51
|
Sex Difference of Effect of Sophora flavescens on Gut Microbiota in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4552904. [PMID: 35341152 PMCID: PMC8941563 DOI: 10.1155/2022/4552904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Objective By observing the sex difference of the gut microbiota in rats and the influence of Sophora flavescens (S. flavescens) on the gut microbiota in rats of different genders, it is hoped that it can provide reference materials for the rational use of S. flavescens in clinical practice. Method Taking samples of the jejunum (containing intestinal contents) and feces of 8-week-old rats, and detecting the composition of gut microbiota of females and males by 16S rRNA sequencing technology; At the same time, 8-week-old rats were gavaged with different doses of S. flavescens decoction, and the duodenum, jejunum, ileum, and colon (including the intestinal contents) samples were collected at 1, 2, and 3 weeks, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technology and real-time fluorescent quantitative PCR (qRT-PCR) technology to observe the changes in the structure and the quantitative changes of 4 major intestinal dominant bacteria Enterococcus, Bacteriodes, Lactobacillus, and Clostridium in each intestinal segment, respectively. Result (1) The gut microbiota of normal rats without administration also had obvious gender differences; (2) S. flavescens significantly affects the composition of gut microbiota, and in different intestinal segments, this effect was different between genders under different dosages and different continuous administration times. Conclusion The effect of S. flavescens on the gut microbiota of rats had gender differences.
Collapse
|
52
|
Wang WM, Ou HT, Wen MJ, Su PF, Yang CY, Kuo TH, Wang MC, Lin WH. Association of retinopathy severity with cardiovascular and renal outcomes in patients with type 1 diabetes: a multi-state modeling analysis. Sci Rep 2022; 12:4177. [PMID: 35264740 PMCID: PMC8907198 DOI: 10.1038/s41598-022-08166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to assess the impact of diabetic retinopathy (DR) severity on the incidence of major adverse cardiac events (MACE) and end-stage renal disease (ESRD) in T1D patients. Patients diagnosed with T1D between 1999 and 2013 were identified from patient-level data of Taiwan’s National Health Insurance Research database. A total of 1135 patients were included and classified into mild DR (n = 454), severe DR (n = 227), or non-DR (n = 454) by using propensity score matching. Multi-state model analyses, an extension of competing risk models with adjustment for transition-specific covariates for prediction of subsequent MACE and ESRD, were performed. MACE and ESRD risks were significantly higher in the severe DR patients; a 2.97-fold (1.73, 5.07) and 12.29-fold (6.50, 23.23) increase in the MACE risk among the severe DR patients compared to the mild DR and DR-free patients, respectively; and, a 5.91-fold (3.50, 9.99) and 82.31-fold (29.07, 233.04) greater ESRD risk of severe DR patients than that of the mild DR and DR-free groups, respectively (p < 0.001). Severity of DR was significantly associated with the late diabetes-related vascular events (i.e., MACE, ESRD) among T1D patients.
Collapse
Affiliation(s)
- Wei-Ming Wang
- Department of Statistics and Institute of Data Science, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Huang-Tz Ou
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Miin-Jye Wen
- Department of Statistics and Institute of Data Science, College of Management, National Cheng Kung University, Tainan, Taiwan.,Institute of International Management, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Su
- Department of Statistics and Institute of Data Science, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Yi Yang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Te-Hui Kuo
- Department and Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ming-Cheng Wang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan. .,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
53
|
Potential Therapeutic Effects of Citrus hystrix DC and Its Bioactive Compounds on Metabolic Disorders. Pharmaceuticals (Basel) 2022; 15:ph15020167. [PMID: 35215280 PMCID: PMC8875002 DOI: 10.3390/ph15020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic disorders like diabetes mellitus, hypertension, dyslipidemia, and obesity are major medical problems globally. The incidence of these disorders has increased tremendously in recent years. Studies have demonstrated that plants with antioxidant and anti-inflammatory properties have beneficial effects on these disorders. One of these plants is Citrus hystrix DC, commonly known as kaffir lime. This review aims to present updates on the progress of research regarding the use of C. hystrix in metabolic disorders. Phytochemical compounds, including β-pinene, sabinene, citronellal, and citronellol, have been detected in the plant; and its extract exhibited potential antidiabetic, antihyperlipidemic and anti-obesity activity, as well as prevention of development of hypertension. These beneficial properties may be attributable to the presence of bioactive compounds which have therapeutic potential in treating these metabolic disorders. The compounds have the potential to be developed as candidate drugs. This review will assist in validating the regulatory role of the extract and its bioactive compounds on metabolic disorders, thus expediting future research in the area.
