFV decreased more in POTS patients and was highly oscillatory and autoregulation did not restore CBFV to baseline values until the subjects became supine. Dynamic CA may be less effective in POTS patients because MAP and CBFV during tilt became almost perfectly synchronous. We conclude that dynamic and static autoregulation of CBF are less effective in POTS patients compared with control subjects during orthostatic challenge.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, The Center for Hypotension, New York Medical College, Valhalla, New York 10532, USA
| | | | | | | | | |
Collapse
|
66
|
Panerai RB. Complexity of the human cerebral circulation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1319-1336. [PMID: 19324711 DOI: 10.1098/rsta.2008.0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cerebral circulation shows both structural and functional complexity. For time scales of a few minutes or more, cerebral blood flow (CBF) and other cerebrovascular parameters can be shown to follow a random fractal point process. Some studies, but not all, have also concluded that CBF is non-stationary. System identification techniques have been able to explain a substantial fraction of the CBF variability by applying linear and nonlinear multivariate models with classical determinants of flow (arterial blood pressure, arterial CO(2) and cerebrovascular resistance, CVR) as inputs. These findings raise the hypothesis that fractal behaviour is not inherent to CBF but might be simply transmitted from its determinants. If this is the case, future investigations could focus on the complexity of the residuals or the unexplained variance of CBF. In the low-frequency range (below 0.15 Hz), changes in CVR due to pressure and metabolic autoregulation represent an important contribution to CBF variability. A small body of work suggests that parameters describing cerebral autoregulation can also display complexity, presenting significant variability that might also be non-stationary. Fractal analysis, entropy and other nonlinear techniques have a role to play to shed light on the complexity of cerebral autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Medical Physics Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 5WW, UK.
| |
Collapse
|
67
|
Abstract
Short-term regulation of cerebral blood flow (CBF) is controlled by myogenic, metabolic and neurogenic mechanisms, which maintain flow within narrow limits, despite large changes in arterial blood pressure (ABP). Static cerebral autoregulation (CA) represents the steady-state relationship between CBF and ABP, characterized by a plateau of nearly constant CBF for ABP changes in the interval 60-150 mmHg. The transient response of the CBF-ABP relationship is usually referred to as dynamic CA and can be observed during spontaneous fluctuations in ABP or from sudden changes in ABP induced by thigh cuff deflation, changes in posture and other manoeuvres. Modelling the dynamic ABP-CBFV relationship is an essential step to gain better insight into the physiology of CA and to obtain clinically relevant information from model parameters. This paper reviews the literature on the application of CA models to different clinical conditions. Although mathematical models have been proposed and should be pursued, most studies have adopted linear input-output ('black-box') models, despite the inherently non-linear nature of CA. The most common of these have been transfer function analysis (TFA) and a second-order differential equation model, which have been the main focus of the review. An index of CA (ARI), and frequency-domain parameters derived from TFA, have been shown to be sensitive to pathophysiological changes in patients with carotid artery disease, stroke, severe head injury, subarachnoid haemorrhage and other conditions. Non-linear dynamic models have also been proposed, but more work is required to establish their superiority and applicability in the clinical environment. Of particular importance is the development of multivariate models that can cope with time-varying parameters, and protocols to validate the reproducibility and ranges of normality of dynamic CA parameters extracted from these models.
