51
|
Cieślar K, Alsaid H, Stupar V, Gaillard S, Canet-Soulas E, Fissoune R, Crémillieux Y. Measurement of nonlinear pO2 decay in mouse lungs using 3He-MRI. NMR IN BIOMEDICINE 2007; 20:383-91. [PMID: 17451167 DOI: 10.1002/nbm.1124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Spatial and temporal variations in oxygen partial pressure (pO(2)) during breath-hold can be exploited to obtain important regional parameters of lung function. In the course of apnea, the oxygen concentration is known to decay exponentially. Therefore, the initial pO(2) (p(0)) can be used to represent local ventilation, and the oxygen depletion time constant can characterize perfusion. The protocol, based on a nonlinear model of pO(2) decay, was validated in six healthy mice. Parametric maps of p(0) and oxygen depletion time constant were obtained for pure (3)He and (3)He/air mixture. The mean measured values of p(0) were 77 +/- 9 mbar for the pure (3)He insufflation and 107 +/- 5 mbar for (3)He/air mixture, in agreement with the predefined p(0) values: 75 +/- 15 mbar and 123 +/- 15 mbar, respectively. The mean measured oxygen depletion time constants were 6.5 +/- 0.2 s for pure (3)He and 7.1 +/- 0.8 s for the (3)He/air mixture, in agreement with physiology.
Collapse
|
52
|
Cieślar K, Stupar V, Canet-Soulas E, Gaillard S, Crémillieux Y. Alveolar oxygen partial pressure and oxygen depletion rate mapping in rats using 3He ventilation imaging. Magn Reson Med 2007; 57:423-30. [PMID: 17152086 DOI: 10.1002/mrm.21110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A hyperpolarized 3He ventilation imaging protocol was implemented to assess alveolar pO2 values and the oxygen depletion rate in rats. The imaging protocol, which is based on spiral k-space sampling, was designed to acquire a high signal-to-noise ratio (SNR) T1-weighted ventilation series of images in a single breath-hold. Simulations were performed to estimate the accuracy and dependence of the pO2 imaging protocol on the image SNR and the RF flip-angle determination. The imaging protocol was validated in vitro in phantoms and in vivo in rats. Imaging sessions were carried out for different inhaled O2 concentrations ranging from 20% to 40%. Parametric maps of alveolar pO2 and oxygen depletion rate were generated from the series of images. For each investigated animal, the differences in measured alveolar pO2 values are in agreement with the changes in inhaled O2 concentration. The oxygen depletion rates, ranging between 0.7 and 8.0 mbar s-1, are in close agreement with the published values for healthy rats.
Collapse
|
53
|
Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 2007; 98:420-8. [PMID: 17347182 DOI: 10.1093/bja/aem036] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Current textbooks in anaesthesia describe how gravity affects the regional distribution of ventilation and blood flow in the lung, in terms of vertical gradients of pleural pressure and pulmonary vascular pressures. This concept fails to explain some of the clinical features of disturbed lung function. Evidence now suggests that gravity has a less important role in the variation of regional distribution than structural features of the airways and blood vessels. We review more recent studies that used a variety of methods: external radioactive counters, measurements using inhaled and injected particles, and computer tomography scans. These give a higher spatial resolution of regional blood flow and ventilation. The matching between ventilation and blood flow in these small units of lung is considered; the effects of microgravity, increased gravity, and different postures are reviewed, and the application of these findings to conditions such as acute lung injury is discussed. Down to the scale of the acinus, there is considerable heterogeneity in the distribution of both ventilation and blood flow. However, the matching of blood flow with ventilation is well maintained and may result from a common pattern of asymmetric branching of the airways and blood vessels. Disruption of this pattern may explain impaired gas exchange after acute lung injury and explain how the prone position improves gas exchange.
