51
|
Swerving away from diabetic nephropathy by means of divine guidance. J Mol Med (Berl) 2013; 91:1025-7. [DOI: 10.1007/s00109-013-1065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Obermüller N, Geiger H, Weipert C, Urbschat A. Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol 2013; 46:1-7. [PMID: 23673775 DOI: 10.1007/s11255-013-0448-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/12/2013] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is a very frequent and serious clinical problem, accounting for overall high morbidity and mortality. Up to date, mortality due to AKI is virtually unchanged over the past 50 years. This may partly be explained due to a delay in initiating renal protective and appropriate therapeutic measures since until now there are no reliable early-detecting biomarkers. The gold standard, serum creatinine, displays poor specificity and sensitivity with regard to identification of the incipient phase of AKI, and this is also true for cystatin C. We aimed to review novel biomarkers of AKI in urine and serum which have now progressed to the clinical phase. The main focus refers to their diagnostic and prognostic value. For this purpose, a web-based literature search using PubMed was performed comprising the following terms: renal failure, acute kidney injury and biomarkers. New molecules such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), N-acetyl-β-D-glucosaminidase (NAG), monocyte chemotactic peptide (MCP-1), Il-18, liver-type fatty acid-binding protein (L-FABP) and Netrin-1 are available and represent promising new markers that, however, need to be further evaluated in the clinical setting for suitability. In clinical settings with incipient AKI, not only the development and the implementation of more sensitive, practicable and accurate biomarkers are required for well-timed treatment initiation. Just as important is a substantial improvement of refined and applicable prophylactic therapeutic options in these situations. Before full adoption in clinical practice can be accomplished, adequately powered clinical trials testing a row of biomarkers are strongly warranted.
Collapse
Affiliation(s)
- Nicholas Obermüller
- Division of Nephrology, III Medical Clinic, Goethe-University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany,
| | | | | | | |
Collapse
|
53
|
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious problem in critically ill patients. Tests currently used to detect AKI (i.e., serum creatinine, serum urea and various urinary indices) often result in serious delays in detection of clinically relevant injury. This delayed detection translates into a potential missed opportunity for therapeutic interventions at a time when kidney damage may be limitable or reversible. This is also recognized as a potential reason for the poor clinical outcomes often associated with AKI. OBJECTIVES To appraise the recent literature characterizing several novel serum and urinary biomarkers, including neutrophil gelatinase-associated lipocalin, IL-18 and kidney injury molecule-1, which are capable of detecting AKI at an earlier phase of injury. Also to discuss the pitfalls of current conventional testing in kidney injury. METHOD Narrative literature review. CONCLUSIONS These novel biomarkers can detect injury when damage may still be reversible, allow for early risk stratification and/or prognostication, and are associated in early clinical studies with important outcomes such as severity of AKI, need for renal replacement therapy and survival. There is optimism that these novel biomarkers will discriminate the underlying pathophysiology of AKI (i.e., ischemia, sepsis, toxins or multifactorial), discriminate AKI from other renal disease (i.e., chronic kidney disease) and aid in localizing the site of acute injury in the kidney. As such, the future may entail development of an 'AKI biomarker panel' (i.e., analogous to a cardiac or liver enzyme panel) for use in clinical practice.
Collapse
Affiliation(s)
- Sean M Bagshaw
- University of Alberta Hospital, 3C1.12 Walter C. Mackenzie Centre, Division of Critical Care Medicine, 8440-112 Street, Edmonton, Alberta, T6G2B7, Canada +1 780 407 6755 ; +1 780 407 1228 ;
| |
Collapse
|
54
|
Ranganathan PV, Jayakumar C, Ramesh G. Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Renal Physiol 2013; 304:F948-57. [PMID: 23408164 DOI: 10.1152/ajprenal.00580.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Improper macrophage activation is pathogenically linked to various metabolic, inflammatory, and immune disorders. Therefore, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. We recently demonstrated that netrin-1 regulates inflammation and infiltration of monocytes and ameliorates ischemia-reperfusion-induced kidney injury. However, it was not known whether netrin-1 regulates the phenotype of macrophages and the signaling mechanism through which it might do this. In this study, we report novel mechanisms underlying netrin-1's effects on macrophages using in vivo and in vitro studies. Overexpression of netrin-1 in spleen and kidney of transgenic mice increased expression of arginase-1, IL-4, and IL-13 and decreased expression of COX-2, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. Moreover, flow cytometry analysis showed a significant increase in mannose receptor-positive macrophages in spleen compared with wild type. In vitro, netrin-1 induced the expression of M2 marker expression in bone marrow-derived macrophages, peritoneal macrophages, and RAW264.7 cells, and suppressed IFNγ-induced M1 polarization and production of inflammatory mediators. Adoptive transfer of netrin-1-treated macrophages suppressed inflammation and kidney injury against ischemia-reperfusion. Netrin-1 activated PPAR pathways and inhibition of PPAR activation abolished netrin-1-induced M2 polarization and suppression of cytokine production. Consistent with in vitro studies, administration of PPAR antagonist to mice abolished the netrin-1 protective effects against ischemia-reperfusion injury of the kidney. These findings illustrate that netrin-1 regulates macrophage polarization through PPAR pathways and confers anti-inflammatory actions in inflammed kidney tissue.