Collapse
|
68
|
Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care 2009; 10:373-86. [PMID: 19127448 DOI: 10.1007/s12028-008-9175-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/02/2008] [Indexed: 12/16/2022]
Abstract
UNLABELLED The methods for continuous assessment of cerebral autoregulation using correlation, phase shift, or transmission (either in time- or frequency-domain) were introduced a decade ago. They express dynamic relationships between slow waves of transcranial Doppler (TCD), blood flow velocity (FV) and cerebral perfusion pressure (CPP), or arterial pressure (ABP). We review a methodology and clinical application of indices useful for monitoring cerebral autoregulation and pressure-reactivity in various scenarios of neuro-critical care. FACTS Poor autoregulation and loss of pressure-reactivity are independent predictors of fatal outcome following head injury. Autoregulation is impaired by too low or too high CPP when compared to autoregulation with normal CPP (usually between 60 and 85 mmHg; and these limits are highly individual). Hemispheric asymmetry of the bi-laterally assessed autoregulation has been associated with asymmetry of CT scan findings: autoregulation was found to be worse ipsilateral to contusion or lateralized edema causing midline shift. The pressure-reactivity (PRx index) correlated with a state of low CBF and CMRO2 revealed using PET studies. The PRx is easier to monitor over prolonged periods of time than the TCD-based indices as it does not require fixation of external probes. Continuous monitoring with the PRx can be used to direct CPP-oriented therapy by determining the optimal CPP for pressure-reactivity. Autoregulation indices are able to reflect transient changes of autoregulation, as seen during plateau waves of ICP. However, minute-to-minute assessment of autoregulation has a poor signal-to-noise ratio. Averaging across time (30 min) or by combining with other relevant parameters improves the accuracy. MYTHS: It is debatable whether the TCD-based indices in head injured patients can be calculated using ABP instead of CPP. Thresholds for functional and disturbed autoregulation dramatically depends on arterial tension of CO2--therefore, comparison between patients cannot be performed without comparing their PaCO2. The TCD pulsatility index cannot accurately detect the lower limit of autoregulation. MISSING LINKS: We still do not know whether autoregulation-oriented therapy can be understood as a consensus between CPP-directed protocols and the Lund-concept. What are the links between endothelial function and autoregulation indices? Can autoregulation after head injury be improved with statins or EPO, as in subarachnoid hemorrhage? In conclusion, monitoring cerebral autoregulation can be used in a variety of clinical scenarios and may be helpful in delineating optimal therapeutic strategies.
Collapse
|
69
|
Feasibility of a Continuous Computerized Monitoring of Cerebral Autoregulation in Neurointensive Care. Neurocrit Care 2008; 10:232-40. [DOI: 10.1007/s12028-008-9151-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
70
|
Peng T, Ainslie PN, Cotter JD, Murrell C, Thomas K, Williams MJA, George K, Shave R, Rowley AB, Payne SJ. The effects of age on the spontaneous low-frequency oscillations in cerebral and systemic cardiovascular dynamics. Physiol Meas 2008; 29:1055-69. [PMID: 18756026 DOI: 10.1088/0967-3334/29/9/005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the effects of ageing on cardiovascular control and particularly the response to orthostatic stress have been the subject of many studies, the interaction between the cardiovascular and cerebral regulation mechanisms is still not fully understood. Wavelet cross-correlation is used here to assess the coupling and synchronization between low-frequency oscillations (LFOs) observed in cerebral hemodynamics, as measured using cerebral blood flow velocity (CBFV) and cerebral oxygenation (O2Hb), and systemic cardiovascular dynamics, as measured using heart rate (HR) and arterial blood pressure (ABP), in both old and young healthy subjects undergoing head-up tilt table testing. Statistically significant increases in correlation values are found in the interaction of cerebral and cardiovascular LFOs for young subjects (P<0.01 for HR-ABP, P<0.001 for HR-O2Hb and ABP-O2Hb), but not in old subjects under orthostatic stress. The coupling between the cerebrovascular and wider cardiovascular systems in response to orthostatic stress thus appears to be impaired with ageing.
Collapse
Affiliation(s)
- Tingying Peng
- Department of Engineering Science, Oxford University, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Panerai RB, Sammons EL, Smith SM, Rathbone WE, Bentley S, Potter JF, Samani NJ. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements. Physiol Meas 2008; 29:497-513. [PMID: 18401070 DOI: 10.1088/0967-3334/29/4/006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61+/-11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BP(AO)), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO(2). Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BP(AO). Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r=0.60+/-0.20; BP(AO) r=0.56+/-0.22) and also between the ARI(t) estimates from the Finapres and BP(AO) (right MCA r=0.70+/-0.22; left MCA r=0.74+/-0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model, but further research is needed to confirm these findings in healthy subjects and to assess the influence of different physiological manoeuvres.