Collapse
Affiliation(s)
- I Galvin
- University Department of Anaesthesia and Critical Care Medicine, Manchester Royal Infirmary, Manchester, UK
| | | | | |
Collapse
|
54
|
Robertson HT, Hlastala MP. Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol (1985) 2006; 102:1265-72. [PMID: 17158248 DOI: 10.1152/japplphysiol.00756.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systematically mapped samples cut from lungs previously labeled with intravascular and aerosol microspheres can be used to create high-resolution maps of regional perfusion and regional ventilation. With multiple radioactive or fluorescent microsphere labels available, this methodology can compare regional flow responses to different interventions without partial volume effects or registration errors that complicate interpretation of in vivo imaging measurements. Microsphere blood flow maps examined at different levels of spatial resolution have revealed that regional flow heterogeneity increases progressively down to an acinar level of scale. This pattern of scale-dependent heterogeneity is characteristic of a fractal distribution network, and it suggests that the anatomic configuration of the pulmonary vascular tree is the primary determinant of high-resolution regional flow heterogeneity. At approximately 2-cm(3) resolution, the large-scale gravitational gradients of blood flow per unit weight of alveolar tissue account for <5% of the overall flow heterogeneity. Furthermore, regional blood flow per gram of alveolar tissue remains relatively constant with different body positions, gravitational stresses, and exercise. Regional alveolar ventilation is accurately represented by the deposition of inhaled 1.0-microm fluorescent microsphere aerosols, at least down to the approximately 2-cm(3) level of scale. Analysis of these ventilation maps has revealed the same scale-dependent property of regional alveolar ventilation heterogeneity, with a strong correlation between ventilation and blood flow maintained at all levels of scale. The ventilation-perfusion (VA/Q) distributions obtained from microsphere flow maps of normal animals agree with simultaneously acquired multiple inert-gas elimination technique VA/Q distributions, but they underestimate gas-exchange impairment in diffuse lung injury.
Collapse
Affiliation(s)
- H Thomas Robertson
- Department of Medicine, University of Washingotn, Seattle, WA 98195-6522, USA.
| | | |
Collapse
|
55
|
Hopkins SR, Levin DL, Emami K, Kadlecek S, Yu J, Ishii M, Rizi RR. Advances in magnetic resonance imaging of lung physiology. J Appl Physiol (1985) 2006; 102:1244-54. [PMID: 17158249 DOI: 10.1152/japplphysiol.00738.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review presents an overview of some recent magnetic resonance imaging (MRI) techniques for measuring aspects of local physiology in the lung. MRI is noninvasive, relatively high resolution, and does not expose subjects to ionizing radiation. Conventional MRI of the lung suffers from low signal intensity caused by the low proton density and the large degree of microscopic field inhomogeneity that degrades the magnetic resonance signal and interferes with image acquisition. However, in recent years, there have been rapid advances in both hardware and software design, allowing these difficulties to be minimized. This review focuses on some newer techniques that measure regional perfusion, ventilation, gas diffusion, ventilation-to-perfusion ratio, partial pressure of oxygen, and lung water. These techniques include contrast-enhanced and arterial spin-labeling techniques for measuring perfusion, hyperpolarized gas techniques for measuring regional ventilation, and apparent diffusion coefficient and multiecho and gradient echo techniques for measuring proton density and lung water. Some of the major advantages and disadvantages of each technique are discussed. In addition, some of the physiological issues associated with making measurements are discussed, along with strategies for understanding large and complex data sets.
Collapse
Affiliation(s)
- Susan R Hopkins
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
West BJ, Maciejewski A, Latka M, Sebzda T, Swierczynski Z, Cybulska-Okolow S, Baran E. Wavelet analysis of scaling properties of gastric electrical activity. J Appl Physiol (1985) 2006; 101:1425-31. [PMID: 16794018 DOI: 10.1152/japplphysiol.01364.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present a novel approach to the analysis of fluctuations in human myoelectrical gastric activity measured noninvasively from the surface of the abdomen. The time intervals between successive maxima of the wavelet transformed quasi-periodic electrogastrographic waveform define the gastric rate variability (GRV) time series. By using the method of average wavelet coefficients, the statistical fluctuations in the GRV signal in healthy individuals are determined to scale in time. Such scaling was previously found in a variety of physiological phenomena, all of which support the hypothesis that physiological dynamics utilize fractal time series. We determine the scaling index in a cohort of 17 healthy individuals to be 0.80 ± 0.14, which compared with a set of surrogate data is found to be significant at the level P < 0.01. We also determined that the dynamical pattern, so evident in the spectrum of average wavelet coefficients of the GRV time series of healthy individuals, is significantly reduced in a cohort of systemic sclerosis patients having a scaling index 0.64 ± 0.17. These results imply that the long-term memory in GRV time series is significantly reduced from healthy individuals to those with systemic sclerosis. Consequently, this disease degrades the complexity of the underlying gastrointestinal control system and this degradation is manifest in the loss of scaling in the GRV time series.