Collapse
|
55
|
Liu L, Xie S, Liao X, Zhang L, Zhong L. Netrin-1 pretreatment protects rat kidney against ischemia/reperfusion injury via suppression of oxidative stress and neuropeptide Y expression. J Biochem Mol Toxicol 2013; 27:231-6. [PMID: 23335440 DOI: 10.1002/jbt.21474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/04/2012] [Accepted: 12/19/2012] [Indexed: 11/09/2022]
Abstract
Netrin-1 has been found to protect kidneys from ischemia/reperfusion injury. In this study, we aimed to address whether the protective effects were mediated through suppression of oxidative stress and neuropeptide Y. Compared to sham-operated animals, animals after ischemia/reperfusion showed marked kidney damage and significantly increased levels of serum creatinine, blood urea nitrogen, malondialdehyde, and neuropeptide Y. Renal myeloperoxidase activity was elevated in animals with ischemia/reperfusion relative to sham-operated animals, whereas renal superoxide dismutase activity was reduced. Netrin-1 pretreatment attenuated ischemia/reperfusion-induced functional and pathological changes in the kidney. Moreover, the ischemia/reperfusion-induced changes in the oxidative stress biomarkers and neuropeptide Y were significantly counteracted by prior administration of netrin-1. Taken together, our data showed that netrin-1 pretreatment prevented renal ischemia/reperfusion injury, at least partially through reduction of oxidative stress and neuropeptide Y expression.
Collapse
Affiliation(s)
- Ling Liu
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | | | | | | | | |
Collapse
|
56
|
Kim TH, Ahn MY, Lim HJ, Lee YJ, Shin YJ, De U, Lee J, Lee BM, Kim S, Kim HS. Evaluation of metabolomic profiling against renal toxicity in Sprague-Dawley rats treated with melamine and cyanuric acid. Arch Toxicol 2012; 86:1885-1897. [PMID: 22885791 DOI: 10.1007/s00204-012-0910-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/24/2012] [Indexed: 01/01/2023]
Abstract
Melamine-induced renal toxicity is associated with crystal formation in the kidney following exposure to melamine and cyanuric acid. However, metabolomic profiling of intact kidney tissue after chronic intake of melamine and cyanuric acid (M + CA) mixtures has rarely been studied. The present study investigated the melamine-induced renal toxicity by determining metabolites in the kidney through [(1)H]nuclear magnetic resonance. Melamine (63 mg/kg) and cyanuric acid (6.3 mg/kg) were co-administered to rats via oral gavage for 30 days. The mixture of M + CA (63/6.3 mg/kg) induced nephrotoxicity, as determined by increased blood urea nitrogen (BUN) and creatinine levels. The kidney weights were significantly increased in the animals treated with M + CA (63/6.3 mg/kg). The histological analysis revealed epithelial degeneration and necrotic cell death in the proximal and distal tubules. Furthermore, various metabolites were altered in both renal medullar and cortical tissues. In the medullar tissues, asparagine, choline, creatinine, cysteine, ethanolamine, glucose, isoleucine, glutamine, and myo-inositol levels were elevated, but glucitol, phenylalanine, tyrosine, and sn-glycero-3-levels were reduced. In the cortex, ethanolamine, hypoxanthine, isoleucine and o-phosphoethanolamine levels were increased, whereas formate, glucose, glutathione, threonine, and myo-inositol levels were decreased, suggesting the M + CA-induced renal cell injury. These data suggest that a mixture of M + CA-induced metabolites may be useful biomarkers for the detection of kidney injury.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1991-2002. [PMID: 23041393 DOI: 10.1016/j.ajpath.2012.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023]
Abstract
Inflammation plays a key role in the development and progression of diabetic kidney disease; however, the role of the anti-inflammatory molecule netrin-1 in diabetic kidney disease is unknown. We examined the role of netrin-1 in diabetes-induced kidney inflammation and injury using tubule-specific netrin-1 transgenic mice. Diabetes was induced using streptozotocin in wild-type and netrin-1 transgenic animals. Kidney function, fibrosis, glucose excretion, albuminuria, and inflammation were evaluated. The mechanism of netrin-1-induced suppression of inflammation was studied in vitro using a proximal tubular epithelial cell line. Diabetes was associated with increased infiltration of neutrophils and macrophages, chemokine expression, and tubular epithelial cell apoptosis in kidney. These changes were minimal in kidney of netrin-1 transgenic mice. In addition, diabetes induced a large increase in the excretion of prostaglandin E2 (PGE2) in urine, which was suppressed in netrin-1 transgenic mice. Netrin-1-induced suppression of PGE2 production was mediated through suppression of NFκB-mediated cyclooxygenase-2 (COX-2) in renal tubular epithelial cells. Furthermore, netrin-1 also increased albumin uptake by proximal tubular epithelial cells through the PI3K and ERK pathways without increasing glucose uptake. These findings suggest that netrin-1 is a major regulator of inflammation and apoptosis in diabetic nephropathy and may be a useful therapeutic molecule for treating chronic kidney diseases such as diabetic nephropathy.