Collapse
Affiliation(s)
- R B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | | | | | | | | | | | | |
Collapse
|
72
|
Wong FY, Leung TS, Austin T, Wilkinson M, Meek JH, Wyatt JS, Walker AM. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 2008; 121:e604-11. [PMID: 18250118 DOI: 10.1542/peds.2007-1487] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The absence of cerebral autoregulation in preterm infants has been associated with adverse outcome, but its bedside assessment in the immature brain is problematic. We used spatially resolved spectroscopy to continuously measure cerebral oxygen saturation (expressed as a tissue-oxygenation index) and used the correlation of tissue-oxygenation index with spontaneous fluctuations in mean arterial blood pressure to assess cerebral autoregulation. PATIENTS AND METHODS The tissue-oxygenation index and mean arterial blood pressure were continuously measured in very premature infants (n = 24) of mean (+/-SD) gestational age of 26 (+/-2.3) weeks at a mean postnatal age of 28 (+/-22) hours. The correlation between mean arterial blood pressure and tissue-oxygenation index in the frequency domain was assessed by using cross-spectral analysis techniques (coherence and transfer-function gain). Values of coherence reflect the strength of linear correlation, whereas transfer-function gain reflects the amplitude of tissue-oxygenation index changes relative to mean arterial blood pressure changes. RESULTS High coherence (coherence > or = 0.5) values were found in 9 infants who were of lower gestational age, lower birth weight, and lower mean arterial blood pressure than infants with coherence of < 0.5; high-coherence infants also had higher median Clinical Risk Index for Babies scores and a higher rate of neonatal deaths. Coherence of > or = 0.5 predicted mortality with a positive predictive value of 67% and negative predictive value of 100%. In multifactorial analysis, coherence alone was the best predictor of mortality and Clinical Risk Index for Babies score alone was the best predictor of coherence. CONCLUSIONS High coherence between mean arterial blood pressure and tissue-oxygenation index indicates impaired cerebral autoregulation in clinically sick preterm infants and is strongly associated with subsequent mortality. Cross-spectral analysis of mean arterial blood pressure and tissue-oxygenation index has the potential to provide continuous bedside assessment of cerebral autoregulation and to guide therapeutic interventions.
Collapse
Affiliation(s)
- Flora Y Wong
- Ritchie Centre for Baby Health Research, Monash Medical Centre, 246 Clayton Rd, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
73
|
Lewis PM, Rosenfeld JV, Diehl RR, Mehdorn HM, Lang EW. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI). Acta Neurochir (Wien) 2008; 150:139-46; discussion 146-7. [PMID: 18213440 DOI: 10.1007/s00701-007-1447-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 10/22/2007] [Indexed: 01/09/2023]
Abstract
BACKGROUND Impairment of cerebral autoregulation is known to adversely affect outcome following traumatic brain injury (TBI). The phase shift (PS) method of cerebral autoregulation (CA) assessment describes the time lag between fluctuations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) in the middle cerebral artery. An alternative method (Mx-ABP) is based on the statistical correlation between ABP and CBFV waveforms over time. We compared these two indices in a cohort of severely head injured patients undergoing controlled, 6-breaths-per-minute ventilation. METHODS PS and Mx-ABP were calculated from 33 recordings of CBFV and MAP in 22 patients with TBI. Spearman's correlation coefficient was used to assess the agreement between PS and Mx-ABP. The relationship between ICP slow wave amplitude, MAP slow wave amplitude and mean ICP was also examined. FINDINGS Mean values for Mx-ABP and PS were 0.44 +/- 0.27, and 49 +/- 26 (degrees), respectively. PS correlated significantly with Mx-ABP (r = -0.648, p < 0.001). A Bland-Altman plot of normalised Mx-ABP and Phase Shift values showed no significant bias or relationship (mean difference = 0.0004, r = -0.037, p = 0.852). During the test procedure, ICP fluctuated in an approximately sinusoidal fashion, with a mean amplitude of 4.96 +/- 2.72 mmHg (peak to peak). The magnitude of ICP fluctuation during deep breathing correlated weakly but significantly with mean ICP (r = 0.391, p < 0.05) and with the amplitude of ABP fluctuations (r = 0.625, p < 0.0005). CONCLUSIONS Phase shift and Mx-ABP in TBI are well correlated. Deep breathing presents as an effective tool with which to assess autoregulation using the phase shift method.