Collapse
|
54
|
Swapnasrita S, Carlier A, Layton AT. Sex-Specific Computational Models of Kidney Function in Patients With Diabetes. Front Physiol 2022; 13:741121. [PMID: 35153824 PMCID: PMC8827383 DOI: 10.3389/fphys.2022.741121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
The kidney plays an essential role in homeostasis, accomplished through the regulation of pH, electrolytes and fluids, by the building blocks of the kidney, the nephrons. One of the important markers of the proper functioning of a kidney is the glomerular filtration rate. Diabetes is characterized by an enlargement of the glomerular and tubular size of the kidney, affecting the afferent and efferent arteriole resistance and hemodynamics, ultimately leading to chronic kidney disease. We postulate that the diabetes-induced changes in kidney may exhibit significant sex differences as the distribution of renal transporters along the nephron may be markedly different between women and men, as recently shown in rodents. The goals of this study are to (i) analyze how kidney function is altered in male and female patients with diabetes, and (ii) assess the renal effects, in women and men, of an anti-hyperglycemic therapy that inhibits the sodium-glucose cotransporter 2 (SGLT2) in the proximal convoluted tubules. To accomplish these goals, we have developed computational models of kidney function, separate for male and female patients with diabetes. The simulation results indicate that diabetes enhances Na+ transport, especially along the proximal tubules and thick ascending limbs, to similar extents in male and female patients, which can be explained by the diabetes-induced increase in glomerular filtration rate. Additionally, we conducted simulations to study the effects of diabetes and SGLT2 inhibition on solute and water transport along the nephrons. Model simulations also suggest that SGLT2 inhibition raises luminal [Cl-] at the macula densa, twice as much in males as in females, and could indicate activation of the tubuloglomerular feedback signal. By inducing osmotic diuresis in the proximal tubules, SGLT2 inhibition reduces paracellular transport, eventually leading to diuresis and natriuresis. Those effects on urinary excretion are blunted in women, in part due to their higher distal transport capacity.
Collapse
Affiliation(s)
- Sangita Swapnasrita
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, Cheriton School of Computer Science, School of Pharmacology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
55
|
Malta DC, Bernal RTI, Sá ACMGND, Silva TMRD, Iser BPM, Duncan BB, Schimdt MI. Self-reported diabetes and factors associated with it in the Brazilian adult population: National Health Survey, 2019. CIENCIA & SAUDE COLETIVA 2022. [DOI: 10.1590/1413-81232022277.02572022en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract This study aims to analyze the prevalence of self-reported diabetes and its associated factors in the Brazilian adult population. It is a cross-sectional study using the 2019 National Health Survey. Prevalence and crude prevalence ratios (PRc) and adjusted prevalence ratios (PRa) of self-reported diabetes were estimated, with confidence intervals (95% CI), using Poisson regression. In the 82,349 adults, the prevalence of self-reported diabetes was 7.7%. Positively associated factors were: advanced age with greater association after 60 years (PRa 24.87; 95%CI 15.78-39.18); living in the Northeast (PRa 1.16; 95%CI 1.04-1.29), Southeast (PRa 1.27; 95% CI 1.14-1.43), South (PRa 1.18; 95%CI 1, 05-1.34), and Midwest (PRa 1.21; 95%CI 1.06-1.38); being a former smoker (PRa 1.17; 95%CI 1.09-1.27); self-assessment of regular health (PRa 2.41; 95%CI 2.21-2.64), bad/very bad (PRa 3.45; 95%CI 3.06-3.88); having heart disease (PRa 1.81; 95%CI 1.64-2.00), hypertension (PRa 2.84; 95%CI 2.60-3.69), high cholesterol (PRa 2.22; 95%CI 2.05-2.41), overweight (PRa 1.49; 95%CI 1.36-1.64), and obesity (PRa 2.25; 95%CI 2.05-2.47). It could be concluded that diabetes in Brazilian adults is associated with sociodemographic factors, aging, lifestyle, and morbidities. These results can guide public policies for the prevention and control of disease in Brazil.