Collapse
|
58
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
59
|
Barrera-Chimal J, Bobadilla NA. Are recently reported biomarkers helpful for early and accurate diagnosis of acute kidney injury? Biomarkers 2012; 17:385-93. [DOI: 10.3109/1354750x.2012.680070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
60
|
Cooper TK, Zhong Q, Nabity M, Rosenberg G, Weiss WJ. Use of urinary biomarkers of renal ischemia in a lamb preclinical left ventricular assist device model. Artif Organs 2012; 36:820-4. [PMID: 22428807 DOI: 10.1111/j.1525-1594.2011.01436.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evaluation of thrombogenicity is a critical component in the preclinical testing and development of blood pumps. Left ventricular assist devices (LVADs), because of their device routing, can produce thromboembolic showers to the kidney resulting in renal cortical ischemia or infarctions. Although postmortem evaluation of renal pathology can confirm ischemic events and infarctions, there are no validated and highly sensitive real-time measures of renal ischemia in the preclinical models. In this article, we report the evaluation of urinary biomarkers of ischemic tubular damage in a lamb preclinical LVAD model. We found that urinary excretion of glutathione-S-transferase-π, heat shock protein 1B, and hepatitis A virus cellular receptor 1 homologue precursor (HAVCR1/kidney injury molecule 1) were upregulated in toxic ischemic renal injury as well as in the immediate postoperative period in an LVAD-implanted lamb. These markers were consistent with both gross and histologic pathology, and proved far more sensitive for renal injury than serum blood urea nitrogen or creatinine concentrations.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State College of Medicine, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
61
|
Bayat M, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A, Mehdizadeh M. Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat. Brain Res 2012; 1452:185-94. [PMID: 22459051 DOI: 10.1016/j.brainres.2012.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/10/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
Cerebral ischemia, which is the second and most common cause of mortality, affects millions of individuals worldwide. The present study was performed to investigate whether intrahippocampal administration of netrin-1 could improve spatial memory impairment in radial arm maze task and restore long-term potentiation (LTP) in 4-vessel occlusion model of global ischemia. The results showed that intrahippocampal infusion of nerin-1 24 h after ischemia (at both doses of 400 and 800 ng) significantly ameliorated spatial memory impairment and at a dose of 800 ng was capable to improve synaptic dysfunction as observed by recovery of population spike component of basal evoked potential and LTP through enhancement of excitability and normalization of paired pulse response. Taken together, the present study shows that netrin-1 dose-dependently ameliorates spatial memory impairment and improves synaptic dysfunction as observed by recovery of population spike component of basal evoked potential and LTP in rats with global ischemia.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Dept. Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
62
|
Pennemans V, Rigo JM, Penders J, Swennen Q. Collection and storage requirements for urinary kidney injury molecule-1 (KIM-1) measurements in humans. Clin Chem Lab Med 2012; 50:539-43. [DOI: 10.1515/cclm.2011.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/26/2011] [Indexed: 12/30/2022]
|
63
|
Zarjou A, Sanders PW, Mehta RL, Agarwal A. Enabling innovative translational research in acute kidney injury. Clin Transl Sci 2011; 5:93-101. [PMID: 22376265 DOI: 10.1111/j.1752-8062.2011.00302.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common, heterogeneous, and detrimental clinical condition that has significant attributable morbidity and mortality. Despite major advances in understanding the epidemiology, pathogenesis, and outcomes of AKI, preventive measures remain inadequate and therapeutic approaches (except for renal replacement therapy) have largely proven futile so far. Critical to the process of designing rational therapies is translational research, which involves the transition between the basic research discoveries and everyday clinical applications to prevent, diagnose, and treat human diseases. Progress in innovative approaches has been hampered due in part to the reliance on functional markers (serum creatinine and blood urea nitrogen) that are neither sensitive nor specific to diagnose AKI. This limitation has created a great deal of interest and intense investigation to identify a "troponin-like marker" that would facilitate recognition of AKI and allow for timely implementation of the precise therapeutic agent. The other major obstacle in this field is the diverse and complex nature of AKI that involves multiple independent and overlapping pathways, making it difficult to cure AKI with a single approach. In this review, we will summarize the advances, ongoing studies, and future perspectives in the field of translational research of AKI.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
64
|
Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cisplatin nephrotoxicity. J Transl Med 2011; 91:1717-26. [PMID: 21876536 PMCID: PMC3411324 DOI: 10.1038/labinvest.2011.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Netrin-1, a multifunctional laminin-related protein is widely expressed in various tissues, including kidney. The pathophysiological roles of netrin-1 in toxic acute kidney injury are unknown. To determine the role of netrin-1 in cisplatin-induced nephrotoxicity, we used netrin-1 transgenic mice that overexpress netrin-1 in the proximal tubular epithelium using the fatty acid binding protein promoter. Administration of cisplatin caused severe renal injury in WT mice but not in netrin-1 transgenic mice. Functional improvement was associated with better preservation of morphology, reduced cytokine expression and oxidative stress in the kidney, and reduced serum and urine cytokine and chemokine levels of transgenic mice as compared with WT mice. Cisplatin induced an increase in neutrophil infiltration into the kidney of WT mice, which was not significantly reduced in netrin-1 transgenic mice. Interestingly, ischemia reperfusion induced a large increase in apoptosis in WT mice but not in netrin-1 transgenic mice (215 ± 40 vs 94 ± 20 cells/5 HPF ( × 400), P < 0.0001), which was associated with reduced caspase-3 and p53 activation in the transgenic kidney. These results suggest that netrin-1 protects renal tubular epithelial cells against cisplatin-induced kidney injury by suppressing apoptosis and inflammation.
Collapse
|
65
|
Jayakumar C, Mohamed R, Ranganathan PV, Ramesh G. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells. PLoS One 2011; 6:e26776. [PMID: 22046354 PMCID: PMC3202578 DOI: 10.1371/journal.pone.0026776] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/03/2011] [Indexed: 01/12/2023] Open
Abstract
Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.
Collapse
Affiliation(s)
- Calpurnia Jayakumar
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Riyaz Mohamed
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | | | - Ganesan Ramesh
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
66
|
Abstract
CONTEXT Acute kidney injury (AKI) represents a common serious clinical problem. Up to date mortality due to AKI, especially in intensive care units, has not been changed significantly over the past 50 years. This is partly due to a delay in initiating renal protective and appropriate therapeutic measures since until now there are no reliable early-detecting biomarkers. The gold standard, serum creatinine, displays poor specificity and sensitivity with regard to recognition of the early period of AKI. OBJECTIVE Our objective was to review established markers versus novel urine and serum biomarkers of AKI in humans, which have progressed to clinical phase with regard to their diagnostic and prognostic value. MATERIALS AND METHODS A review was performed on the basis of literature search of renal failure, acute kidney injury, and biomarkers in Pubmed. RESULTS Next to established biomarkers as creatinine and cystatin C, other molecules such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), monocyte chemotactic peptide (MCP-1), Netrin-1, and interleukin (IL)-18 are available and represent promising new markers that, however, need to be further evaluated in the clinical setting for suitability. DISCUSSION In clinical settings with incipient AKI, not only the development and the implementation of more sensitive biomarkers are required for earlier treatment initiation in order to attenuate the severity of kidney injury, but also equally important remains the substantial improvement and application of refined and prophylactic therapeutic options in these situations. CONCLUSION Adequately powered clinical trials testing a row of biomarkers are warranted before they may qualify for full adoption in clinical practice.