Collapse
Affiliation(s)
- P M Lewis
- Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
74
|
Turalska M, Latka M, Czosnyka M, Pierzchala K, West BJ. Generation of very low frequency cerebral blood flow fluctuations in humans. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 102:43-47. [PMID: 19388286 DOI: 10.1007/978-3-211-85578-2_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Slow oscillations of cerebral blood flow induced by synchronous variations of arterial blood pressure (ABP) are often used for clinical assessment of cerebral autoregulation. In the alternative scenario, spontaneous cerebral vasocycling may produce waves in cerebral blood flow that are, to a large extent, independent of ABP fluctuations. We use wavelet analysis to test the latter hypothesis. METHODS The wavelet variability V(f), defined as the time averaged moduli of frequency dependent wavelet coefficients, is employed to analyze the relation between dynamics of arterial blood pressure and that of cerebral blood flow velocity in middle cerebral artery (MCA). FINDINGS In the very low frequency (VLF, 0.02-0.07 Hz) band the variability in traumatic brain injury (TBI) patients with low intracranial pressure (V(ABP) = 0.36 +/- 0.28) is significantly smaller than that of the volunteers (V(ABP) = 0.70 +/- 0.25) with p = 7 x 10(-5). Interestingly, the corresponding variabilities of MCA flow velocity for both cohorts are comparable. V(MCA) = 0.83 +/- 0.65 of the brain injury patients is not statistically different from that of the volunteers V(MCA) = 1.06 +/- 0.41 (p = 0.11). CONCLUSIONS In TBI patients without cerebral hypertension, the VLF oscillations must have been spontaneously generated within intracranial volume to compensate for the reduced ABP variability. Vasomotion is identified as a plausible physiological mechanism underlying such oscillations. We argue that vasomotion may be beneficial for brain tissue oxygenation especially during periods of critically low perfusion.
Collapse
Affiliation(s)
- Malgorzata Turalska
- Physics Department, University of North Texas, P.O. Box 311427, Denton, TX 76203, USA
| | | | | | | | | |
Collapse
|
75
|
Peng T, Rowley AB, Ainslie PN, Poulin MJ, Payne SJ. Multivariate system identification for cerebral autoregulation. Ann Biomed Eng 2007; 36:308-20. [PMID: 18066666 DOI: 10.1007/s10439-007-9412-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
The effect of spontaneous beat-to-beat mean arterial blood pressure (ABP) fluctuations and breath-to-breath end-tidal carbon dioxide (PETCO2) and end-tidal oxygen (PETO2) fluctuations on beat-to-beat cerebral bloodflow velocity (CBFV) variations is studied using a multiple coherence function. Multiple coherence is a measure of the extent to which the output, CBFV, can be represented as a linear time invariant system of multiple input signals. Analysis of experimental measurements from 13 different healthy subjects reveal that, with additional inputs, PETCO2 and PETO2, the multiple coherence for frequencies <0.05 Hz is significantly higher than the corresponding values obtained for univariate coherence with a single input of ABP. The result illustrates that the low value of univariate coherence at small frequencies may be due to the effects of PETCO2 and PETO2 fluctuations on CBFV variability. Moreover, it is also found that the transfer function between ABP and CBFVtime series identified from previous univariate techniques at low frequencies can be modified by CO2 and O2 reactivity and no longer represents pressure autoregulation only. Multivariate system identification provides a technique of incorporating additional variability and recovering from this artifact. Finally, a physiologically based model and its linear transfer function are used as a simulation tool to investigate possible causes of low univariate coherence.
