51
|
Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, Lopaschuk GD, Oudit GY. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol 2014; 306:F812-21. [DOI: 10.1152/ajprenal.00655.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The renin-angiotensin system, especially angiotensin II (ANG II), plays a key role in the development and progression of diabetic nephropathy. ANG 1–7 has counteracting effects on ANG II and is known to exert beneficial effects on diabetic nephropathy. We studied the mechanism of ANG 1–7-induced beneficial effects on diabetic nephropathy in db/db mice. We administered ANG 1–7 (0.5 mg·kg−1·day−1) or saline to 5-mo-old db/db mice for 28 days via implanted micro-osmotic pumps. ANG 1–7 treatment reduced kidney weight and ameliorated mesangial expansion and increased urinary albumin excretion, characteristic features of diabetic nephropathy, in db/db mice. ANG 1–7 decreased renal fibrosis in db/db mice, which correlated with dephosphorylation of the signal transducer and activator of transcription 3 (STAT3) pathway. ANG 1–7 treatment also suppressed the production of reactive oxygen species via attenuation of NADPH oxidase activity and reduced inflammation in perirenal adipose tissue. Furthermore, ANG 1–7 treatment decreased lipid accumulation in db/db kidneys, accompanied by increased expressions of renal adipose triglyceride lipase (ATGL). Alterations in ATGL expression correlated with increased SIRT1 expression and deacetylation of FOXO1. The upregulation of angiotensin-converting enzyme 2 levels in diabetic nephropathy was normalized by ANG 1–7. ANG 1–7 treatment exerts renoprotective effects on diabetic nephropathy, associated with reduction of oxidative stress, inflammation, fibrosis, and lipotoxicity. ANG 1–7 can represent a promising therapy for diabetic nephropathy.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Vaibhav B. Patel
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Tharmarajan Ramprasath
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Osama Abo Alrob
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - James W. Scholey
- Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Gary D. Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|
52
|
Wysocki J, Ortiz‐Melo DI, Mattocks NK, Xu K, Prescott J, Evora K, Ye M, Sparks MA, Haque SK, Batlle D, Gurley SB. ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol Rep 2014; 2:e00264. [PMID: 24760518 PMCID: PMC4002244 DOI: 10.1002/phy2.264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 12/24/2022] Open
Abstract
Abstract Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney and hydrolyzes angiotensin II (Ang II) to Ang(1-7). Since Ang II is a strong activator of oxidative stress, we reasoned that ACE2 could be involved in the regulation of renal oxidative stress by governing the levels of Ang II. We, therefore, assessed levels of oxidative stress in kidney cortex of ACE2 knockout and wild-type littermate mice under baseline conditions. We found multiple markers of increased oxidative stress in ACE2KO mice. NADPH oxidase activity was increased in kidney cortex from ACE2KO mice as compared to WT (227 ± 24% vs.100 ± 19%, P < 0.001). However, kidney catalase and superoxide dismutase activities were not different between groups. Exogenous Ang II was degraded less efficiently by kidneys from ACE2KO mice than WT mice, and administration of an AT1R blocker (losartan 30 mg/kg/day) resulted in normalization of NADPH oxidase activity in the ACE2KO. These findings suggest that an AT1R-dependent mechanism contributes to increased ROS observed in the ACE2KO. This study demonstrates that genetic deficiency of ACE2 activity in mice fosters oxidative stress in the kidney in the absence of overt hypertension and is associated with reduced kidney capacity to hydrolyze Ang II. ACE2KO mice serve as a novel in vivo model to examine the role of overactivity of NADPH oxidase in kidney function.