Collapse
Affiliation(s)
- Anja Urbschat
- Klinik für Urologie und Kinderurologie, Johann Wolfgang Goethe-Universitätsklinik Frankfurt, Theodor-Stern-Kai, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
67
|
de Geus HRH, Woo JG, Wang Y, Devarajan P, Betjes MG, le Noble JLML, Bakker J. Urinary Neutrophil Gelatinase-Associated Lipocalin Measured on Admission to the Intensive Care Unit Accurately Discriminates between Sustained and Transient Acute Kidney Injury in Adult Critically Ill Patients. NEPHRON EXTRA 2011; 1:9-23. [PMID: 22470375 PMCID: PMC3290847 DOI: 10.1159/000330428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background First we aimed to evaluate the ability of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin-C (CyC) in plasma and urine to discriminate between sustained, transient and absent acute kidney injury (AKI), and second to evaluate their predictive performance for sustained AKI in adult intensive care unit (ICU) patients. Methods A prospective cohort study of 700 patients was studied. Sample collection was performed over 8 time points starting on admission. Results After exclusion 510 patients remained for the analysis. All biomarkers showed significant differentiation between sustained and no AKI at all time points (p ≤ 0.0002) except for urine CyC (uCyC) on admission (p = 0.06). Urine NGAL (uNGAL) was the only biomarker significantly differentiating sustained from transient AKI on ICU admission (p = 0.02). Individually, uNGAL performed better than the other biomarkers (area under the curves, AUC = 0.80, 95% confidence interval, CI = 0.72–0.88) for the prediction of sustained AKI. The combination with plasma NGAL (pNGAL) showed a nonsignificant improvement (AUC = 0.83, 95% CI = 0.75–0.91). The combination of individual markers with a model of clinical characteristics (MDRD eGFR, HCO3− and sepsis) did not improve its performance significantly. However, the integrated discrimination improvement showed significant improvement when uNGAL was added (p = 0.04). Conclusions uNGAL measured on ICU admission differentiates patients with sustained AKI from transient or no-AKI patients. Combining biomarkers such as pNGAL, uNGAL and plasma CyC with clinical characteristics adds some value to the predictive model.
Collapse
Affiliation(s)
- Hilde R H de Geus
- Departments of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
68
|
Differential effects of kidney-lung cross-talk during acute kidney injury and bacterial pneumonia. Kidney Int 2011; 80:633-44. [PMID: 21734638 DOI: 10.1038/ki.2011.201] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute injuries of the kidney or lung each represent serious, complex clinical problems, and their combination drastically decreases patient survival. However, detailed understanding of interactions between these two organs is scarce. To evaluate this further, we used the folic acid (FA) and myohemoglobinuria models of acute kidney injury (AKI) together with Pseudomonas aeruginosa inhalation to study kidney-lung cross-talk in mice during acute kidney and lung injury. Subgroups of mice received antineutrophil antibody or platelet-depleting serum to assess the role of neutrophil and platelets, respectively. AKI by itself did not cause clinically relevant acute lung injury. Pneumonia was neutrophil dependent, whereas pneumonia-induced AKI was platelet dependent. AKI attenuated pulmonary neutrophil recruitment and worsened pneumonia. Mice with AKI had lower oxygen saturations and greater bacterial load than mice without. Neutrophils isolated from mice with FA-induced AKI also had impaired transmigration and F-actin polymerization in vitro. Thus, during acute kidney and pneumonia-induced lung injury, clinically relevant kidney-lung interactions are both neutrophil and platelet dependent.
Collapse
|
69
|
Grenz A, Dalton JH, Bauerle JD, Badulak A, Ridyard D, Gandjeva A, Aherne CM, Brodsky KS, Kim JH, Tuder RM, Eltzschig HK. Partial netrin-1 deficiency aggravates acute kidney injury. PLoS One 2011; 6:e14812. [PMID: 21625583 PMCID: PMC3098227 DOI: 10.1371/journal.pone.0014812] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 01/20/2011] [Indexed: 02/07/2023] Open
Abstract
The netrin family of secreted proteins provides migrational cues in the developing central nervous system. Recently, netrins have also been shown to regulate diverse processes beyond their functions in the brain, incluing the ochrestration of inflammatory events. Particularly netrin-1 has been implicated in dampening hypoxia-induced inflammation. Here, we hypothesized an anti-inflammatory role of endogenous netrin-1 in acute kidney injury (AKI). As homozygous deletion of netrin-1 is lethal, we studied mice with partial netrin-1 deletion (Ntn-1+/− mice) as a genetic model. In fact, Ntn-1+/− mice showed attenuated Ntn-1 levels at baseline and following ischemic AKI. Functional studies of AKI induced by 30 min of renal ischemia and reperfusion revealed enhanced kidney dysfunction in Ntn-1+/− mice as assessed by measurements of glomerular filtration, urine flow rate, urine electrolytes, serum creatinine and creatinine clearance. Consistent with these findings, histological studies indicated a more severe degree kidney injury. Similarly, elevations of renal and systemic inflammatory markers were enhanced in mice with partial netrin-1 deficiency. Finally, treatment of Ntn-1+/− mice with exogenous netrin-1 restored a normal phenotype during AKI. Taking together, these studies implicate endogenous netrin-1 in attenuating renal inflammation during AKI.
