51
|
Mas MF, González J, Frontera WR. Stroke and sarcopenia. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:452-460. [PMID: 33777503 DOI: 10.1007/s40141-020-00284-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose of review to evaluate recent scientific research studies related to the changes in skeletal muscle after stroke and the presence of sarcopenia in stroke survivors to establish its incidence and effects on function. Recent Findings Recently published findings on stroke-related sarcopenia are limited. This might be due to changes in the consensus definition of sarcopenia. Sarcopenia in stroke patients is estimated at 14 to 54%. The presence of sarcopenia at the time of a stroke can lead to worse recovery and functional outcomes. Summary Presence of sarcopenia prior to a stroke may be more common than suspected and can lead to worse functional recovery. Clinicians should be aware of this to better identify and treat stroke-related sarcopenia. Future research should focus on larger population studies to more accurately establish correlation between stroke and sarcopenia.
Collapse
Affiliation(s)
- Manuel F Mas
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Javier González
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Walter R Frontera
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
52
|
Wakeling JM, Ross SA, Ryan DS, Bolsterlee B, Konno R, Domínguez S, Nigam N. The Energy of Muscle Contraction. I. Tissue Force and Deformation During Fixed-End Contractions. Front Physiol 2020; 11:813. [PMID: 32982762 PMCID: PMC7487973 DOI: 10.3389/fphys.2020.00813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
During contraction the energy of muscle tissue increases due to energy from the hydrolysis of ATP. This energy is distributed across the tissue as strain-energy potentials in the contractile elements, strain-energy potential from the 3D deformation of the base-material tissue (containing cellular and extracellular matrix effects), energy related to changes in the muscle's nearly incompressible volume and external work done at the muscle surface. Thus, energy is redistributed through the muscle's tissue as it contracts, with only a component of this energy being used to do mechanical work and develop forces in the muscle's longitudinal direction. Understanding how the strain-energy potentials are redistributed through the muscle tissue will help enlighten why the mechanical performance of whole muscle in its longitudinal direction does not match the performance that would be expected from the contractile elements alone. Here we demonstrate these physical effects using a 3D muscle model based on the finite element method. The tissue deformations within contracting muscle are large, and so the mechanics of contraction were explained using the principles of continuum mechanics for large deformations. We present simulations of a contracting medial gastrocnemius muscle, showing tissue deformations that mirror observations from magnetic resonance imaging. This paper tracks the redistribution of strain-energy potentials through the muscle tissue during fixed-end contractions, and shows how fibre shortening, pennation angle, transverse bulging and anisotropy in the stress and strain of the muscle tissue are all related to the interaction between the material properties of the muscle and the action of the contractile elements.
Collapse
Affiliation(s)
- James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Stephanie A Ross
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - David S Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Bart Bolsterlee
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Graduate School of Biomedical Engineering, Randwick, NSW, Australia
| | - Ryan Konno
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | | | - Nilima Nigam
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
53
|
Wheatley BB. Investigating Passive Muscle Mechanics With Biaxial Stretch. Front Physiol 2020; 11:1021. [PMID: 32973555 PMCID: PMC7468495 DOI: 10.3389/fphys.2020.01021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The passive stiffness of skeletal muscle can drastically affect muscle function in vivo, such as the case for fibrotic tissue or patients with cerebral palsy. The two constituents of skeletal muscle that dominate passive stiffness are the intracellular protein titin and the collagenous extracellular matrix (ECM). However, efforts to correlate stiffness and measurements of specific muscle constituents have been mixed, and thus the complete mechanisms for changes to muscle stiffness remain unknown. We hypothesize that biaxial stretch can provide an improved approach to evaluating passive muscle stiffness. Methods We performed planar biaxial materials testing of passively stretched skeletal muscle and identified three previously published datasets of uniaxial materials testing. We developed and employed a constitutive model of passive skeletal muscle that includes aligned muscle fibers and dispersed ECM collagen fibers with a bimodal von Mises distribution. Parametric modeling studies and fits to experimental data (both biaxial and previously published) were completed. Results Biaxial data exhibited differences in time dependent behavior based on orientation (p < 0.0001), suggesting different mechanisms supporting load in the direction of muscle fibers (longitudinal) and in the perpendicular (transverse) directions. Model parametric studies and fits to experimental data exhibited the robustness of the model (<20% error) and how differences in tissue stiffness may not be observed in uniaxial longitudinal stretch, but are apparent in biaxial stretch. Conclusion This work presents novel materials testing data of passively stretched skeletal muscle and use of constitutive modeling and finite element analysis to explore the interaction between stiffness, constituent variability, and applied deformation in passive skeletal muscle. The results highlight the importance of biaxial stretch in evaluating muscle stiffness and in further considering the role of ECM collagen in modulating passive muscle stiffness.