Collapse
Affiliation(s)
- Tingying Peng
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | | | | | | | | |
Collapse
|
76
|
Latka M, Kolodziej W, Turalska M, Latka D, Zub W, West BJ. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular reactivity. Physiol Meas 2007; 28:465-79. [PMID: 17470981 DOI: 10.1088/0967-3334/28/5/002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We introduce a wavelet transfer model to relate spontaneous arterial blood pressure (ABP) fluctuations to intracranial pressure (ICP) fluctuations. We employ a complex continuous wavelet transform to develop a consistent mathematical framework capable of parametrizing both cerebral compensatory reserve and cerebrovascular reactivity. The frequency-dependent gain and phase of the wavelet transfer function are introduced because of the non-stationary character of the ICP and ABP time series. The gain characterizes the dampening of spontaneous ABP fluctuations and is interpreted as a novel measure of cerebrospinal compensatory reserve. For a group of 12 patients who died as a result of cerebral lesions (Glasgow Outcome Scale (GOS) = 1) the average gain in the low-frequency (0.02- 0.07 Hz) range was 0.51 +/- 0.13 and significantly exceeded that of 17 patients with GOS = 2 having an average gain of 0.26 +/- 0.11 with p = 1x10(-4) (Kruskal-Wallis test). A time-averaged synchronization index (which may vary from 0 to 1) defined in terms of the wavelet transfer function phase yields information about the stability of the phase difference of the ABP and ICP signals and is used as a cerebrovascular reactivity index. A low value of synchronization index reflects a normally reactive vascular bed, while a high value indicates pathological entrainment of ABP and ICP fluctuations. Such entrainment is strongly pronounced in patients with fatal outcome (for this group the low-frequency synchronization index was 0.69 +/- 0.17). The gain and synchronization parameters define a cerebral hemodynamic state space (CHS) in which the patients with GOS = 1 are to large extent partitioned away from those with GOS = 2. The concept of CHS elucidates the interplay of vascular and compensatory mechanisms.
Collapse
Affiliation(s)
- M Latka
- Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
1. Blood pressure and organ perfusion are controlled by a variety of cardiovascular control systems, such as the baroreceptor reflex and the renin-angiotensin system (RAS), and by local vascular mechanisms, such as shear stress-induced release of nitric oxide (NO) from the endothelium and the myogenic vascular response. Deviations in arterial blood pressure from its set point activate these mechanisms in an attempt to restore blood pressure and/or secure organ perfusion. However, the response times at which different cardiovascular mechanisms operate differ considerably (e.g. blood pressure control by the RAS is slower than blood pressure control via the baroreceptor reflex). 2. Owing to these different response times, some cardiovascular control systems affect blood pressure more rapidly and others more slowly. Thus, identifying the frequency components of blood pressure variability (BPV) by power spectral analysis can potentially provide important information on individual blood pressure control mechanisms. 3. Evidence is presented that the RAS, catecholamines, endothelial-derived NO and myogenic vascular function affect BPV at very low frequencies (0.02-0.2 Hz) and that low-frequency (LF) BPV (0.2-0.6 Hz) is affected by sympathetic modulation of vascular tone and endothelial-derived NO in rats. In humans, LF BPV (0.075-0.15 Hz) is affected by sympathetic modulation of vascular tone and myogenic vascular function. The impact of the RAS and endothelial-derived NO on BPV in humans requires further investigation. 4. In conclusion, power spectral analysis is a powerful diagnostic tool that allows identification of pathophysiological mechanisms contributing to cardiovascular diseases, such as hypertension, heart failure and stroke, because it can separate slow from fast cardiovascular control mechanisms. The limitation that some cardiovascular control mechanisms affect the same frequency components of BPV requires the combination of blood pressure spectral analysis with other techniques.
Collapse
Affiliation(s)
- Harald M Stauss
- Department of Integrative Physiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
78
|
Rowley AB, Payne SJ, Tachtsidis I, Ebden MJ, Whiteley JP, Gavaghan DJ, Tarassenko L, Smith M, Elwell CE, Delpy DT. Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation. Physiol Meas 2006; 28:161-73. [PMID: 17237588 DOI: 10.1088/0967-3334/28/2/005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wavelet cross-correlation (WCC) is used to analyse the relationship between low-frequency oscillations in near-infrared spectroscopy (NIRS) measured cerebral oxyhaemoglobin (O(2)Hb) and mean arterial blood pressure (MAP) in patients suffering from autonomic failure and age-matched controls. Statistically significant differences are found in the wavelet scale of maximum cross-correlation upon posture change in patients, but not in controls. We propose that WCC analysis of the relationship between O(2)Hb and MAP provides a useful method of investigating the dynamics of cerebral autoregulation using the spontaneous low-frequency oscillations that are typically observed in both variables without having to make the assumption of stationarity of the time series. It is suggested that for a short-duration clinical test previous transfer-function-based approaches to analyse this relationship may suffer due to the inherent nonstationarity of low-frequency oscillations that are observed in the resting brain.