Collapse
Affiliation(s)
- Almut Grenz
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (AG); (HKE)
| | - Julee H. Dalton
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jessica D. Bauerle
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alexander Badulak
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Douglas Ridyard
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aneta Gandjeva
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Carol M. Aherne
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kelley S. Brodsky
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jae-Hwan Kim
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Anesthesiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Holger K. Eltzschig
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (AG); (HKE)
| |
Collapse
|
70
|
Abstract
Sepsis is a severe and dysregulated inflammatory response to infection characterized by end-organ dysfunction distant from the primary site of infection. Development of acute kidney injury (AKI) during sepsis increases patient morbidity, predicts higher mortality, has a significant effect on multiple organ functions, is associated with an increased length of stay in the intensive care unit, and hence consumes considerable healthcare resources. When compared with AKI of nonseptic origin, septic AKI is characterized by a distinct pathophysiology and therefore requires a different approach. Despite impressive advances in several fields of medicine, the pathophysiology, diagnostic procedures, and appropriate therapeutic interventions in sepsis are still highly debatable. Numerous immunomodulatory agents showing promise in preclinical studies fail to reduce the overwhelmingly high mortality rate of sepsis and provoke AKI when compared with other critically ill patients. Major impediments to progress in understanding, early diagnosis, and application of appropriate therapeutic modalities in sepsis-induced AKI include limited histopathologic information, few animal models that closely mimic human sepsis, and a relative shortage of specific diagnostic tools. Here we discuss the most recent advances in understanding the fundamental mechanisms of sepsis-induced AKI, characteristics of relevant animal models available, and potential therapies.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Division of Nephrology, THT 647, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
71
|
Khan E, Batuman V, Lertora JJL. Emergence of biomarkers in nephropharmacology. Biomark Med 2011; 4:805-14. [PMID: 21133700 DOI: 10.2217/bmm.10.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Blood-urea nitrogen, serum creatinine and urine output have long been used as markers of kidney function despite their known limitations. In the past few years, a number of novel biomarkers have been identified in the urine and blood that can detect kidney injury early. Although, to date, none of these biomarkers are in clinical use, many have been validated as reliable and sensitive, allowing detection of kidney injury before serum creatinine levels rise and urine output drops. These markers have been evaluated in great detail in animal models and to a lesser extent in humans in postcardiopulmonary bypass and sepsis. There is relatively scarse data on the use of these biomarkers in the detection of kidney injury associated with the use of pharmacologic agents. The purpose of this article is to summarize these data and highlight the potential utility of these biomarkers in nephropharmacology.
Collapse
Affiliation(s)
- Enver Khan
- Tulane University Medical School, Department of Medicine, Nephrology Section 1430 Tulane Avenue, New Orleans, LA, USA
| | | | | |
Collapse
|
72
|
Abstract
CONTEXT The axon guidance cues netrin-1 is a secreted protein overexpressed in many different cancer tissues. OBJECTIVES To determine whether plasma netrin-1 can be used as a diagnostic biomarker of human cancer. MATERIALS AND METHODS A total of 300 cancer plasma samples from breast, renal, prostate, liver, meningioma, pituitary adenoma, glioblastoma, lung, pancreatic and colon cancer patients were compared against 138 control plasma samples. Netrin-1 levels were quantified by ELISA and immunohistochemistry. RESULTS Plasma netrin-1 levels were significantly increased in breast, renal, prostate, liver, meningioma, pituitary adenoma, and glioblastoma cancers as compared to control samples. DISCUSSION AND CONCLUSION Our results suggest that plasma netrin-1 can be used as a diagnostic biomarker for many human cancers.
Collapse
Affiliation(s)
- Ganesan Ramesh
- Department of Medicine/Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
73
|
Pennemans V, De Winter LM, Faes C, Van Kerkhove E, Reynders C, Rigo JM, Swennen Q, Penders J. Effect of pH on the stability of kidney injury molecule 1 (KIM-1) and on the accuracy of its measurement in human urine. Clin Chim Acta 2010; 411:2083-6. [DOI: 10.1016/j.cca.2010.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/23/2010] [Accepted: 09/06/2010] [Indexed: 01/02/2023]
|
74
|
Ramesh G, Kwon O, Ahn K. Netrin-1: a novel universal biomarker of human kidney injury. Transplant Proc 2010; 42:1519-22. [PMID: 20620466 DOI: 10.1016/j.transproceed.2009.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 11/24/2009] [Indexed: 01/16/2023]
Abstract
Currently available diagnostic markers representing kidney injury or function such as serum creatinine and blood urea nitrogen are insensitive and often increased late in the disease process. Netrin-1 protein, a laminin-related secreted molecule, is minimally or not expressed in tubular epithelial cells of normal kidneys. However, it is highly expressed in injured kidneys. Netrin-1 protein has been shown to be detected in urine from mice with acute kidney injury. The current study was carried out to evaluate whether netrin-1 is also induced in human acute kidney injury (AKI) and can serve as a urinary biomarker of the condition. We analyzed netrin-1 levels by sandwich enzyme-linked immunosorbent assay in urine samples from 10 healthy controls, 22 recipients of a renal allograft, 11 patients with ischemic AKI, 13 with AKI associated with sepsis, 9 with radiocontrast-induced AKI, and 8 with drug-induced AKI. Urinary netrin-1 levels normalized for urinary creatinine were significantly higher in all subject groups. The highest values were observed in patients with sepsis and in transplant patients immediately postoperatively. The level of NGAL was similarly increased in transplant patients. In conclusion, urinary netrin-1 levels are increased in patients with various forms of AKI/ATN and may serve as a universal biomarker for AKI.