Collapse
Affiliation(s)
- Bruce J West
- Mathematical and Information Science Directorate, Army Research Office, Research Triangle Park, NC 27709-2211, USA.
| | | | | | | | | | | | | |
Collapse
|
57
|
Guerrero T, Sanders K, Castillo E, Zhang Y, Bidaut L, Pan T, Komaki R. Dynamic ventilation imaging from four-dimensional computed tomography. Phys Med Biol 2006; 51:777-91. [PMID: 16467578 DOI: 10.1088/0031-9155/51/4/002] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel method for dynamic ventilation imaging of the full respiratory cycle from four-dimensional computed tomography (4D CT) acquired without added contrast is presented. Three cases with 4D CT images obtained with respiratory gated acquisition for radiotherapy treatment planning were selected. Each of the 4D CT data sets was acquired during resting tidal breathing. A deformable image registration algorithm mapped each (voxel) corresponding tissue element across the 4D CT data set. From local average CT values, the change in fraction of air per voxel (i.e. local ventilation) was calculated. A 4D ventilation image set was calculated using pairs formed with the maximum expiration image volume, first the exhalation then the inhalation phases representing a complete breath cycle. A preliminary validation using manually determined lung volumes was performed. The calculated total ventilation was compared to the change in contoured lung volumes between the CT pairs (measured volume). A linear regression resulted in a slope of 1.01 and a correlation coefficient of 0.984 for the ventilation images. The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found. These images may be useful in radiotherapy planning.
Collapse
Affiliation(s)
- Thomas Guerrero
- Division of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Bates JHT, Lutchen KR. The interface between measurement and modeling of peripheral lung mechanics. Respir Physiol Neurobiol 2005; 148:153-64. [PMID: 15950552 DOI: 10.1016/j.resp.2005.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 04/11/2005] [Accepted: 04/25/2005] [Indexed: 11/19/2022]
Abstract
The mechanical properties of the lung periphery are vital to the overall function of the whole organ, and play a key role in the symptomatology of many lung diseases. We first review the experimental methodologies that have been used to investigate peripheral lung mechanics, including the retrograde catheter, the alveolar capsule, the alveolar capsule oscillator, and the forced oscillation technique. We then discuss the interpretation of the data provided by these techniques in terms of inverse mathematical models of the lung, including the constant-phase model. Finally, we describe efforts to construct anatomically accurate forward models of the lung based on data from imaging modalities such as computed tomography and magnetic resonance imaging. Together, these various approaches have provided a great deal of information about the relative importance of the lung periphery in mechanical function in animal models of lung disease and in human patients. An increasing body of evidence indicates that constriction in this part of the lung is a crucial determinant of the severity of asthma.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center, University of Vermont College of Medicine, HSRF 228, 149 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
59
|
Robertson HT, Kreck TC, Krueger MA. The spatial and temporal heterogeneity of regional ventilation: Comparison of measurements by two high-resolution methods. Respir Physiol Neurobiol 2005; 148:85-95. [PMID: 15964251 DOI: 10.1016/j.resp.2005.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/09/2005] [Accepted: 05/11/2005] [Indexed: 11/22/2022]
Abstract
High-resolution estimates of ventilation distribution in normal animals utilizing deposition of fluorescent microsphere aerosol (FMS technique) demonstrate substantial ventilation heterogeneity, but this finding has not been confirmed by an independent method. Five supine anesthetized sheep were used to compare the spatial and temporal heterogeneity of regional ventilation measured by both the FMS technique and by a ventilation model utilizing the data from computed tomography images of xenon gas washin (CT/Xe technique). An aerosol containing 1 microm fluorescent microspheres (FMS) was administered via a mechanical ventilator delivering a 2-s end-inspiration hold during each breath. Following the aerosol administration, sequential CT images of a transverse lung slice were acquired during each end-inspiration hold during washin of a 65% Xenon/35% oxygen gas mixture (CT/Xe technique). Four paired FMS and CT/Xe measurements were done at 30 min intervals, after which the animals were sacrificed. The lungs were extracted, air-dried and sliced in 1cm transverse sections. The lung section corresponding to the CT image was cut into 1 cm3 cubes, with notation of spatial coordinates. The individual cubes were soaked in solvent and the four fluorescent signals were measured with a fluorescence spectrophotometer. The color signals were normalized by the mean signal for all pieces and taken as the FMS estimate of ventilation heterogeneity. The CT images were clustered into 1 cm3 voxels and the rate of increase in voxel density was used to calculate voxel ventilation utilizing the model of . The regional ventilation voxel measurements were normalized by the mean value to give a CT/Xe estimate of ventilation heterogeneity comparable to the normalized FMS measurements. The overall of heterogeneity of ventilation at the 1 cm3 level of resolution was comparable by both techniques, with substantial differences among animals (coefficient of variation ranging from 37% to 74%). The repeated within-animal measurements by both techniques gave consistent values. Both techniques showed comparable large-scale distribution of regional ventilation in the caudal lobes of the supine animals. There were appreciable differences in the temporal variability of ventilation among animals. This study provides an independent confirmation of the scale-dependent heterogeneity of ventilation described by previous FMS aerosol studies of ventilation heterogeneity.
