51
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
52
|
Bae EH, Kim SW. Changes in endothelin receptor type B and neuronal nitric oxide synthase in puromycin aminonucleoside-induced nephrotic syndrome. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:223-8. [PMID: 20827336 DOI: 10.4196/kjpp.2010.14.4.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/29/2010] [Accepted: 08/06/2010] [Indexed: 11/15/2022]
Abstract
The collecting duct endothelin (ET) system, which involves ET-1 and its two receptors, may play a role in the regulation of renal sodium in association with the nitric oxide synthase (NOS) system. We determined whether sodium retention is associated with changes in the endothelin and NOS systems at different stages (i.e., a sodium retaining stage and a compensatory stage) of nephrotic syndromes. On day 7 after puromycin aminonucleoside (PAN) injection, urinary sodium excretion was decreased, ascites had developed, and there was a positive sodium balance. ET-1 mRNA expression was increased in the inner medulla of the kidney, whereas protein expression of ET receptor type B (ET(B)R) was unchanged. The expression of neuronal NOS (nNOS) was decreased in the inner medulla. On day 14, urinary sodium excretion was unchanged compared with controls. The expression of ET(B)R increased, while nNOS expression in the inner medulla was comparable to controls. These findings suggest that decreased nNOS plays a role in the development of sodium retention in the nephrotic syndrome. Recovery of nNOS and increased renal ET(B)R synthesis may promote sodium excretion in later stages of the nephrotic syndrome (on day 14).
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Korea
| | | |
Collapse
|
53
|
Perez-Rojas JM, Kassem KM, Beierwaltes WH, Garvin JL, Herrera M. Nitric oxide produced by endothelial nitric oxide synthase promotes diuresis. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1050-5. [PMID: 20147612 DOI: 10.1152/ajpregu.00181.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular fluid volume is highly regulated, at least in part, by peripheral resistance and renal function. Nitric oxide (NO) produced by NO synthase type 3 (NOS 3) in the nonrenal vasculature may promote fluid retention by reducing systemic vascular resistance and arterial pressure. In contrast, NO produced by renal NOS 3 promotes water excretion by reducing renal vascular resistance, increasing glomerular filtration, and inhibiting reabsorption along the nephron. Thus, the net effect of NO from NOS 3 on urinary volume (UV) is unclear. We hypothesized that NO produced by NOS 3 promotes water excretion primarily due to renal tubular effects. We gave conscious wild-type and NOS 3 -/- mice an acute volume load and measured UV, blood pressure, plasma renin concentration (PRC), Na(+), vasopressin, and urinary Na(+) and creatinine concentrations. To give the acute volume load, we trained mice to drink a large volume of water while in metabolic cages. On the day of the experiment, water was replaced with 1% sucrose, and mice had access to it for 1 h. Volume intake was similar in both groups. Over 3 h, wild-type mice excreted 62 +/- 10% of the volume load, but NOS 3 -/- excreted only 42 +/- 5% (P < 0.05). Blood pressure in NOS 3 -/- was 118 +/- 3 compared with 110 +/- 2 mmHg in wild-type mice (P < 0.05), but it did not change following volume load in either strain. PRC, vasopressin, and glomerular filtration rate were similar between groups. Urinary Na(+) excretion was 49.3 +/- 7.0 in wild-type vs. 37.8 +/- 6.4 mumol/3 h in NOS 3 -/- mice (P < 0.05). Bumetanide administration eliminated the difference in volume excretion between wild-type and NOS 3 -/- mice. We conclude that 1) NO produced by NOS 3 promotes water and Na(+) excretion and 2) the renal epithelial actions of NO produced by NOS 3 supersede the systemic and renal vascular actions.