Collapse
Affiliation(s)
- G Ramesh
- Division of Nephrology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
75
|
de Geus HRH, Bakker J, Lesaffre EMEH, le Noble JLML. Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med 2010; 183:907-14. [PMID: 20935115 DOI: 10.1164/rccm.200908-1214oc] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Measured at intensive care unit admission (ICU), the predictive value of neutrophil gelatinase-associated lipocalin (NGAL) for severe acute kidney injury (AKI) is unclear. OBJECTIVES To assess the ability of plasma and urine NGAL to predict severe AKI in adult critically ill patients. METHODS Prospective-cohort study consisting of 632 consecutive patients. MEASUREMENTS AND MAIN RESULTS Samples were analyzed by Triage immunoassay for NGAL expression. The primary outcome measure was occurrence of AKI based on Risk-Injury-Failure (RIFLE) classification during the first week of ICU stay. A total of 171 (27%) patients developed AKI. Of these 67, 48, and 56 were classified as RIFLE R, I, and F, respectively. Plasma and urine NGAL values at ICU admission were significantly related to AKI severity. The areas under the receiver operating characteristic curves for plasma and urine NGAL were for RIFLE R (0.77 ± 0.05 and 0.80 ± 0.04, respectively), RIFLE I (0.80 ± 0.06 and 0.85 ± 0.04, respectively), and RIFLE F (0.86 ± 0.06 and 0.88 ± 0.04, respectively) and comparable with those of admission estimated glomerular filtration rate (eGFR) (0.84 ± 0.04, 0.87 ± 0.04, and 0.92 ± 0.04, respectively). Plasma and urine NGAL significantly contributed to the accuracy of the "most efficient clinical model" with the best four variables including eGFR, improving the area under the curve for RIFLE F prediction to 0.96 ± 0.02 and 0.95 ± 0.01. Serial NGAL measurements did not provide additional information for the prediction of RIFLE F. CONCLUSIONS NGAL measured at ICU admission predicts the development of severe AKI similarly to serum creatinine-derived eGFR. However, NGAL adds significant accuracy to this prediction in combination with eGFR alone or with other clinical parameters and has an interesting predictive value in patients with normal serum creatinine.
Collapse
Affiliation(s)
- Hilde R H de Geus
- Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
76
|
Korbély R, Wilflingseder J, Perco P, Kainz A, Langer RM, Mayer B, Oberbauer R. Molecular biomarker candidates of acute kidney injury in zero-hour renal transplant needle biopsies. Transpl Int 2010; 24:143-9. [PMID: 20819195 DOI: 10.1111/j.1432-2277.2010.01162.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to assess gene expression levels of four biomarker candidates [lipocalin 2 (LCN2), the kidney injury molecule 1 (HAVCR1), netrin 1, and the cysteine-rich, angiogenic inducer, 61] in the tubulointerstitial and the glomerular compartment of zero-hour kidney biopsies in order to predict developing delayed graft function (DGF). Thirty-four needle kidney biopsy samples of deceased donors were manually microdissected. Relative gene expression levels were determined by real-time RT-PCR. For the validation of the biomarker candidates, we calculated a mixed model comparing kidneys with DGF, primary function and control samples from the healthy parts of tumor nephrectomies. Significant biomarker candidates were analyzed together with donor age in multivariable regression models to determine the prognostic value. Expression levels of LCN2 and HAVCR1 in the tubulointerstitium were significantly upregulated in the DGF group (LCN2: fold change = 3.78, P = 0.031 and HAVCR1: fold change = 3.44, P = 0.010). Odds ratios of both genes could not reach significance in the multivariable model together with donor age. The area under the curve of the receiver operating characteristic ranges between 0.75 and 0.83. LCN2 and HAVCR1 gene expression levels in zero-hour biopsies show potential to act as early biomarkers for DGF.
Collapse
Affiliation(s)
- Reka Korbély
- Department of Nephrology, KH Elisabethinen, Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
77
|
Tadagavadi RK, Wang W, Ramesh G. Netrin-1 Regulates Th1/Th2/Th17 Cytokine Production and Inflammation through UNC5B Receptor and Protects Kidney against Ischemia–Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2010; 185:3750-8. [DOI: 10.4049/jimmunol.1000435] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
78
|
Abstract
PURPOSE OF REVIEW Secondary prevention follows identification of acute kidney injury (AKI), in which functional outcome is incomplete. Secondary prevention requires biomarkers for early diagnosis and response to appropriate treatment, on-going injury and repair, and meaningful metrics to monitor outcome. This review summarizes recent research in these areas. RECENT FINDINGS Proteomics and genetic studies have identified new risk factors and biomarkers of AKI. Biomarker performance studies reveal differences in prognostic performance according to population and AKI definition. The first early secondary prevention study utilizing a urinary biomarker of AKI as a triaging tool to randomize to treatment has been completed. Recent creatinine-kinetic modelling has highlighted issues with defining AKI which continue to make comparison of treatment outcomes difficult. Biomarkers to monitor repair are emerging. SUMMARY The prognostic performance of novel biomarkers of AKI in a range of clinical settings is encouraging and critical to effective secondary prevention. Identification of cause and time-course of specific biomarkers are required before biomarker panels for secondary prevention are developed. Agreed standards around reporting of biomarker studies would facilitate comparisons between studies. Phase-specific biomarkers are required to triage to phase-specific treatment.