Collapse
Affiliation(s)
- H Thomas Robertson
- University of Washington, Departments of Medicine and Physiology and Biophysics, Box 356522,University Hospital, Seattle, WA 98195-6522, USA.
| | | | | |
Collapse
|
60
|
Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ. Phase dynamics in cerebral autoregulation. Am J Physiol Heart Circ Physiol 2005; 289:H2272-9. [PMID: 16024579 DOI: 10.1152/ajpheart.01307.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex continuous wavelet transforms are used to study the dynamics of instantaneous phase difference delta phi between the fluctuations of arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) in a middle cerebral artery. For healthy individuals, this phase difference changes slowly over time and has an almost uniform distribution for the very low-frequency (0.02-0.07 Hz) part of the spectrum. We quantify phase dynamics with the help of the synchronization index gamma = (sin delta phi)2 + (cos delta phi)2 that may vary between 0 (uniform distribution of phase differences, so the time series are statistically independent of one another) and 1 (phase locking of ABP and CBFV, so the former drives the latter). For healthy individuals, the group-averaged index gamma has two distinct peaks, one at 0.11 Hz [gamma = 0.59 +/- 0.09] and another at 0.33 Hz (gamma = 0.55 +/- 0.17). In the very low-frequency range (0.02-0.07 Hz), phase difference variability is an inherent property of an intact autoregulation system. Consequently, the average value of the synchronization parameter in this part of the spectrum is equal to 0.13 +/- 0.03. The phase difference variability sheds new light on the nature of cerebral hemodynamics, which so far has been predominantly characterized with the help of the high-pass filter model. In this intrinsically stationary approach, based on the transfer function formalism, the efficient autoregulation is associated with the positive phase shift between oscillations of CBFV and ABP. However, the method is applicable only in the part of the spectrum (0.1-0.3 Hz) where the coherence of these signals is high. We point out that synchrony analysis through the use of wavelet transforms is more general and allows us to study nonstationary aspects of cerebral hemodynamics in the very low-frequency range where the physiological significance of autoregulation is most strongly pronounced.
Collapse
Affiliation(s)
- Miroslaw Latka
- Institute of Physics, Wroclaw Univ. of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
61
|
Guerrero T, Sanders K, Noyola-Martinez J, Castillo E, Zhang Y, Tapia R, Guerra R, Borghero Y, Komaki R. Quantification of regional ventilation from treatment planning CT. Int J Radiat Oncol Biol Phys 2005; 62:630-4. [PMID: 15936537 DOI: 10.1016/j.ijrobp.2005.03.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 03/09/2005] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE We describe a method of quantifying regional ventilation from the radiotherapy treatment planning computed tomography (CT) images, with the goal of developing functional images for treatment planning and optimization. METHODS AND MATERIALS A series of exhalation breath-hold (eBH-CT) and inhalation breath-hold (iBH-CT) CT images obtained using a feedback-guided breath-hold technique for radiotherapy treatment planning was selected. The eBH-CT was mapped on a voxel-by-voxel basis to the iBH-CT using a deformable image registration algorithm. By using the average CT number over a 3 mm(3) region surrounding each pair of mapped voxels, the change in fraction of air per voxel (i.e., regional ventilation) was calculated. This methodology was applied to a series of 22 patients. The calculated total ventilation was compared to the change in contoured lung volumes between the exhalation and inhalation CTs (measured tidal volume). RESULTS A significant correlation was found between the calculated and measured tidal volumes for the left (R = 0.982) and right (R = 0.985), and for both lungs combined (R = 0.985). In the resulting images, the regional ventilation was highly variable and corresponded with the spatial distribution of differences in the CT values (Hounsfield units) between the eBH-CT and the iBH-CT images. CONCLUSIONS A method of quantifying regional ventilation from radiotherapy treatment planning CT data sets was demonstrated. The ventilation images can be used in plan optimization to minimize injury to functioning lung.