Collapse
Affiliation(s)
- Deborah Carvalho Malta
- Universidade Federal de Minas Gerais, Brazil; Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
56
|
Anti-diabetic effects of Inonotus obliquus extract in high fat diet combined streptozotocin-induced type 2 diabetic mice. NUTR HOSP 2022; 39:1256-1263. [DOI: 10.20960/nh.03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
57
|
Na H, Wang R, Zheng HL, Chen XP, Zheng LY. Correlation between Insulin Resistance and Microalbuminuria Creatinine Ratio in Postmenopausal Women. Int J Endocrinol 2022; 2022:9583611. [PMID: 36072812 PMCID: PMC9444479 DOI: 10.1155/2022/9583611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To study the relationship between insulin resistance and urinary microalbumin creatinine ratio in postmenopausal women. METHODS The selected research group comprised 104 postmenopausal women with type 2 diabetes who were admitted to the Department of Endocrinology in the green card center at the First Affiliated Hospital of Hainan Medical University between 2017 and 2019 inclusive. Ninety-eight postmenopausal women with the normal blood glucose metabolism hospitalized in the same period were used as the control group. The age, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, fasting blood glucose, fasting insulin (FINS), glycosylated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), and urinary albumin-creatinine ratio (UACR) were analyzed. The insulin resistance index (HOMR-IR) was calculated, and the correlation between IR and UACR was analyzed. RESULTS Levels of HOMA-IR, SBP, HbA1c, HDL-C, LDL-C, TC, TG, FPG, FINS, and UACR in the study group were higher than those in the control group, and a significant difference was found between the groups (P < 0.05). The level of DBP in the study group was lower than that in the control group, and the difference was statistically significant (P < 0.05). Pearson correlation analysis showed that UACR was positively correlated with HOMA-IR and HbA1c (r = 0.254, r = 0.565, P < 0.01). Multiple linear stepwise regression analysis further showed that HOMA-IR and age were positively correlated with UACR (P < 0.05). CONCLUSION There is a correlation between IR and UACR in postmenopausal women. IR is an independent risk factor for UACR.
Collapse
Affiliation(s)
- Han Na
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Rong Wang
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Hai-Long Zheng
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Xiao-Pan Chen
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Lin-Yang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| |
Collapse
|
58
|
Schiazza AR, Considine EG, Betcher M, Shepard BD. Loss of renal olfactory receptor 1393 leads to improved glucose homeostasis in a type 1 diabetic mouse model. Physiol Rep 2021; 9:e15007. [PMID: 34877823 PMCID: PMC8652410 DOI: 10.14814/phy2.15007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
Renal olfactory receptor 1393 (Olfr1393) is an understudied sensory receptor that contributes to glucose handling in the proximal tubule. Our previous studies have indicated that this receptor may serve as a regulator of the sodium glucose co-transporters (SGLTs) and contributes to the development of glucose intolerance and hyperfiltration in the setting of diet-induced obesity. We hypothesized that Olfr1393 may have a similar function in Type 1 Diabetes. Using Olfr1393 wildtype (WT) and knockout (KO) mice along with streptozotocin (STZ) to induce pancreatic β-cell depletion, we tracked the development and progression of diabetes over 12 weeks. Here we report that diabetic male Olfr1393 KO mice have a significant improvement in hyperglycemia and glucose tolerance, despite remaining susceptible to STZ. We also confirm that Olfr1393 localizes to the renal proximal tubule, and have uncovered additional expression within the glomerulus. Collectively, these data indicate that loss of renal Olfr1393 affords protection from STZ-induced type 1 diabetes and may be a general regulator of glucose handling in both health and disease.
Collapse
Affiliation(s)
- Alexis R. Schiazza
- Department of Human ScienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Madison Betcher
- Department of Human ScienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Blythe D. Shepard
- Department of Human ScienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
59
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
60
|
Galvan DL, Mise K, Danesh FR. Mitochondrial Regulation of Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:745279. [PMID: 34646847 PMCID: PMC8502854 DOI: 10.3389/fmed.2021.745279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The role and nature of mitochondrial dysfunction in diabetic kidney disease (DKD) has been extensively studied. Yet, the molecular drivers of mitochondrial remodeling in DKD are poorly understood. Diabetic kidney cells exhibit a cascade of mitochondrial dysfunction ranging from changes in mitochondrial morphology to significant alterations in mitochondrial biogenesis, biosynthetic, bioenergetics and production of reactive oxygen species (ROS). How these changes individually or in aggregate contribute to progression of DKD remain to be fully elucidated. Nevertheless, because of the remarkable progress in our basic understanding of the role of mitochondrial biology and its dysfunction in DKD, there is great excitement on future targeted therapies based on improving mitochondrial function in DKD. This review will highlight the latest advances in understanding the nature of mitochondria dysfunction and its role in progression of DKD, and the development of mitochondrial targets that could be potentially used to prevent its progression.