Collapse
Affiliation(s)
- Benjamin B Wheatley
- Department of Mechanical Engineering, Bucknell University, Lewisburg, PA, United States
| |
Collapse
|
54
|
Cappellini G, Sylos-Labini F, Dewolf AH, Solopova IA, Morelli D, Lacquaniti F, Ivanenko Y. Maturation of the Locomotor Circuitry in Children With Cerebral Palsy. Front Bioeng Biotechnol 2020; 8:998. [PMID: 32974319 PMCID: PMC7462003 DOI: 10.3389/fbioe.2020.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Arthur H Dewolf
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
55
|
Emara KM. CORR Insights®: Does a Reduced Number of Muscle Stem Cells Impair the Addition of Sarcomeres and Recovery from a Skeletal Muscle Contracture? A Transgenic Mouse Model. Clin Orthop Relat Res 2020; 478:900-902. [PMID: 32118609 PMCID: PMC7282576 DOI: 10.1097/corr.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Khaled M Emara
- K. M. Emara, Professor, Ain Shams University Hospitals, Agha Khan, Cairo, Egypt
| |
Collapse
|
56
|
Kaya CS, Bilgili F, Akalan NE, Yucesoy CA. Intraoperative testing of passive and active state mechanics of spastic semitendinosus in conditions involving intermuscular mechanical interactions and gait relevant joint positions. J Biomech 2020; 103:109755. [PMID: 32204891 DOI: 10.1016/j.jbiomech.2020.109755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 11/27/2022]
Abstract
In cerebral palsy (CP) patients suffering pathological knee joint motion, spastic muscle's passive state forces have not been quantified intraoperatively. Besides, assessment of spastic muscle's active state forces in conditions involving intermuscular mechanical interactions and gait relevant joint positions is lacking. Therefore, the source of flexor forces limiting joint motion remains unclear. The aim was to test the following hypotheses: (i) in both passive and active states, spastic semitendinosus (ST) per se shows its highest forces within gait relevant knee angle (KA) range and (ii) due to intermuscular mechanical interactions, the active state forces elevate. Isometric forces (seven children with CP, GMFCS-II) were measured during surgery over a range of KA from flexion to full extension, at hip angle (HA) = 45° and 20°, in four conditions: (I) passive state, (II) individual stimulation of the ST, simultaneous stimulation of the ST (III) with its synergists, and (IV) also with an antagonist. Gait analyses: intraoperative data for KA = 17-61° (HA = 45°) and KA = 0-33° (HA = 20°) represent the loading response and terminal swing, and mid/terminal stance phases of gait, respectively. Intraoperative tests: Passive forces maximally approximated half of peak force in condition II (HA = 45°). Added muscle activations did increase muscle forces significantly (HA = 45°: on average by 42.0% and 72.5%; HA = 20°: maximally by 131.8% and 123.7%, respectively in conditions III and IV, p < 0.01). In conclusion, intermuscular mechanical interactions yield elevated active state forces, which are well above passive state forces. This indicates that intermuscular mechanical interactions may be a source of high flexor forces in CP.