Collapse
|
79
|
Abstract
Ischemia reperfusion injury (IRI) is a choreographed process leading to delayed graft function (DGF) and reduced long-term patency of the transplanted organ. Early identification of recipients of grafts at risk would allow modification of the posttransplant management, and thereby potentially improve short- and long-term outcomes. The recently emerged "omics" technologies together with bioinformatics workup have allowed the integration and analysis of IRI-associated molecular profiles in the context of DGF. Such a systems biological approach promises qualitative information about interdependencies of complex processes such as IRI regulation, rather than offering descriptive tables of differentially regulated features on a transcriptome, proteome, or metabolome level leaking the functional, biological framework. In deceased-donor kidney transplantation as the primary causative factor resulting in IRI and DGF, a distinct signature and choreography of molecular events in the graft before harvesting seems to be associated with subsequent DGF. A systems biological assessment of these molecular changes suggests that processes along inflammation are of pivotal importance for the early stage of IRI. The causal proof of this association has been tested by a double-blinded, randomized, controlled trial of steroid or placebo infusion into deceased donors before the organs were harvested. Thorough systems biological analysis revealed a panel of biomarkers with excellent discrimination. In summary, integrated analysis of omics data has brought forward biomarker candidates and candidate panels that promise early assessment of IRI. However, the clinical utility of these markers still needs to be established in prospective trials in independent patient populations.
Collapse
|
80
|
Ramesh G, Krawczeski CD, Woo JG, Wang Y, Devarajan P. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol 2009; 5:395-401. [PMID: 20007677 DOI: 10.2215/cjn.05140709] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND OBJECTIVES Netrin-1, a laminin-related axon guidance molecule, is highly induced and excreted in the urine after acute kidney injury (AKI) in animals. Here, we determined the utility of urinary netrin-1 levels to predict AKI in humans undergoing cardiopulmonary bypass (CPB). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Serial urine samples were analyzed by enzyme-linked immunosorbent assay for netrin-1 in 26 patients who developed AKI (defined as a 50% or greater increase in serum creatinine after CPB) and 34 controls (patients who did not develop AKI after CPB). RESULTS Using serum creatinine, AKI was detected on average only 48 hours after CPB. In contrast, urine netrin-1 increased at 2 hours after CPB, peaked at 6 hours (2462 +/- 370 pg/mg creatinine), and remained elevated up to 48 hours after CPB. The predictive power of netrin-1 as demonstrated by area under the receiver-operating characteristics curve for diagnosis of AKI at 2, 6, and 12 hours after CPB was 0.74, 0.86, and 0.89, respectively. The 6-hour urine netrin-1 measurement strongly correlated with duration and severity of AKI, as well as length of hospital stay (all P < 0.05). Adjusting for CPB time, the 6-hour netrin-1 remained a powerful independent predictor of AKI, with an odds ratio of 1.20 (95% confidence interval: 1.08 to 1.41; P = 0.006). CONCLUSION Our results suggest that netrin-1 is an early, predictive biomarker of AKI after CPB and may allow for the reliable early diagnosis and prognosis of AKI after CPB, before the rise in serum creatinine.
Collapse
Affiliation(s)
- Ganesan Ramesh
- Division of Nephrology, H040, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
81
|
Wang W, Reeves WB, Ramesh G. Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor. Am J Physiol Renal Physiol 2009; 296:F723-9. [DOI: 10.1152/ajprenal.90686.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cellular hallmark of kidney repair is a rapid proliferation of renal tubular epithelial cells ultimately leading to the restoration of nephron structure and function. Netrin-1 was discovered as a neural guidance cue and found to be expressed outside the nervous system, including in kidney. Previous work showed that netrin-1 is upregulated in response to ischemic injury and ameliorates ischemic injury. The objectives of this study were to determine the role of netrin-1 in renal tubular epithelial cell proliferation and migration in vitro. Real-time RT-PCR analysis showed that netrin-1 and its receptors UNC5B and neogenin are highly expressed in cultured mouse renal epithelial cells (TKPTS), whereas the expression of the Deleted in Colon Cancer (DCC), UNC5A, UNC5C, and UNC5D receptors is negligible or undetectable. Netrin-1 protein was induced in the edges of mechanical wounds in vitro. Netrin-1 increased TKPTS cell proliferation in a dose-dependent manner. The netrin-1-induced increase in TKPTS cell proliferation was completely prevented by small interfering RNA (siRNA) inhibition of UNC5B receptor but not UNC5C receptor expression. Netrin-1 also increased TKPTS cell migration in vitro, and this was also mediated through the UNC5B receptor. Netrin-1 increased the phosphorylation of Akt and ERK. Inhibition of phosphatidylinositol 3-kinase and MEK1/2 completely inhibited netrin-1-induced cell proliferation but not migration. These results indicate that netrin-1 increases renal tubular epithelial cell proliferation and migration through the UNC5B receptor. Moreover, the increase in cell proliferation, but not migration, was mediated via activation of Akt and ERK pathways.
Collapse
|
82
|
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. ACTA ACUST UNITED AC 2008; 61:223-42. [PMID: 18986801 DOI: 10.1016/j.etp.2008.09.003] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 02/07/2023]
Abstract
cis-Diamminedichloroplatinum (II) (cisplatin) is an important chemotherapeutic agent useful in the treatment of several cancers; however, it has several side effects such as nephrotoxicity. The role of the oxidative and nitrosative stress in cisplatin-induced nephrotoxicity is additionally supported by the protective effect of several free radical scavengers and antioxidants. Furthermore, in in vitro experiments, antioxidants or reactive oxygen species (ROS) scavengers have a cytoprotective effect on cells exposed to cisplatin. Recently, the participation of nitrosative stress has been more explored in cisplatin-induced renal damage. The use of a water-soluble Fe(III) porphyrin complex able to metabolize peroxynitrite (ONOO(-)) has demonstrated that this anion contributes to both in vivo and in vitro cisplatin-induced toxicity. ONOO(-) is produced when nitric oxide (NO*) reacts with superoxide anion (O(2)(*-)); currently, there are evidences suggesting alterations in NO* production after cisplatin treatment and the evidence appear to NO* has a toxic effect. This article goes through current evidence of the mechanism by more than a few compounds have beneficial effects on cisplatin-induced nephrotoxicity, contribute to understanding the role of oxidative and nitrosative stress and suggest several points as part of the mechanism of cisplatin toxicity.