Collapse
Affiliation(s)
- Thomas Guerrero
- Division of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
West BJ, Griffin LA, Frederick HJ, Moon RE. The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions. Respir Physiol Neurobiol 2005; 145:219-33. [PMID: 15705537 DOI: 10.1016/j.resp.2004.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that the fractal character of breathing and heart rate are independent, inter-breath intervals (IBI) and R-R intervals (RRI) were measured during rest and two levels of exercise at 1 and 2.8 ATA in a hyperbaric chamber in 18 male and female subjects (ages 19-74 years). Both RRI and IBI showed fractal properties. Fractal dimensions (D) for IBI were (mean +/- S.D.) 1.33 +/- 0.11, 1.29 +/- 0.12, 1.19 +/- 0.16 (rest, light and heavy exercise at 1ATA); 1.33 +/- 0.13, 1.25 +/- 0.13, 1.18 +/- 0.14 (same conditions at 2.8 ATA). Corresponding D for RRI were 1.19 +/- 0.11, 1.05 +/- 0.07 and 1.02 +/- 0.05 (1ATA); 1.20 +/- 0.10, 1.03 +/- 0.04 and 1.01 +/- 0.02 (2.8 ATA). The fractal dimension of each variable decreased with exercise and was unaffected by hyperbaric exposure. These two systems were not cross-correlated under any of the six conditions. During rest and light and moderate exercise at 1 and 2.8 ATA the results are consistent with heart rate variability and breathing rate variability being mutually independent of one another.
Collapse
Affiliation(s)
- Bruce J West
- Mathematics Division, Army Research Office, Research Triangle Park, NC, and Physics Department, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
63
|
Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, Fischman AJ, Callahan RJ, Bellani G, Harris RS. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 2005; 434:777-82. [PMID: 15772676 DOI: 10.1038/nature03490] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/07/2005] [Indexed: 11/08/2022]
Abstract
Asthma is a common disease affecting an increasing number of children throughout the world. In asthma, pulmonary airways narrow in response to contraction of surrounding smooth muscle. The precise nature of functional changes during an acute asthma attack is unclear. The tree structure of the pulmonary airways has been linked to complex behaviour in sudden airway narrowing and avalanche-like reopening. Here we present experimental evidence that bronchoconstriction leads to patchiness in lung ventilation, as well as a computational model that provides interpretation of the experimental data. Using positron emission tomography, we observe that bronchoconstricted asthmatics develop regions of poorly ventilated lung. Using the computational model we show that, even for uniform smooth muscle activation of a symmetric bronchial tree, the presence of minimal heterogeneity breaks the symmetry and leads to large clusters of poorly ventilated lung units. These clusters are generated by interaction of short- and long-range feedback mechanisms, which lead to catastrophic shifts similar to those linked to self-organized patchiness in nature. This work might have implications for the treatment of asthma, and might provide a model for studying diseases of other distributed organs.
Collapse
Affiliation(s)
- Jose G Venegas
- Massachusetts General Hospital, Department of Anesthesia and Critical Care, 55 Fruit Street, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Tsang JYC, Lamm WJE, Starr IR, Hlastala MP. Spatial pattern of ventilation-perfusion mismatch following acute pulmonary thromboembolism in pigs. J Appl Physiol (1985) 2004; 98:1862-8. [PMID: 15591291 DOI: 10.1152/japplphysiol.01018.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the spatial distribution of the abnormal ventilation-perfusion (Va/Q) units in a porcine model of acute pulmonary thromboembolism (APTE), using the fluorescent microsphere (FMS) technique. Four piglets ( approximately 22 kg) were anesthetized and ventilated with room air in the prone position. Each received approximately 20 g of preformed blood clots at time t = 0 min via a large-bore central venous catheter, until the mean pulmonary arterial pressure reached 2.5 times baseline. The distributions of regional Va and blood flow (Q) at five time points (t = -30, -5, 30, 60, 120 min) were mapped by FMS of 10 distinct colors, i.e., aerosolization of 1-mum FMS for labeling Va and intravenous injection of 15-mum FMS for labeling Q. Our results showed that, at t = 30 min following APTE, mean Va/Q (Va/Q = 2.48 +/- 1.12) and Va/Q heterogeneity (log SD Va/Q = 1.76 +/- 0.23) were significantly increased. There were also significant increases in physiological dead space (11.2 +/- 12.7% at 60 min), but the shunt fraction (Va/Q = 0) remained minimal. Cluster analyses showed that the low Va/Q units were mainly seen in the least embolized regions, whereas the high Va/Q units and dead space were found in the peripheral subpleural regions distal to the clots. At 60 and 120 min, there were modest recoveries in the hemodynamics and gas exchange toward baseline. Redistribution pattern was mostly seen in regional Q, whereas Va remained relatively unchanged. We concluded that the hypoxemia seen after APTE could be explained by the mechanical diversion of Q to the less embolized regions because of the vascular obstruction by clots elsewhere. These low Va/Q units created by high flow, rather than low Va, accounted for most of the resultant hypoxemia.