Collapse
Affiliation(s)
- Daniel L Galvan
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States
| | - Koki Mise
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States.,Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Farhad R Danesh
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
61
|
Jia Z, Wang K, Zhang Y, Duan Y, Xiao K, Liu S, Ding X. Icariin Ameliorates Diabetic Renal Tubulointerstitial Fibrosis by Restoring Autophagy via Regulation of the miR-192-5p/GLP-1R Pathway. Front Pharmacol 2021; 12:720387. [PMID: 34349660 PMCID: PMC8326523 DOI: 10.3389/fphar.2021.720387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Tubulointerstitial fibrosis is one of the most common pathological features of diabetic nephropathy. Autophagy, an intracellular mechanism to remove damaged or dysfunctional cell parts and maintain metabolic homeostasis, is inhibited in diabetic neuropathy. Icariin is a traditional Chinese medicine extract known for nourishing the kidney and reinforcing Yang. In this study, we investigated the effects and mechanism of Icariin on renal function, autophagy, and fibrosis in type 2 diabetic nephropathic rats and in high-glucose-incubated human renal tubular epithelial cells and rat renal fibroblasts (in vitro). Icariin improved diabetes, renal function, restored autophagy, and alleviated fibrosis in type 2 diabetic neuropathic rats and in vitro. After we applied autophagy-related gene 5-small interfering RNA, we found that fibrosis improvement by Icariin was related to autophagy restoration. By detecting serum sex hormone levels, and using dihydrotestosterone, siRNA for androgen receptor, and the androgen receptor antagonist Apalutamide (ARN-509), we found that Icariin had an androgen-like effect and restored autophagy and reduced fibrosis by regulating the androgen receptor. In addition, miR-192-5p levels were increased under high glucose but reduced after dihydrotestosterone and Icariin treatment. Furthermore, dihydrotestosterone and Icariin inhibited miR-192-5p overexpression-induced fibrosis production and autophagy limitation. Glucagon-like peptide-1 receptor (GLP-1R) was downregulated by high glucose and overexpression of miR-192-5p and could be restored by dihydrotestosterone and Icariin. By using ARN-509, we found that Icariin increased GLP-1R expression by regulating the androgen receptor. GLP-1R-siRNA transfection weakened the effects of Icariin on autophagy and fibrosis. These findings indicate that Icariin alleviates tubulointerstitial fibrosis by restoring autophagy through the miR-192-5p/GLP-1R pathway and is a novel therapeutic option for diabetic fibrosis.
Collapse
Affiliation(s)
- Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yameng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
62
|
Deng Y, Li N, Wu Y, Wang M, Yang S, Zheng Y, Deng X, Xiang D, Zhu Y, Xu P, Zhai Z, Zhang D, Dai Z, Gao J. Global, Regional, and National Burden of Diabetes-Related Chronic Kidney Disease From 1990 to 2019. Front Endocrinol (Lausanne) 2021; 12:672350. [PMID: 34276558 PMCID: PMC8281340 DOI: 10.3389/fendo.2021.672350] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a public health problem largely caused by diabetes. The epidemiology of diabetes mellitus-related CKD (CKD-DM) could provide specific support to lessen global, regional, and national CKD burden. METHODS Data were derived from the GBD 2019 study, including four measures and age-standardized rates (ASRs). Estimated annual percentage changes and 95% CIs were calculated to evaluate the variation trend of ASRs. RESULTS Diabetes caused the majority of new cases and patients with CKD in all regions. All ASRs for type 2 diabetes-related CKD increased over 30 years. Asia and Middle socio-demographic index (SDI) quintile always carried the heaviest burden of CKD-DM. Diabetes type 2 became the second leading cause of CKD and CKD-related death and the third leading cause of CKD-related DALYs in 2019. Type 2 diabetes-related CKD accounted for most of the CKD-DM disease burden. There were 2.62 million incident cases, 134.58 million patients, 405.99 thousand deaths, and 13.09 million disability-adjusted life-years (DALYs) of CKD-DM worldwide in 2019. Age-standardized incidence (ASIR) and prevalence rate (ASPR) of type 1 diabetes-related CKD increased, whereas age-standardized death rate (ASDR) and DALY rate decreased for females and increased for males. In high SDI quintile, ASIR and ASPR of type 1 diabetes-related CKD remained the highest, with the slowest increase, whereas the ASDR and age-standardized DALY rate remained the lowest there. In high SDI quintile, ASIR of type 2 