Collapse
Affiliation(s)
- Jan Wysocki
- Department of MedicineDivision of Nephrology and HypertensionThe Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - David I. Ortiz‐Melo
- Department of MedicineDivision of NephrologyDuke University and Durham VA Medical CentersDurhamNorth Carolina
| | - Natalie K. Mattocks
- Department of MedicineDivision of NephrologyDuke University and Durham VA Medical CentersDurhamNorth Carolina
| | - Katherine Xu
- Department of MedicineDivision of NephrologyDuke University and Durham VA Medical CentersDurhamNorth Carolina
| | - Jessica Prescott
- Department of MedicineDivision of NephrologyDuke University and Durham VA Medical CentersDurhamNorth Carolina
| | - Karla Evora
- Department of MedicineDivision of Nephrology and HypertensionThe Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Minghao Ye
- Department of MedicineDivision of Nephrology and HypertensionThe Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Matthew A. Sparks
- Department of MedicineDivision of NephrologyDuke University and Durham VA Medical CentersDurhamNorth Carolina
| | - Syed K. Haque
- Department of MedicineDivision of Nephrology and HypertensionThe Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Daniel Batlle
- Department of MedicineDivision of Nephrology and HypertensionThe Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Susan B. Gurley
- Department of MedicineDivision of NephrologyDuke University and Durham VA Medical CentersDurhamNorth Carolina
| |
Collapse
|
53
|
Varagic J, Ahmad S, Nagata S, Ferrario CM. ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 2014; 16:420. [PMID: 24510672 PMCID: PMC4286874 DOI: 10.1007/s11906-014-0420-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our current recognition of the renin-angiotensin system is more convoluted than originally thought due to the discovery of multiple novel enzymes, peptides, and receptors inherent in this interactive biochemical cascade. Over the last decade, angiotensin-converting enzyme 2 (ACE2) has emerged as a key player in the pathophysiology of hypertension and cardiovascular and renal disease due to its pivotal role in metabolizing vasoconstrictive/hypertrophic/proliferative angiotensin II into favorable angiotensin-(1-7). This review addresses the considerable advancement in research on the role of tissue ACE2 in the development and progression of hypertension and cardiac and renal injury. We summarize the results from recent clinical and experimental studies suggesting that serum or urine soluble ACE2 may serve as a novel biomarker or independent risk factor relevant for diagnosis and prognosis of cardiorenal disease. We also review recent proceedings on novel therapeutic approaches to enhance ACE2/angiotensin-(1-7) axis.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension & Vascular Research Center, Division of Surgical Sciences, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA,
| | | | | | | |
Collapse
|
54
|
Salem ESB, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol 2014; 306:F629-39. [PMID: 24452639 DOI: 10.1152/ajprenal.00516.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is located in several tissues and is highly expressed in renal proximal tubules, where it degrades the vasoconstrictor angiotensin II (ANG II) to ANG-(1-7). Accumulating evidence supports protective roles of ACE2 in several disease states, including diabetic nephropathy. A disintegrin and metalloprotease (ADAM) 17 is involved in the shedding of several transmembrane proteins, including ACE2. Our previous studies showed increased renal ACE2, ADAM17 expression, and urinary ACE2 in type 2 diabetic mice (Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM. PLoS One 8: e62833, 2013). The aim of the present study was to determine the effect of insulin on ACE2 shedding and ADAM17 in type 1 diabetic Akita mice. Results demonstrate increased renal ACE2 and ADAM17 expression and increased urinary ACE2 fragments (≈70 kDa) and albumin excretion in diabetic Akita mice. Immunostaining revealed colocalization of ACE2 with ADAM17 in renal tubules. Renal proximal tubular cells treated with ADAM17 inhibitor showed reduced ACE2 shedding into the media, confirming ADAM17-mediated shedding of ACE2. Treatment of Akita mice with insulin implants for 20 wk normalized hyperglycemia and decreased urinary ACE2 and albumin excretion. Insulin also normalized renal ACE2 and ADAM17 but had no effect on tissue inhibitor of metalloproteinase 3 (TIMP3) protein expression. There was a positive linear correlation between urinary ACE2 and albuminuria, blood glucose, plasma creatinine, glucagon, and triglycerides. This is the first report showing an association between hyperglycemia, cardiovascular risk factors, and increased shedding of urinary ACE2 in diabetic Akita mice. Urinary ACE2 could be used as a biomarker for diabetic nephropathy and as an index of intrarenal ACE2 status.
Collapse
Affiliation(s)
- Esam S B Salem
- Dept. of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State Univ., 3640 Colonel Glenn Highway, Dayton, OH 45435.
| | | | | |
Collapse
|
55
|
Salem ESB, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol 2014. [PMID: 24452639 DOI: 10.1152/ajprenal.00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is located in several tissues and is highly expressed in renal proximal tubules, where it degrades the vasoconstrictor angiotensin II (ANG II) to ANG-(1-7). Accumulating evidence supports protective roles of ACE2 in several disease states, including diabetic nephropathy. A disintegrin and metalloprotease (ADAM) 17 is involved in the shedding of several transmembrane proteins, including ACE2. Our previous studies showed increased renal ACE2, ADAM17 expression, and urinary ACE2 in type 2 diabetic mice (Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM. PLoS One 8: e62833, 2013). The aim of the present study was to determine the effect of insulin on ACE2 shedding and ADAM17 in type 1 diabetic Akita mice. Results demonstrate increased renal ACE2 and ADAM17 expression and increased urinary ACE2 fragments (≈70 kDa) and albumin excretion in diabetic Akita mice. Immunostaining revealed colocalization of ACE2 with ADAM17 in renal tubules. Renal proximal tubular cells treated with ADAM17 inhibitor showed reduced ACE2 shedding into the media, confirming ADAM17-mediated shedding of ACE2. Treatment of Akita mice with insulin implants for 20 wk normalized hyperglycemia and decreased urinary ACE2 and albumin excretion. Insulin also normalized renal ACE2 and ADAM17 but had no effect on tissue inhibitor of metalloproteinase 3 (TIMP3) protein expression. There was a positive linear correlation between urinary ACE2 and albuminuria, blood glucose, plasma creatinine, glucagon, and triglycerides. This is the first report showing an association between hyperglycemia, cardiovascular risk factors, and increased shedding of urinary ACE2 in diabetic Akita mice. Urinary ACE2 could be used as a biomarker for diabetic nephropathy and as an index of intrarenal ACE2 status.