Collapse
Affiliation(s)
- Jazmin M Perez-Rojas
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
54
|
Xie C, Wang DH. Ablation of transient receptor potential vanilloid 1 abolishes endothelin-induced increases in afferent renal nerve activity: mechanisms and functional significance. Hypertension 2009; 54:1298-305. [PMID: 19858408 DOI: 10.1161/hypertensionaha.109.132167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin 1 (ET-1) and its receptors, ETA and ETB, play important roles in regulating renal function and blood pressure, and these components are expressed in sensory nerves. Activation of transient receptor potential vanilloid (TRPV) 1 channels expressed in sensory nerves innervating the renal pelvis enhances afferent renal nerve activity (ARNA), diuresis, and natriuresis. We tested the hypothesis that ET-1 increases ARNA via activation of ETB, whereas ETA counterbalances ETB in wild-type (WT) but not TRPV1-null mutant mice. ET-1 alone or with BQ123, an ETA antagonist, perfused into the left renal pelvis increased ipsilateral ARNA in WT but not in TRPV1-null mutant mice, and ARNA increases were greater in the latter. [Ala1, 3,11,15]-endothelin 1, an ETB agonist, increased ARNA that was greater than that induced by ET-1 in WT mice only. [Ala1, 3,11,15]-endothelin 1-induced increases in ARNA were abolished by chelerythrine, a protein kinase C inhibitor, but not by H89, a protein kinase A inhibitor. Chelerythrine, H89, and BQ788, an ETB antagonist, did not affect ARNA triggered by capsaicin in WT mice. Substance P release from the renal pelvis was increased by [Ala1, 3,11,15]-endothelin 1 in WT mice only, and the increase was abolished by chelerythrine but not by H89. Chelerythrine, H89, and BQ788 did not affect capsaicin-induced substance P release. Our data show that ET1 increases ARNA via activation of ETB, whereas ETA counterbalances ETB in WT but not in TRPV1-null mutant mice, suggesting that TRPV1 mediates ETB-dependent increases in ARNA, diuresis, and natriuresis possibly via the protein kinase C pathway.
Collapse
Affiliation(s)
- Chaoqin Xie
- Department of Medicine, Michigan State University, B338 Clinical Center, East Lansing, MI 48823, USA
| | | |
Collapse
|
55
|
Abstract
The collecting duct endothelin (ET) system, involving ET-1 and its two receptors, is involved in the physiologic regulation of renal sodium (Na), water, and acid excretion. Based on in vitro studies and experiments using genetically engineered rodents, the physiology of this system in the collecting duct is being elucidated. Activation of endothelin B (ETB) receptors on principal cells causes inhibition of Na transport through signaling pathways involving src kinase, MAPK1/2, nitric oxide, and possibly prostaglandin E2 (PGE2). Principal-cell ETB receptors also cause inhibition of water transport through protein kinase C-mediated inhibition of AVP-dependent cAMP accumulation. ETB receptors expressed on intercalated cells augment acid secretion, possibly through nitric oxide-dependent mechanisms. The role of endothelin A (ETA) receptors in the collecting duct remains unclear; however, recent evidence suggests that these receptors can exert natriuretic and diuretic effects. Further complexity is lent to this system by studies indicating that ETA and ETB receptors can homo- and hetero-dimerize, with possible functional consequences. This brief review will describe our current state of knowledge about this complex regulatory system in the collecting duct, and will identify clinically relevant issues that need addressing.