Collapse
Affiliation(s)
- Yolanda I Chirino
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Tlalpan, DF, Mexico.
| | | |
Collapse
|
83
|
Bernet A, Fitamant J. Netrin-1 and its receptors in tumour growth promotion. Expert Opin Ther Targets 2008; 12:995-1007. [PMID: 18620521 DOI: 10.1517/14728222.12.8.995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Netrin-1 belongs to a family of secreted proteins that act as migration and adhesion cues in the developing CNS and in a number of non-neural tissues. Netrin-1 is the ligand of deleted in colorectal cancer (DCC) and the uncoordinated family member 5 (UNC5) orthologues of the dependence receptor family. Over the past ten years, a novel mechanism has emerged, that a receptor unoccupied by its ligand is not necessarily inactive. Rather, such a receptor can mediate two signalling pathways, depending on whether it is bound to its ligand or not. In the absence of ligand, an active signalling pathway results in cell death through apoptosis. OBJECTIVE Coupled netrin-1 receptors have been shown to regulate diverse processes such as maintenance, integrity, migration and renewal of many tissues. We propose that netrin-1 receptors can regulate tumour development. METHODS We review the properties of netrin-1 and present netrin-1 receptors as regulators of tumourigenesis. RESULTS/CONCLUSION Netrin-1 and its receptors are unexplored critical targets in cancer.
Collapse
Affiliation(s)
- Agnès Bernet
- Université de Lyon, Apoptosis, Cancer and Development Laboratory, Equipe labellisée La Ligue, CNRS UMR5238, Centre Léon Bérard, 69008 Lyon, France.
| | | |
Collapse
|
84
|
Keyes R, Bagshaw SM. Early diagnosis of acute kidney injury in critically ill patients. Expert Rev Mol Diagn 2008; 8:455-64. [PMID: 18598227 DOI: 10.1586/14737159.8.4.455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a common and serious problem in critically ill patients. Tests currently used to detect AKI (i.e., serum creatinine, serum urea and various urinary indices) often result in delayed detection of injury--becoming abnormal at 48-72 h after the initial insult. This delayed detection translates into a potential missed opportunity for therapeutic interventions at a time when kidney damage may be limitable or reversible. This may also, in particular, account for the poor clinical outcomes commonly associated with AKI. The development of novel serum and urinary biomarkers capable of detecting AKI at an earlier phase of illness is therefore vital. This article will review the pitfalls of current conventional testing in kidney injury and discuss the emergence of novel biomarkers with the potential to revolutionize the field of critical care nephrology.
Collapse
Affiliation(s)
- Robert Keyes
- Division of Critical Care Medicine, University of Alberta Hospital, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
85
|
Kidney injury molecule-1 as a biomarker of acute kidney injury in renal transplant recipients. ACTA ACUST UNITED AC 2008; 4:362-3. [DOI: 10.1038/ncpneph0828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/03/2008] [Indexed: 01/26/2023]
|
86
|
Wang W, Reeves WB, Ramesh G. Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. Am J Physiol Renal Physiol 2008; 294:F739-47. [PMID: 18216145 DOI: 10.1152/ajprenal.00508.2007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenous mechanisms exist to limit inflammation. One such molecule is netrin. This study examined the impact of ischemia-reperfusion (I/R) on netrin expression and the role of netrin in preventing renal inflammation and injury. All three isoforms of netrin (1, 3, and 4) are expressed in normal kidney. I/R significantly downregulated netrin-1 and -4 mRNA expression, whereas expression of netrin-3 was moderately upregulated at 24 h of reperfusion. The netrin receptor UNC5B mRNA increased at 3 h and but decreased at later time points. Expression of a second netrin receptor, DCC, was not altered significantly. I/R was associated with dramatic changes in netrin-1 protein abundance and localization. Netrin-1 protein levels increased between 3 and 24 h after reperfusion. Immunolocalization showed an interstitial distribution of netrin-1 in sham-operated kidneys which colocalized with Von Willebrand Factor suggesting the presence of netrin-1 in peritubular capillaries. After I/R, interstitial netrin-1 expression decreased and netrin-1 appeared in tubular epithelial cells. By 72 h after reperfusion, netrin-1 reappeared in the interstitium while tubular epithelial staining decreased significantly. Downregulation of netrin-1 in the interstitium corresponded with increased MCP-1 and IL-6 expression and infiltration of leukocytes into the reperfused kidney. Administration of recombinant netrin-1 significantly improved kidney function (blood urea nitrogen: 161 +/- 7 vs. 104 +/- 24 mg/dl, creatinine: 1.3 +/- 0.07 vs. 0.75 +/- 0.16 mg/dl, P < 0.05 at 24 h) and reduced tubular damage and leukocyte infiltration in the outer medulla. These results suggest that downregulation of netrin-1 in vascular endothelial cells may promote endothelial cell activation and infiltration of leukocytes into the kidney thereby enhancing tubular injury.
Collapse
Affiliation(s)
- Weiwei Wang
- Division of Nephrology, H040, Pennsylvania State Univ. College of Medicine, 500 Univ. Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|