Collapse
Affiliation(s)
- Esam S B Salem
- Dept. of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State Univ., 3640 Colonel Glenn Highway, Dayton, OH 45435.
| | | | | |
Collapse
|
56
|
Haber PK, Ye M, Wysocki J, Maier C, Haque SK, Batlle D. Angiotensin-converting enzyme 2-independent action of presumed angiotensin-converting enzyme 2 activators: studies in vivo, ex vivo, and in vitro. Hypertension 2014; 63:774-82. [PMID: 24446061 DOI: 10.1161/hypertensionaha.113.02856] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-converting enzyme 2 (ACE2) is a key enzyme in the metabolism of Ang II. XNT (1-[(2-dimethylamino)ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one) and diminazene have been reported to exert various organ-protective effects, which are attributed to the activation of ACE2. To test the effect of these compounds, we studied Ang II degradation in vivo and in vitro as well as their effect on ACE2 activity in vivo and in vitro. In a model of Ang II-induced acute hypertension, blood pressure (BP) recovery was markedly enhanced by XNT (slope with XNT, -3.26±0.2 versus -1.6±0.2 mm Hg/min without XNT; P<0.01). After Ang II infusion, neither plasma nor kidney ACE2 activity was affected by XNT. Plasma Ang II and Ang (1-7) levels also were not significantly affected by XNT. The BP-lowering effect of XNT seen in wild-type animals was also observed in ACE2 knockout mice (slope with XNT, -3.09±0.30 versus -1.28±0.22 mm Hg/min without XNT; P<0.001). These findings show that the BP-lowering effect of XNT in Ang II-induced hypertension cannot be because of the activation of ACE2. In vitro and ex vivo experiments in both mice and rat kidney confirmed a lack of enhancement of ACE2 enzymatic activity by XNT and diminazene. Moreover, Ang II degradation in vitro and ex vivo was unaffected by XNT and diminazene. We conclude that the biological effects of these compounds are ACE2-independent and should not be attributed to the activation of this enzyme.
Collapse
Affiliation(s)
- Philipp K Haber
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, 320 E Superior, Chicago, IL 60611.
| | | | | | | | | | | |
Collapse
|
57
|
Xiao F, Zimpelmann J, Agaybi S, Gurley SB, Puente L, Burns KD. Characterization of angiotensin-converting enzyme 2 ectodomain shedding from mouse proximal tubular cells. PLoS One 2014; 9:e85958. [PMID: 24454948 PMCID: PMC3893316 DOI: 10.1371/journal.pone.0085958] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/02/2013] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney proximal tubule, where it cleaves angiotensin (Ang) II to Ang-(1-7). Urinary ACE2 levels increase in diabetes, suggesting that ACE2 may be shed from tubular cells. The aim of this study was to determine if ACE2 is shed from proximal tubular cells, to characterize ACE2 fragments, and to study pathways for shedding. Studies involved primary cultures of mouse proximal tubular cells, with ACE2 activity measured using a synthetic substrate, and analysis of ACE2 fragments by immunoblots and mass spectrometry. The culture media from mouse proximal tubular cells demonstrated a time-dependent increase in ACE2 activity, suggesting constitutive ACE2 shedding. ACE2 was detected in media as two bands at ∼90 kDa and ∼70 kDa on immunoblots. By contrast, full-length ACE2 appeared at ∼100 kDa in cell lysates or mouse kidney cortex. Mass spectrometry of the two deglycosylated fragments identified peptides matching mouse ACE2 at positions 18-706 and 18-577, respectively. The C-terminus of the 18-706 peptide fragment contained a non-tryptic site, suggesting that Met706 is a candidate ACE2 cleavage site. Incubation of cells in high D-glucose (25 mM) (and to a lesser extent Ang II) for 48–72 h increased ACE2 activity in the media (p<0.001), an effect blocked by inhibition of a disintegrin and metalloproteinase (ADAM)17. High D-glucose increased ADAM17 activity in cell lysates (p<0.05). These data indicate that two glycosylated ACE2 fragments are constitutively shed from mouse proximal tubular cells. ACE2 shedding is stimulated by high D-glucose, at least partly via an ADAM17-mediated pathway. The results suggest that proximal tubular shedding of ACE2 may increase in diabetes, which could enhance degradation of Ang II in the tubular lumen, and increase levels of Ang-(1-7).
Collapse
Affiliation(s)
- Fengxia Xiao
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Zimpelmann
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Samih Agaybi
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Lawrence Puente
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kevin D. Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
58
|
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4:201. [PMID: 24409169 PMCID: PMC3886117 DOI: 10.3389/fendo.2013.00201] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1-7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1-7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1-7)-Mas receptor axis regarding the precursor for Ang-(1-7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1-7) pathway in fetal programing events and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Mark C. Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson C. Marshall
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ebaa M. Alzayadneh
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hossam A. Shaltout
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Debra I. Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- *Correspondence: Debra I. Diz, The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1032, USA e-mail:
| |
Collapse
|
59
|
Chappell MC. Of diabetic mice and ACE2: a new biomarker of renal disease? Am J Physiol Renal Physiol 2013; 305:F970-2. [PMID: 23863471 DOI: 10.1152/ajprenal.00403.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157.
| |
Collapse
|