diabetes-related CKD was the highest, with the lowest increasing rate. In addition, type 2 diabetes-related CKD occurred most in people aged 80-plus years worldwide. The main age of type 2 diabetes-related CKD patients was 55-64 years in Asia and Africa. The prevalence, mortality, and DALY rate of type 2 diabetes-related CKD increased with age. As for incidence, there was a peak at 80 years, and after age of 80, the incidence declined. CKD-DM-related anemia was mainly in mild to moderate grade. CONCLUSIONS Increasing burden of CKD-DM varied among regions and countries. Prevention and treatment measures should be strengthened according to CKD-DM epidemiology, especially in middle SDI quintile and Asia.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Xiang
- Celilo Cancer Center, Oregon Health Science Center Affiliated Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Yuyao Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Gao
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
63
|
Shepard BD. The Sniffing Kidney: Roles for Renal Olfactory Receptors in Health and Disease. KIDNEY360 2021; 2:1056-1062. [PMID: 35373087 PMCID: PMC8791376 DOI: 10.34067/kid.0000712021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
AbstractOlfactory receptors (ORs) represent the largest gene family in the human genome. Despite their name, functions exist for these receptors outside of the nose. Among the tissues known to take advantage of OR signaling is the kidney. From mouse to man, the list of renal ORs continues to expand, and they have now been linked to a variety of processes involved in the maintenance of renal homeostasis, including the modulation of blood pressure, response to acidemia, and the development of diabetes. In this review, we highlight the recent progress made on the growing appreciation for renal ORs in physiology and pathophysiology.
Collapse
|
64
|
Choi JSY, de Haan JB, Sharma A. Animal models of diabetes-associated vascular diseases: an update on available models and experimental analysis. Br J Pharmacol 2021; 179:748-769. [PMID: 34131901 DOI: 10.1111/bph.15591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disorder associated with the accelerated development of macrovascular (atherosclerosis and coronary artery disease) and microvascular complications (nephropathy, retinopathy and neuropathy), which remain the principal cause of mortality and morbidity in this population. Current understanding of cellular and molecular pathways of diabetes-driven vascular complications, as well as therapeutic interventions has arisen from studying disease pathogenesis in animal models. Diabetes-associated vascular complications are multi-faceted, involving the interaction between various cellular and molecular pathways. Thus, the choice of an appropriate animal model to study vascular pathogenesis is important in our quest to identify innovative and mechanism-based targeted therapies to reduce the burden of diabetic complications. Herein, we provide up-to-date information on available mouse models of both Type 1 and Type 2 diabetic vascular complications as well as experimental analysis and research outputs.
Collapse
Affiliation(s)
- Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.,Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Monash University, Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
65
|
Spires DR, Palygin O, Levchenko V, Isaeva E, Klemens CA, Khedr S, Nikolaienko O, Kriegel A, Cheng X, Yeo JY, Joe B, Staruschenko A. Sexual dimorphism in the progression of type 2 diabetic kidney disease in T2DN rats. Physiol Genomics 2021; 53:223-234. [PMID: 33870721 PMCID: PMC8285576 DOI: 10.1152/physiolgenomics.00009.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors. This study aimed to define sexual dimorphism and renal function in a nonobese type 2 diabetes model with the spontaneous development of advanced diabetic nephropathy (T2DN rats). T2DN rats at 12- and over 48-wk old were used to define disease progression and kidney injury development. We found impaired glucose tolerance and glomerular hyperfiltration in T2DN rats to compare with nondiabetic Wistar control. The T2DN rat displays a significant sexual dimorphism in insulin resistance, plasma cholesterol, renal and glomerular injury, urinary nephrin shedding, and albumin handling. Our results indicate that both male and female T2DN rats developed nonobese type 2 DKD phenotype, where the females had significant protection from the development of severe forms of DKD. Our findings provide further evidence for the T2DN rat strain's effectiveness for studying the multiple facets of DKD.