Collapse
Affiliation(s)
- John Y C Tsang
- James Hogg iCAPTURE Research Laboratory, 1081 Burrard St., Vancouver, BC, Canada V6Z 1Y6.
| | | | | | | |
Collapse
|
65
|
Anderson JC, Babb AL, Hlastala MP. A fractal analysis of the radial distribution of bronchial capillaries around large airways. J Appl Physiol (1985) 2004; 98:850-5. [PMID: 15542575 DOI: 10.1152/japplphysiol.00801.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed published measurements of the bronchial circulation and airway wall (Anderson JC, Bernard SL, Luchtel DL, Babb AL, and Hlastala MP. Respir Physiol Neurobiol 132: 329-339, 2002) and determined that the radial distribution of bronchial capillary cross-sectional area was fractal. We limited our analysis to bronchial capillaries, diameter < or =10 mum, that resided between the epithelial basement membrane and adventitia-alveolar boundary, the airway wall tissue. Thirteen different radial distributions of capillary-to-tissue area were constructed simply by changing the number of annuli (i.e., the annular size) used to form each distribution. For the 13 distributions created, these annuli ranged in size from to of the size of the airway wall area. Radial distributions were excluded from the fractal analysis if the sectioning procedure resulted in an annulus with a radial thickness less than the diameter of a capillary. To determine the fractal dimension for a given airway, the coefficient of variation (CV) for each distribution was calculated, and ln(CV) was plotted against the logarithm of the relative piece area. For airways with diameter >2.4 mm, this relationship was linear, which indicated the radial distribution of bronchial capillary cross-sectional area was fractal with an average fractal dimension of 1.27. The radial distribution of bronchial capillary cross-sectional area was not fractal around airways with diameter <1.5 mm. We speculated on how the fractal nature of this circulation impacts the distribution of bronchial blood flow and the efficiency of mass transport during health and disease. A fractal analysis can be used as a tool to quantify and summarize investigations of the bronchial circulation.
Collapse
Affiliation(s)
- Joseph C Anderson
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
66
|
Altemeier WA, McKinney S, Krueger M, Glenny RW. Effect of posture on regional gas exchange in pigs. J Appl Physiol (1985) 2004; 97:2104-11. [PMID: 15298981 DOI: 10.1152/japplphysiol.00072.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although recent high-resolution studies demonstrate the importance of nongravitational determinants for both pulmonary blood flow and ventilation distributions, posture has a clear impact on whole lung gas exchange. Deterioration in arterial oxygenation with repositioning from prone to supine posture is caused by increased heterogeneity in the distribution of ventilation-to-perfusion ratios. This can result from increased heterogeneity in regional blood flow distribution, increased heterogeneity in regional ventilation distribution, decreased correlation between regional blood flow and ventilation, or some combination of the above (Wilson TA and Beck KC, J Appl Physiol 72: 2298-2304, 1992). We hypothesize that, although repositioning from prone to supine has relatively small effects on overall blood flow and ventilation distributions, regional changes are poorly correlated, resulting in regional ventilation-perfusion mismatch and reduction in alveolar oxygen tension. We report ventilation and perfusion distributions in seven anesthetized, mechanically ventilated pigs measured with aerosolized and injected microspheres. Total contributions of pulmonary structure and posture on ventilation and perfusion heterogeneities were quantified by using analysis of variance. Regional gradients of posture-mediated change in ventilation, perfusion, and calculated alveolar oxygen tension were examined in the caudocranial and ventrodorsal directions. We found that pulmonary structure was responsible for 74.0 +/- 4.7% of total ventilation heterogeneity and 63.3 +/- 4.2% of total blood flow heterogeneity. Posture-mediated redistribution was primarily oriented along the caudocranial axis for ventilation and along the ventrodorsal axis for blood flow. These mismatched changes reduced alveolar oxygen tension primarily in the dorsocaudal lung region.