Collapse
Affiliation(s)
- Cemre S Kaya
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Fuat Bilgili
- Istanbul Faculty of Medicine, Department of Orthopaedics and Traumatology, Istanbul University, Istanbul, Turkey
| | - N Ekin Akalan
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul Kültür University, Istanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
57
|
Fosdahl MA, Jahnsen R, Pripp AH, Holm I. Change in popliteal angle and hamstrings spasticity during childhood in ambulant children with spastic bilateral cerebral palsy. A register-based cohort study. BMC Pediatr 2020; 20:11. [PMID: 31914961 PMCID: PMC6947838 DOI: 10.1186/s12887-019-1891-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Muscle contractures are developing during childhood and may cause extensive problems in gait and every day functioning in children with cerebral palsy (CP). The aim of the present study was to evaluate how the popliteal angle (PA) and hamstrings spasticity change during childhood in walking children with spastic bilateral CP. METHODS The present study was a longitudinal register-based cohort study including 419 children (1-15 years of age) with spastic bilateral CP, gross motor function classification system (GMFCS) level I, II and III included in the Norwegian CP Follow-up Program (CPOP). From 2006 to 2018 a total of 2193 tests were performed. The children were tested by trained physiotherapists yearly or every second year, depending on GMFCS level and age. The PA and the hamstrings spasticity (Modified Ashworth scale (MAS)) were measured at every time point. Both legs were included in the analysis. RESULTS There was an increase in PA with age for all three GMFCS levels with significant differences between the levels from 1 up to 8 years of age. At the age of 10 years there was no significant difference between GMFCS level II and III. At the age of 14 years all three GMFCS levels had a mean PA above 40° and there were no significant differences between the groups. The hamstrings spasticity scores for all the three GMFCS levels were at the lower end of the MAS (mean < 1+), however they were significantly different from each other until 8 years of age. The spasticity increased the first four years in all three GMFCS levels, thereafter the level I and II slightly increased, and level III slightly decreased, until the age of 15 years. CONCLUSION The present study showed an increasing PA during childhood. There were significantly different PAs between GMFCS level I, II and III up to 8 years of age. At the age of 14 years all levels showed a PA above 40°. The spasticity increased up to 4 years of age, but all the spasticity scores were at the lower end of the MAS during childhood.
Collapse
Affiliation(s)
- Merete Aarsland Fosdahl
- Department of Clinical Neuroscience for Children, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway. .,Medical Faculty, Department of Interdisciplinary Health Sciences, University of Oslo, Oslo, Norway.
| | - Reidun Jahnsen
- Department of Clinical Neuroscience for Children, The Cerebral Palsy Follow-up Program (CPOP), Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Medical Faculty, Department of Interdisciplinary Health Sciences, University of Oslo, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Inger Holm
- Division of Orthopaedic Surgery, Department of Research and Development, Oslo University Hospital, Oslo, Norway.,Medical Faculty, Department of Interdisciplinary Health Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
58
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
59
|
Wang AB, Perreault EJ, Royston TJ, Lee SSM. Changes in shear wave propagation within skeletal muscle during active and passive force generation. J Biomech 2019; 94:115-122. [PMID: 31376979 DOI: 10.1016/j.jbiomech.2019.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Muscle force can be generated actively through changes in neural excitation, and passively through externally imposed changes in muscle length. Disease and injury can disrupt force generation, but it can be challenging to separate passive from active contributions to these changes. Ultrasound elastography is a promising tool for characterizing the mechanical properties of muscles and the forces that they generate. Most prior work using ultrasound elastography in muscle has focused on the group velocity of shear waves, which increases with increasing muscle force. Few studies have quantified the phase velocity, which depends on the viscoelastic properties of muscle. Since passive and active forces within muscle involve different structures for force transmission, we hypothesized that measures of phase velocity could detect changes in shear wave propagation during active and passive conditions that cannot be detected when considering only group velocity. We measured phase and group velocity in the human biceps brachii during active and passive force generation and quantified the differences in estimates of shear elasticity obtained from each of these measurements. We found that measures of group velocity consistently overestimate the shear elasticity of muscle. We used a Voigt model to characterize the phase velocity and found that the estimated time constant for the Voigt model provided a way to distinguish between passive and active force generation. Our results demonstrate that shear wave elastography can be used to distinguish between passive and active force generation when it is used to characterize the phase velocity of shear waves propagating in muscle.
Collapse
Affiliation(s)
- Allison B Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern, Chicago, IL, USA; Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Thomas J Royston
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Sabrina S M Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
60
|
Affiliation(s)
- R D Herbert
- Neuroscience Research Australia (NeuRA), Sydney , Australia.,University of New South Wales, Sydney, Australia
| | - S C Gandevia
- Neuroscience Research Australia (NeuRA), Sydney , Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|