Collapse
Affiliation(s)
- Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xi Cheng
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Ji-Youn Yeo
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
66
|
Giandalia A, Giuffrida AE, Gembillo G, Cucinotta D, Squadrito G, Santoro D, Russo GT. Gender Differences in Diabetic Kidney Disease: Focus on Hormonal, Genetic and Clinical Factors. Int J Mol Sci 2021; 22:5808. [PMID: 34071671 PMCID: PMC8198374 DOI: 10.3390/ijms22115808] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most serious complications of both type 1 (T1DM) and type 2 diabetes mellitus (T2DM). Current guidelines recommend a personalized approach in order to reduce the burden of DM and its complications. Recognizing sex and gender- differences in medicine is considered one of the first steps toward personalized medicine, but the gender issue in DM has been scarcely explored so far. Gender differences have been reported in the incidence and the prevalence of DKD, in its phenotypes and clinical manifestations, as well as in several risk factors, with a different impact in the two genders. Hormonal factors, especially estrogen loss, play a significant role in explaining these differences. Additionally, the impact of sex chromosomes as well as the influence of gene-sex interactions with several susceptibility genes for DKD have been investigated. In spite of the increasing evidence that sex and gender should be included in the evaluation of DKD, several open issues remain uncovered, including the potentially different effects of newly recommended drugs, such as SGLT2i and GLP1Ras. This narrative review explored current evidence on sex/gender differences in DKD, taking into account hormonal, genetic and clinical factors.
Collapse
Affiliation(s)
- Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Domenico Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
| | - Giuseppina T. Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| |
Collapse
|
67
|
Visniauskas B, Arita DY, Rosales CB, Feroz MA, Luffman C, Accavitti MJ, Dawkins G, Hong J, Curnow AC, Thethi TK, Lefante JJ, Jaimes EA, Mauvais-Jarvis F, Fonseca VA, Prieto MC. Sex differences in soluble prorenin receptor in patients with type 2 diabetes. Biol Sex Differ 2021; 12:33. [PMID: 33933156 PMCID: PMC8088668 DOI: 10.1186/s13293-021-00374-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/07/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The soluble prorenin receptor (sPRR), a member of the renin-angiotensin system (RAS), is elevated in plasma of patients with preeclampsia, hypertension, chronic kidney disease (CKD), and type 2 diabetes. Our goal was to examine the relationship between sPRR and RAS activation to define whether sexual dimorphisms in sPRR might explain sex disparities in renal outcomes in patients with type 2 diabetes. METHODS Two hundred sixty-nine participants were included in the study (mean age, 48 ± 16 years; 42% men, 58% women), including 173 controls and 96 subjects with type 2 diabetes. In plasma and urine, we measured sPRR, plasma renin activity (PRA), and prorenin. In the urine, we also measured angiotensinogen along with other biomarkers of renal dysfunction. RESULTS Plasma sPRR and PRA were significantly higher in women with type 2 diabetes compared to men. In these women, plasma sPRR was positively correlated with PRA, age, and body mass index (BMI). In contrast, in men the sPRR in urine but not in plasma positively correlated with eGFR in urine, but negatively correlated with urine renin activity, plasma glucose, age, and BMI. CONCLUSIONS In patients with type 2 diabetes, sPRR contributes to RAS stimulation in a sex-dependent fashion. In diabetic women, increased plasma sPRR parallels the activation of systemic RAS; while in diabetic men, decreased sPRR in urine matches intrarenal RAS stimulation. sPRR might be a potential indicator of intrarenal RAS activation and renal dysfunction in men and women with type 2 diabetes.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Danielle Y. Arita
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Carla B. Rosales
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Mohammed A. Feroz
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Christina Luffman
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Michael J. Accavitti
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Gabrielle Dawkins
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Jennifer Hong
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Andrew C. Curnow
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Tina K. Thethi
- Department of Medicine, Endocrinology Division, Tulane University School of Medicine, New Orleans, LA USA
- AdventHealth, Translational Research Institute, Orlando, FL USA
| | - John J. Lefante
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Edgar A. Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Endocrinology Division, Tulane University School of Medicine, New Orleans, LA USA
- Southeast Louisiana Veterans Healthcare System, New Orleans, LA USA
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA USA
| | - Vivian A. Fonseca
- Department of Medicine, Endocrinology Division, Tulane University School of Medicine, New Orleans, LA USA
- Southeast Louisiana Veterans Healthcare System, New Orleans, LA USA
| | - Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA USA
| |
Collapse
|
68
|
García de Lucas MD, Jiménez Millán AI. Woman and diabetes mellitus. Med Clin (Barc) 2021; 156:606-608. [PMID: 33637336 DOI: 10.1016/j.medcli.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
|
69
|
ZEIDI ISAMOHAMMADI, MORSHEDI HADI, ALIZADEH OTAGHVAR HAMIDREZA. A theory of planned behavior-enhanced intervention to promote health literacy and self-care behaviors of type 2 diabetic patients. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 61:E601-E613. [PMID: 33628967 PMCID: PMC7888399 DOI: 10.15167/2421-4248/jpmh2020.61.4.1504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