Collapse
Affiliation(s)
- William A Altemeier
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Washington, Seattle, WA 98195-6522, USA.
| | | | | | | |
Collapse
|
67
|
Porra L, Monfraix S, Berruyer G, Le Duc G, Nemoz C, Thomlinson W, Suortti P, Sovijärvi ARA, Bayat S. Effect of tidal volume on distribution of ventilation assessed by synchrotron radiation CT in rabbit. J Appl Physiol (1985) 2004; 96:1899-908. [PMID: 14966018 DOI: 10.1152/japplphysiol.00866.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A respiration-gated synchrotron radiation computed tomography (SRCT) technique, which allows visualization and direct quantification of inhaled stable xenon gas, was used to study the effect of tidal volume (Vt) on regional lung ventilation. High-resolution maps (pixel size 0.35 x 0.35 mm) of local washin time constants (tau) and regional specific ventilation were obtained in five anesthetized, paralyzed, and mechanically ventilated rabbits in upright body position at the fourth, sixth, and eighth dorsal vertebral levels with a Vt from 4.9 +/- 0.3 to 7.9 +/- 0.4 ml/kg (means +/- SE). Increasing Vt without an increase in minute ventilation resulted in a proportional increase of mean specific ventilation up to 65% in all studied lung levels and reduced the scattering of washin tau values. The tau values had log-normal distributions. The results indicate that an increase in Vt decreases nonuniformity of intraregional ventilatory gas exchange. The findings suggest that (SRCT) provides a new quantitative tool with high spatial discrimination ability for assessment of changes in peripheral pulmonary gas distribution during mechanical ventilation.
Collapse
Affiliation(s)
- L Porra
- Department of Physical Sciences, University of Helsinki, Helsinki FIN 00014, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Maina JN, van Gils P. Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial and venous systems. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:781-98. [PMID: 11691614 DOI: 10.1016/s1095-6433(01)00411-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bronchial system (BS), the pulmonary artery (PA) and the pulmonary vein (PV) of the lung of the domestic pig, Sus scrofa were simultaneously cast with silicone rubber and studied. Asymmetrical dichotomous bifurcation preponderated in the tree-like arrangement of the three conducting systems. Lengths and diameters of the various generations were measured. At the extremities of the BS and the PA, alveoli and blood capillaries related very closely. In the cranial and middle lobes of the right and left lungs, topographically, the PA and the PV closely followed the BS, but in the accessory and the caudal (diaphragmatic) lobes, only the PA accompanied the BS: the PV run intersegmentally. Certain similarities and differences were observed between the diameters and lengths of the various generations of the three conducting systems. The strong correlations between some of the structural parameters indicated a high level of structural optimization. While morphometric variations suggest that the air and the blood flow dynamics may somewhat differ between the three conducting systems, they may also register structural features unique to the lung of the domestic pig, an animal that has been highly genetically exploited for fast growth and now leads an indolent lifestyle in captivity.
Collapse
Affiliation(s)
- J N Maina
- Department of Anatomical Sciences, The University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | | |
Collapse
|
69
|
Kreck TC, Krueger MA, Altemeier WA, Sinclair SE, Robertson HT, Shade ED, Hildebrandt J, Lamm WJ, Frazer DA, Polissar NL, Hlastala MP. Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J Appl Physiol (1985) 2001; 91:1741-9. [PMID: 11568158 DOI: 10.1152/jappl.2001.91.4.1741] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We propose a model to measure both regional ventilation (V) and perfusion (Q) in which the regional radiodensity (RD) in the lung during xenon (Xe) washin is a function of regional V (increasing RD) and Q (decreasing RD). We studied five anesthetized, paralyzed, mechanically ventilated, supine sheep. Four 2.5-mm-thick computed tomography (CT) images were simultaneously acquired immediately cephalad to the diaphragm at end inspiration for each breath during 3 min of Xe breathing. Observed changes in RD during Xe washin were used to determine regional V and Q. For 16 mm(3), Q displayed more variance than V: the coefficient of variance of Q (CV(Q)) = 1.58 +/- 0.23, the CV of V (CV(V)) = 0.46 +/- 0.07, and the ratio of CV(Q) to CV(V) = 3.5 +/- 1.1. CV(Q) (1.21 +/- 0.37) and the ratio of CV(Q) to CV(V) (2.4 +/- 1.2) were smaller at 1,000-mm(3) scale, but CV(V) (0.53 +/- 0.09) was not. V/Q distributions also displayed scale dependence: log SD of V and log SD of Q were 0.79 +/- 0.05 and 0.85 +/- 0.10 for 16-mm(3) and 0.69 +/- 0.20 and 0.67 +/- 0.10 for 1,000-mm(3) regions of lung, respectively. V and Q measurements made with CT and Xe also demonstrate vertically oriented and isogravitational heterogeneity, which are described using other methodologies. Sequential images acquired by CT during Xe breathing can be used to determine both regional V and Q noninvasively with high spatial resolution.