Collapse
|
56
|
Williams DB, Sutherland LN, Bomhof MR, Basaraba SAU, Thrush AB, Dyck DJ, Field CJ, Wright DC. Muscle-specific differences in the response of mitochondrial proteins to beta-GPA feeding: an evaluation of potential mechanisms. Am J Physiol Endocrinol Metab 2009; 296:E1400-8. [PMID: 19318515 DOI: 10.1152/ajpendo.90913.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-Guanadinopropionic acid (beta-GPA) feeding leads to reductions in skeletal muscle phosphagen concentrations and has been used as a tool with which to study the effects of energy charge on skeletal muscle metabolism. Supplementing standard rodent diets with beta-GPA leads to increases in mitochondrial enzyme content in fast but not slow-twitch muscles from male rats. Given this apparent discrepancy between muscle types we used beta-GPA feeding as a model to study signaling pathways involved in mitochondrial biogenesis. We hypothesized that beta-GPA feeding would result in a preferential activation of p38 MAPK and AMPK signaling and reductions in RIP140 protein content in triceps but not soleus muscle. Despite similar reductions in high-energy phosphate concentrations, 6 wk of beta-GPA feeding led to increases in mitochondrial proteins in triceps but not soleus muscles. Differences in the response of mitochondrial proteins to beta-GPA feeding did not seem to be related to a differential activation of p38 MAPK and AMPK signaling pathways or discrepancies in the induction of PPARgamma coactivator (PGC)-1alpha and -1beta. The protein content and expression of the nuclear corepressor RIP140 was reduced in triceps but not soleus muscle. Collectively our results indicate that chronic reductions in high-energy phosphates lead to the activation of p38 MAPK and AMPK signaling and increases in the expression of PGC-1alpha and -1beta in both soleus and triceps muscles. The lack of an effect of beta-GPA feeding on mitochondrial proteins in the soleus muscles could be related to a fiber type-specific effect of beta-GPA on RIP140 protein content.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylate Kinase/metabolism
- Animal Feed
- Animals
- Body Weight/drug effects
- Body Weight/physiology
- DNA, Mitochondrial/genetics
- Energy Metabolism/drug effects
- Energy Metabolism/physiology
- Guanidines/pharmacology
- Male
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Receptor Interacting Protein 1
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Propionates/pharmacology
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Deon B Williams
- Alberta Diabetes Institute, 4126C HRIF East, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Davie NJ, Schermuly RT, Weissmann N, Grimminger F, Ghofrani HA. The science of endothelin-1 and endothelin receptor antagonists in the management of pulmonary arterial hypertension: current understanding and future studies. Eur J Clin Invest 2009; 39 Suppl 2:38-49. [PMID: 19335746 DOI: 10.1111/j.1365-2362.2009.02120.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pathological vascular remodelling is a key contributor to the symptomatology of pulmonary arterial hypertension (PAH), and reversing this process may offer the best hope for improving this debilitating condition. The vascular remodelling process is believed to be due to endothelial cell dysfunction and to involve altered production of endothelial cell-derived vasoactive mediators. The observation that circulating plasma levels of the vasoactive peptide endothelin (ET)-1 are raised in patients with PAH, and that ET-1 production is increased in the pulmonary tissue of affected individuals, makes it a particularly interesting target for a therapeutic intervention in PAH. Clinical trials with ET receptor antagonists (ETRAs) show that they provide symptomatic benefit in patients with PAH, thereby proving the clinical relevance of the ET system as a therapeutic target. In this paper, we review the role of ET-1 together with the available data on the roles of the specific ET receptors and ETRAs in PAH. In particular, we discuss the possible role of ET receptor selectivity in the vascular remodelling process in PAH and whether selective ET(A) or nonselective ET(A)/ET(B) blockade offers the greatest potential to improve symptoms and alter the clinical course of the disease.
Collapse
|
58
|
Zhou Y, Brigstock D, Besner GE. Heparin-binding EGF-like growth factor is a potent dilator of terminal mesenteric arterioles. Microvasc Res 2009; 78:78-85. [PMID: 19389413 DOI: 10.1016/j.mvr.2009.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/24/2009] [Accepted: 04/14/2009] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) protects the intestines from multiple forms of injury via direct cytoprotective effects on the intestinal mucosa. In this study, we examined the effects of HB-EGF on the hemodynamics of intestinal arterioles, the major resistance vessels that regulate blood flow to the intestines, as an additional mechanism of HB-EGF-mediated intestinal protection. METHODS The hemodynamic effects of HB-EGF in rodent terminal mesenteric arterioles and human submucosal arterioles were examined ex vivo using a video dimension analyzer. Cultured human intestinal microvascular endothelial cells (HIMEC) were used to elucidate the mechanisms of HB-EGF-induced vasodilation. RESULTS HB-EGF significantly increased vessel diameter under conditions of increasing intraluminal pressure and increased flow rate. These HB-EGF-mediated vasodilatory