Background Improved health literacy and awareness could help type 2 diabetic patients to control the disease complications. Objective The current study aimed to evaluate the impact of theory-based educational intervention on health literacy and self-care behaviors of type 2 diabetic patients in Tonekabon city. Methods This randomized controlled trial study was conducted at health care centers in Tonekabon city, Iran, from April 5, 2017, to October 22, 2018. Using multistage random sampling, 166 patients with type 2 diabetes divided into two groups: theory-based intervention (n = 83) and custom education (n = 83). The data collection tools consisted of demographic information, Theory of Planned Behavior (TPB) measures, health literacy for Iranian adults (HELIA) and summary of diabetes self-care activities (SDSCA). The five 45-minute group training sessions based on the baseline assessment and model constructs along with the targeted pamphlet and m-health strategy were designed for the experimental group. Data were analyzed using chi-square, independent and paired t-test and Analysis of covariance (ANCOVA). Results After controlling for pre-test effect, there was a significant difference between the two groups in terms of mean scores of attitudes, subjective norms, perceived behavior control and intention in post-test (P < 0.001). Also, after controlling for the pre-test effect, the results showed a significant difference in the self-care domain in the post-test (P < 0.001). Finally, after controlling for the pre-test variable effect, covariance analysis reflects significant difference in total health literacy score and its dimension at posttest (P < 0.001). Conclusions Applying TPB based education is suggested to maintain and improve self-care behaviors and health literacy in type 2 diabetic patients and other chronic diseases.
Collapse
Affiliation(s)
- ISA MOHAMMADI ZEIDI
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Correspondence: Isa Mohammadi Zeidi, Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran - Tel. +98 9124146500 - E-mail: ,
| | - HADI MORSHEDI
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
70
|
Harris AN, Weiner ID. Sex differences in renal ammonia metabolism. Am J Physiol Renal Physiol 2021; 320:F55-F60. [PMID: 33308019 PMCID: PMC7847052 DOI: 10.1152/ajprenal.00531.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023] Open
Abstract
Sexual dimorphic variations are present in many aspects of biology and involve the structure and/or function of nearly every organ system. Acid-base homeostasis is critical for optimal health, and renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Recent studies have shown sex-dependent differences in renal ammonia metabolism with regard to both basal ammonia excretion and the response to an exogenous acid load. These sexual dimorphisms are associated with structural changes in the proximal tubule and the collecting duct and variations in the expression of multiple proteins involved in ammonia metabolism and transport. Studies using orchiectomy-induced testosterone deficiency and physiological testosterone replacement have shown that testosterone underlies much of the sex-dependent differences in the proximal tubule. This parallels the finding that the canonical testosterone target receptor, androgen receptor (AR), is present exclusively in the proximal tubule. Thus testosterone, possibly acting through AR activation, regulates multiple components of renal structure and ammonia metabolism. The lack of detectable AR in the remainder of the nephron and collecting duct suggests that some dimorphisms in renal structure and ammonia transporter expression are mediated through mechanisms other than direct testosterone-dependent AR activation. A better understanding of the mechanism and biological implications of sex's effect on renal structure and ammonia metabolism is critical for optimizing our ability to care for both men and women with acid-base disturbances.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
71
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
72
|
Joung KI, Jung GW, Park HH, Lee H, Park SH, Shin JY. Gender differences in adverse event reports associated with antidiabetic drugs. Sci Rep 2020; 10:17545. [PMID: 33067519 PMCID: PMC7567832 DOI: 10.1038/s41598-020-74000-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Little is known about gender-specific reporting of adverse events (AEs) associated with antidiabetic drugs. This study was to assess the gender-related difference in AEs reporting associated with antidiabetic agents. The number of antidiabetic drug-AE pairs associated was identified using the Korea Adverse Event Reporting System database. Prevalence of diabetes was estimated using the Health Insurance Review and Assessment Service-National Patients Sample database. Reporting rate per 10,000 people was calculated by dividing drug-AE pairs with the number of antidiabetic drug users by gender. Gender difference was presented with risk ratio (reporting rate ratio) of women to men. Antidiabetic agent-associated AEs were more frequently reported by women than men throughout body organs and drug classes. 13 out of 17 system organ class level disorders with significant gender differences were reported more often by women than men. By drug class, gender-specific reporting rates were observed in most of the drug classes, especially in newer classes such as glucagon-like peptide-1 analog (GLP1-RA), sodium glucose co-transporter-2 inhibitor (SGLT2i), and thiazolidinedione (TZD). Looking into preferred term level for each drug class, women dominated the reports of class-specific AEs of newer antidiabetic drugs such as urinary tract/genital infection (all reported by women) in SGLT2i, edema in TZD (risk ratio (RR) 12.56), and hyperglycemia in insulin users (RR 15.35). Gender differences in antidiabetic-associated AE reporting often attributed to women. Explanations for these different report levels by gender should be further investigated.