Collapse
Affiliation(s)
- T C Kreck
- Department of Medicine, University of Washington, Seattle, WA 98195-6522, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Expired gas concentrations were measured during a multibreath washin of He in one female and seven male subjects at rest (seated) and during cycle exercise at work rates of 70-210 W. In a computational model, the ventilation distribution was represented as a log-normal distribution with standard deviation (sigmaV); values of sigmaV were obtained by fitting the output of the model to the data. At rest, sigmaV was 0.89 +/- 0.18; during exercise, sigmaV was 0.60 +/- 0.13, independent of the level of exercise. These values for the width of the functional ventilation distribution at the scale of the acinus are approximately two times larger than those obtained from anatomic measurements in animals at a scale of 1 cm3. The values for sigmaV, together with data from the literature on the width of the functional ventilation-perfusion distribution, show that ventilation and perfusion are highly correlated at rest, in agreement with anatomic data. The structural sources of nonuniform ventilation and perfusion and of the correlation between them are unknown.
Collapse
Affiliation(s)
- K C Beck
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester 55905, Minnesota, USA.
| | | |
Collapse
|
71
|
Glenny RW, Robertson HT, Hlastala MP. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia. J Appl Physiol (1985) 2000; 89:2263-7. [PMID: 11090577 DOI: 10.1152/jappl.2000.89.6.2263] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.
Collapse
Affiliation(s)
- R W Glenny
- Department of Medicine, University of Washington 98195, USA.
| | | | | |
Collapse
|
72
|
Glenny RW, Bernard SL, Robertson HT. Pulmonary blood flow remains fractal down to the level of gas exchange. J Appl Physiol (1985) 2000; 89:742-8. [PMID: 10926661 DOI: 10.1152/jappl.2000.89.2.742] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial distribution of pulmonary blood flow is increasingly heterogeneous as progressively smaller lung regions are examined. To determine the extent of perfusion heterogeneity at the level of gas exchange, we studied blood flow distributions in rat lungs by using an imaging cryomicrotome. Approximately 150,000 fluorescent 15-microm-diameter microspheres were injected into tail veins of five awake rats. The rats were heavily anesthetized; the lungs were removed, filled with an optimal cutting tissue compound, and frozen; and the spatial location of every microsphere was determined. The data were mathematically dissected with the use of an unbiased random sampling method. The coefficients of variation of microsphere distributions were determined at varying sampling volumes. Perfusion heterogeneity increased linearly on a log-log plot of coefficient of variation vs. volume, down to the smallest sampling size of 0.53 mm(3). The average fractal dimension, a scale-independent measure of perfusion distribution, was 1.2. This value is similar to that of other larger species such as dogs, pigs, and horses. Pulmonary perfusion heterogeneity increases continuously and remains fractal down to the acinar level. Despite the large degree of perfusion heterogeneity at the acinar level, gases are efficiently exchanged.
Collapse
Affiliation(s)
- R W Glenny
- Department of Medicine, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
73
|
Gerbino AJ, McKinney S, Glenny RW. Correlation between ventilation and perfusion determines VA/Q heterogeneity in endotoxemia. J Appl Physiol (1985) 2000; 88:1933-42. [PMID: 10846002 DOI: 10.1152/jappl.2000.88.6.1933] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endotoxin increases ventilation-to-perfusion ratio (VA/Q) heterogeneity in the lung, but the precise changes in alveolar ventilation (VA) and perfusion that lead to VA/Q heterogeneity are unknown. The purpose of this study was to determine how endotoxin affects the distributions of ventilation and perfusion and the impact of these changes on VA/Q heterogeneity. Seven anesthetized, mechanically ventilated juvenile pigs were given E. coli endotoxin intravenously, and regional ventilation and perfusion were measured simultaneously by using aerosolized and injected fluorescent microspheres. Endotoxemia significantly decreased the correlation between regional ventilation and perfusion, increased perfusion heterogeneity, and redistributed perfusion between lung regions. In contrast, ventilation heterogeneity did not change, and redistribution of ventilation was modest. The decrease in correlation between regional ventilation and perfusion was responsible for significantly more VA/Q heterogeneity than were changes in ventilation or perfusion heterogeneity. We conclude that VA/Q heterogeneity increases during endotoxemia primarily as a result of the decrease in correlation between regional ventilation and perfusion, which is in turn determined primarily by changes in perfusion.
Collapse
Affiliation(s)
- A J Gerbino
- Department of Medicine, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|