effects were observed in terminal mesenteric arterioles from adult rats and 3 day old rat pups. These effects were confirmed in submucosal arterioles from human intestine. Furthermore, HB-EGF significantly reduced endothelin-1-induced mesenteric arteriolar vasoconstriction. The vasodilatory effects of HB-EGF were blocked by ET(B) receptor antagonism in adult rat arterioles, and also by nitric oxide synthase inhibition in rat pup and human infant arterioles. In HIMEC, HB-EGF significantly increased endothelin B (ET(B)) receptor protein expression and provoked intracellular calcium mobilization. CONCLUSIONS HB-EGF is a potent vasodilator of the intestinal microvasculature, further supporting its use in diseases manifested by decreased intestinal blood flow, including necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatric Surgery, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | |
Collapse
|
59
|
Junkin KA, Dyck DJ, Mullen KL, Chabowski A, Thrush AB. Resistin acutely impairs insulin-stimulated glucose transport in rodent muscle in the presence, but not absence, of palmitate. Am J Physiol Regul Integr Comp Physiol 2009; 296:R944-51. [PMID: 19193939 DOI: 10.1152/ajpregu.90971.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistin is a cytokine implicated in the development of insulin resistance. However, there has been little investigation of the effects of resistin on fatty acid (FA) metabolism and insulin response in skeletal muscle, a key tissue for glucose disposal. The purpose of the present study was to examine the role of altered FA metabolism as a cause of resistin's inhibition of insulin-stimulated glucose transport in muscle. Isolated rat soleus muscles were incubated acutely (2 h) in the presence or absence of 600 ng/ml resistin, with or without 2 mM palmitate. Resistin acutely impaired insulin-stimulated glucose transport and Akt phosphorylation, but only in the presence of palmitate, implicating a role for altered FA metabolism. This impairment of glucose transport induced by resistin plus palmitate could be pharmacologically rescued by the inclusion of aimidazole carboxamide ribonucleotide, a stimulator of AMP-activated protein kinase and FA oxidation, as well as inhibitors of ceramide synthesis (myriocin, fumonisin). However, to our surprise, resistin actually blunted the palmitate-induced increase in muscle ceramide content; as expected, ceramide content was significantly lowered by fumonisin. In summary, the acute impairment of insulin response by resistin was manifested only in the presence of high palmitate and was alleviated when FA metabolism was manipulated (increased oxidation, inhibited ceramide synthesis). Resistin's acute impairment of insulin response does not appear to require an absolute increase in ceramide content; however, reducing ceramide content alleviated the impairment in glucose transport and insulin signaling.
Collapse
Affiliation(s)
- Kathryn A Junkin
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
60
|
Seheult RD, Ruh K, Foster GP, Anholm JD. Prophylactic bosentan does not improve exercise capacity or lower pulmonary artery systolic pressure at high altitude. Respir Physiol Neurobiol 2009; 165:123-30. [DOI: 10.1016/j.resp.2008.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/12/2008] [Accepted: 10/06/2008] [Indexed: 11/29/2022]
|
61
|
Nakano D, Pollock DM. Contribution of endothelin A receptors in endothelin 1-dependent natriuresis in female rats. Hypertension 2008; 53:324-30. [PMID: 19104001 DOI: 10.1161/hypertensionaha.108.123687] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal medullary endothelin B receptors contribute to blood pressure regulation by facilitating salt excretion. Premenopausal females have relatively less hypertension than males; therefore, we examined whether there is a sex difference in the natriuretic response to renal medullary infusion of endothelin peptides in the rat. All of the experiments were conducted in anesthetized wild-type (wt) or endothelin B-deficient (sl/sl) rats. Infusion of endothelin 1 (ET-1) significantly increased sodium excretion (U(Na)V) in female, but not male, wt rats (Delta U(Na)V: 0.41+/-0.07 versus -0.04+/-0.06 micromol/min, respectively). The endothelin B receptor agonist sarafotoxin 6c produced similar increases in U(Na)V in both male (Delta 0.58+/-0.15 micromol/min) and female (Delta 0.67+/-0.18 micromol/min) wt rats. Surprisingly, ET-1 markedly increased U(Na)V in female (Delta 0.70+/-0.11 micromol/min) but not male sl/sl rats (Delta 0.00+/-0.05 micromol/min). ET-1 had no effect on medullary blood flow in females, although medullary blood flow was significantly reduced to a similar extent in males of both strains. These results suggest that the lack of a natriuretic response to ET-1 in male rats is because of reductions in medullary blood flow. Treatment with ABT-627, an endothelin A receptor antagonist, or N(G)-propyl-L-arginine, an NO synthase 1 inhibitor, prevented the increase in U(Na)V observed in female rats. Gonadectomy eliminated the sex difference in the U(Na)V and medullary blood flow response to ET-1. These findings demonstrate that there is no sex difference in endothelin B-dependent natriuresis, and the endothelin A receptor contributes to ET-1-dependent natriuresis in female rats, an effect that requires NO synthase 1. These findings provide a possible mechanism for why premenopausal women are more resistant to salt-dependent hypertension.