Collapse
Affiliation(s)
- A B Rowley
- Department of Engineering Science, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kolb B, Rotella DL, Stauss HM. Frequency response characteristics of cerebral blood flow autoregulation in rats. Am J Physiol Heart Circ Physiol 2006; 292:H432-8. [PMID: 16963612 DOI: 10.1152/ajpheart.00794.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transfer function analysis of blood pressure and cerebral blood flow in humans demonstrated that cerebrovascular autoregulation operates most effectively for slow fluctuations in perfusion pressure, not exceeding a frequency of approximately 0.15 Hz. No information on the dynamic properties of cerebrovascular autoregulation is available in rats. Therefore, we tested the hypothesis that cerebrovascular autoregulation in rats is also most effective for slow fluctuations in perfusion pressure below 0.15 Hz. Normotensive Wistar-Kyoto rats (n = 10) were instrumented with catheters in the left common carotid artery and jugular vein and flow probes around the right internal carotid artery. During isoflurane anesthesia, fluctuations in cerebral perfusion pressure were elicited by periodically occluding the abdominal aorta at eight frequencies ranging from 0.008 Hz to 0.5 Hz. The protocol was repeated during inhibition of myogenic vascular function (nifedipine, 0.25 mg/kg body wt iv). Increases in cerebral perfusion pressure elicited initial increases in cerebrovascular conductance and decreases in resistance. At low occlusion frequencies (<0.1 Hz), these initial responses were followed by decreases in conductance and increases in resistance that were abolished by nifedipine. At occlusion frequencies of 0.1 Hz and above, the gains of the transfer functions between pressure and blood flow and between pressure and resistance were equally high in the control and nifedipine trial. At occlusion frequencies below 0.1 Hz, the gains of the transfer functions decreased twice as much under control conditions than during nifedipine application. We conclude that dynamic autoregulation of cerebral blood flow is restricted to very low frequencies (<0.1 Hz) in rats.
Collapse
Affiliation(s)
- Brittany Kolb
- Dept. of Integrative Physiology, Univ. of Iowa, 410 Field House, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
80
|
Abstract
The coherence function has been used in transfer function analysis of dynamic cerebral autoregulation to assess the statistical significance of spectral estimates of gain and phase frequency response. Interpretation of the coherence function and choice of confidence limits has not taken into account the intrinsic nonlinearity represented by changes in cerebrovascular resistance due to vasomotor activity. For small spontaneous changes in arterial blood pressure (ABP), the relationship between ABP and cerebral blood flow velocity (CBFV) can be linearized, showing that corresponding changes in cerebrovascular resistance should be included as a second input variable. In this case, the standard univariate coherence function needs to be replaced by the multiple coherence, which takes into account the contribution of both inputs to explain CBFV variability. With the use of two different indicators of cerebrovascular resistance index [CVRI = ABP/CBFV and the resistance-area product (RAP)], multiple coherences were calculated for 42 healthy control subjects, aged 20 to 40 yr (28 ± 4.6 yr, mean ± SD), at rest in the supine position. CBFV was measured in both middle cerebral arteries, and ABP was recorded noninvasively by finger photoplethysmography. Results for the ABP + RAP inputs show that the multiple coherence of CBFV for frequencies <0.05 Hz is significantly higher than the corresponding values obtained for univariate coherence ( P < 10−5). Corresponding results for the ABP + CVRI inputs confirm the principle of multiple coherence but are less useful due to the interdependence between CVRI, ABP, and CBFV. The main conclusion is that values of univariate coherence between ABP and CBFV should not be used to reject spectral estimates of gain and phase, derived from small fluctuations in ABP, because the true explained power of CBFV in healthy subjects is much higher than what has been usually predicted by the univariate coherence functions.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 5WW, UK.
| | | | | |
Collapse
|