Collapse
Affiliation(s)
- Kyung-In Joung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong gi-do, South Korea
| | - Gyu-Won Jung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong gi-do, South Korea
| | - Han-Heui Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong gi-do, South Korea
| | - Hyesung Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong gi-do, South Korea
| | - So-Hee Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong gi-do, South Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong gi-do, South Korea.
| |
Collapse
|
73
|
Sex Differences in Urate Handling. Int J Mol Sci 2020; 21:ijms21124269. [PMID: 32560040 PMCID: PMC7349092 DOI: 10.3390/ijms21124269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective. Further, we review the mechanisms of renal handling of urate and the significant contributions from powerful genome-wide association studies of serum urate. We also explore the role of sex in the regulation of specific renal urate transporters and the power of new animal models of hyperuricemia to inform on the role of sex and hyperuricemia in disease pathogenesis. Finally, we advocate the use of sex differences in urate handling as a potent tool in gaining a further understanding of physiological regulation of urate homeostasis and for presenting new avenues for treating the constellation of urate related pathologies.
Collapse
|
74
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|
75
|
Mitchell T, De Miguel C, Gohar EY. Sex differences in redox homeostasis in renal disease. Redox Biol 2020; 31:101489. [PMID: 32197946 PMCID: PMC7212488 DOI: 10.1016/j.redox.2020.101489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023] Open
Abstract
Sex differences in redox signaling in the kidney present new challenges and opportunities for understanding the physiology and pathophysiology of the kidney. This review will focus on reactive oxygen species, immune-related signaling pathways and endothelin-1 as potential mediators of sex-differences in redox homeostasis in the kidney. Additionally, this review will highlight male-female differences in redox signaling in several major cardiovascular and renal disorders namely acute kidney injury, diabetic nephropathy, kidney stone disease and salt-sensitive hypertension. Furthermore, we will discuss the contribution of redox signaling in the pathogenesis of postmenopausal hypertension and preeclampsia.
Collapse
Affiliation(s)
- Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eman Y Gohar
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
76
|
Maric-Bilkan C. Sex Differences in Diabetic Kidney Disease. Mayo Clin Proc 2020; 95:587-599. [PMID: 32138885 DOI: 10.1016/j.mayocp.2019.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
While the global prevalence of both type 1 and type 2 diabetes mellitus is similar in men and women, the consequences of diabetes on associated end-organ complications, including diabetic kidney disease appear to be more sex-specific. Particularly, women with diabetes have higher mortality rates for diabetes-related deaths, and higher prevalence of diabetic kidney disease risk factors such as hypertension, hyperglycemia, obesity, and dyslipidemia. However, the evidence for the impact of sex on diabetic kidney disease prevalence and disease progression is limited and inconsistent. Although most studies agree that the protective effect of the female sex against the development of kidney disease is diminished in the setting of diabetes, the reasons for this observation are unclear. Whether or not sex differences exist in the risk of diabetic kidney disease is also unclear, with studies reporting either higher risk in men, women, or no sex differences. Despite the remaining controversies, some of the factors that associate with sex differences in the risk of diabetic kidney disease are age at onset, and type and duration of diabetes. There is growing appreciation of the importance of sex hormones in the regulation of renal function, with estrogens generally considered to be renoprotective. Although some progress has been made towards better understanding of the mechanisms by which sex hormones play a role in the pathophysiology of diabetic kidney disease, the translational potential of this knowledge is still underappreciated. A better understanding of sex differences in diabetic kidney disease may provide basis for personalized and sex-specific treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Christine Maric-Bilkan
- Division of Kidney, Urology and Hematology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|