Collapse
Affiliation(s)
- Daisuke Nakano
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | | |
Collapse
|
62
|
Herrera M, Hong NJ, Ortiz PA, Garvin JL. Endothelin-1 inhibits thick ascending limb transport via Akt-stimulated nitric oxide production. J Biol Chem 2008; 284:1454-60. [PMID: 19033447 DOI: 10.1074/jbc.m804322200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin-1 inhibits sodium reabsorption in the thick ascending limb (THAL) via stimulation of nitric oxide (NO) production. The mechanism whereby endothelin-1 stimulates THAL NO is unknown. We hypothesized that endothelin-1 stimulates THAL NO production by activating phosphatidylinositol 3-kinase (PI3K), stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport. We measured 1) NO production by fluorescence microscopy using DAF2-DA, 2) Akt activity using a fluorescence resonance energy transfer-based Akt reporter, 3) phosphorylated NOS3 and Akt by Western blotting, and 4) NKCC2 activity by fluorescence microscopy. In isolated THAL, endothelin-1 (1 nmol/liter) increased NO production from 0.23 +/- 0.24 to 2.81 +/- 0.32 fluorescence units/min (p < 0.001; n = 5) but failed to stimulate NO production in THALs isolated from NOS3-/- mice. Wortmannin (150 nmol/liter), a PI3K inhibitor, reduced endothelin-1-stimulated NO by 83% (0.49 +/- 0.13 versus 3.31 +/- 0.49 fluorescence units/min for endothelin-1 alone; p < 0.006; n = 5). Endothelin-1 stimulated Akt activity by 0.16 +/- 0.02 arbitrary units as measured by fluorescence resonance energy transfer (p < 0.001; n = 5) and increased phosphorylation of Akt at Ser473 by 56 +/- 11% (p < 0.002; n = 7). Dominant-negative Akt blocked endothelin-1-induced NO by 60 +/- 8% (p < 0.001 versus control; n = 6), and an Akt inhibitor had a similar effect. Endothelin-1 increased phosphorylation of NOS3 at Ser1177 by 89 +/- 24% (p < 0.01; n = 7) but had no effect on Ser633. Endothelin-1 inhibited NKCC2 activity, an effect that was blocked by dominant-negative Akt and NOS inhibition. We conclude that endothelin-1 stimulates THAL NO production by activating PI3K, stimulating Akt activity, and phosphorylating NOS3 at Ser1177. This enhances NO production and inhibits sodium transport.
Collapse
Affiliation(s)
- Marcela Herrera
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
63
|
New indications and controversies in arginine therapy. Clin Nutr 2008; 27:489-96. [PMID: 18640748 DOI: 10.1016/j.clnu.2008.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 05/18/2008] [Accepted: 05/30/2008] [Indexed: 11/21/2022]
Abstract
Arginine is an important, versatile and a conditionally essential amino acid. Besides serving as a building block for tissue proteins, arginine plays a critical role in ammonia detoxification, and nitric oxide and creatine production. Arginine supplementation is an essential component for the treatment of urea cycle defects but recently some reservations have been raised with regards to the doses used in the treatment regimens of these disorders. In recent years, arginine supplementation or restriction has been proposed and trialled in several disorders, including vascular diseases and asthma, mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), glutaric aciduria type I and disorders of creatine metabolism, both production and transportation into the central nervous system. Herein we present new therapeutic indications and controversies surrounding arginine supplementation or deprivation.
Collapse
|