51
|
Whitehead MT, Martin TD, Scheett TP, Webster MJ. Running economy and maximal oxygen consumption after 4 weeks of oral Echinacea supplementation. J Strength Cond Res 2012; 26:1928-33. [PMID: 22728943 DOI: 10.1519/jsc.0b013e318237e779] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this investigation was to determine the effects of 4 weeks of oral Echinacea (ECH) supplementation on erythropoietin (EPO), red blood cell (RBC) count, running economy (RE), and VO2max. Twenty-four men aged 24.9 ± 4.2 years, height 178.9 ± 7.9 cm, weight 87.9 ± 14.6 kg, body fat 19.3 ± 6.5% were grouped using a double-blind design and self-administered an 8,000-mg·d(-1) dosage of either ECH or placebo (PLA) in 5 × 400 mg × 4 times per day for 28 days. Blood samples were collected and analyzed for RBCs and EPO using automated flow cytometery and enzyme-linked immunosorbent assay. Maximal graded exercise tests (GXTs) were administered to measure VO2max, RE, and heart-rate responses. Analysis of variance was used to determine statistically significant differences (P ≤ 0.05). The EPO increased significantly in ECH at 7 days (ECH: 15.75 ± 0.64, PLA: 10.01 ± 0.73 mU·ml(-1)), 14 days (ECH: 18.88 ± 0.71, PLA: 11.02 ± 0.69 mU·ml(-1)), and 21 days (ECH: 16.06 ± 0.55, PLA: 9.20 ± 0.55 mU·ml(-1)). VO2max increased significantly in ECH (ECH: 1.47 ± 1.28, PLA: -0.13 ± 0.52%). Running economy improved significantly in ECH as indicated by a decrease in submaximal VO2max during the first 2 stages of the GXT (stage 1: ECH -1.50 ± 1.21, PLA 0.60 ± 1.95%; stage 2: ECH -1.67 ± 1.43, PLA 0.01 ± 1.03%). These data suggest that ECH supplementation results in significant increases in EPO, VO2max, and running economy.
Collapse
Affiliation(s)
- Malcolm T Whitehead
- Department of Physical Therapy, Arkansas State University, State University, Arkansas, USA.
| | | | | | | |
Collapse
|
52
|
Carrick-Ranson G, Hastings JL, Bhella PS, Shibata S, Fujimoto N, Palmer D, Boyd K, Levine BD. The effect of age-related differences in body size and composition on cardiovascular determinants of VO2max. J Gerontol A Biol Sci Med Sci 2012; 68:608-16. [PMID: 23160363 DOI: 10.1093/gerona/gls220] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A reduction in maximal stroke volume (SVmax) and total blood volume (TBV) has been hypothesized to contribute to the decline in maximal oxygen uptake (VO2max) with healthy aging. However, these variables have rarely been collected simultaneously in a board age range to support or refute this hypothesis. It is also unclear to what extent scaling size-related cardiovascular determinants of VO2max affects the interpretation of age-related differences. METHODS A retrospective analysis of VO2max, maximal cardiac output (QCmax), TBV, and body composition including fat-free mass (FFM) in 95 (51% M) healthy adults ranging from 19-86 years. RESULTS Absolute and indexed VO2max, QCmax, and maximal heart rate decreased in both sexes with age (p ≤ .031). SVmax declined with age when scaled to total body mass or body surface area (p ≤ .047) but not when expressed in absolute levels (p = .120) or relative to FFM (p = .464). Absolute and indexed TBVs (mL/kg; mL/m(2)) were not significantly affected by age but increased with age in both sexes when scaled to FFM (p ≤ .013). A lower arteriovenous oxygen difference (a-vO2diff) contributed to the reduction in VO2max with age in treadmill exercisers (p = .004) but not in the entire cohort (p = .128). CONCLUSION These results suggest (a) a reduction in absolute SVmax, and TBV do not contribute substantially to the age-related reduction in VO2max, which instead results from a smaller QCmax due to a lower maximal heart rate, and (b) body composition scaling methods should be used to accurately describe the effect of aging on physical function and cardiovascular variables.
Collapse
|
53
|
Carrick-Ranson G, Hastings JL, Bhella PS, Shibata S, Levine BD. The effect of exercise training on left ventricular relaxation and diastolic suction at rest and during orthostatic stress after bed rest. Exp Physiol 2012; 98:501-13. [DOI: 10.1113/expphysiol.2012.067488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Howden R, Kleeberger SR. Genetic and Environmental Influences on Gas Exchange. Compr Physiol 2012; 2:2595-614. [DOI: 10.1002/cphy.c110060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Zhou JY, Zhou SW, Du XH, Zeng SY. Protective effect of total flavonoids of seabuckthorn (Hippophae rhamnoides) in simulated high-altitude polycythemia in rats. Molecules 2012; 17:11585-97. [PMID: 23023684 PMCID: PMC6269044 DOI: 10.3390/molecules171011585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022] Open
Abstract
Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO2, SpO2, pCO2 levels in arterial blood, and increased Na+, HCO3−, Cl−, but decreased K+ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.
Collapse
Affiliation(s)
- Ji-Yin Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; (J.-Y.Z.); (S.-Y.Z.)
| | - Shi-Wen Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; (J.-Y.Z.); (S.-Y.Z.)
- Author to whom correspondence should be addressed; ; Tel./Fax: +86-23-6875-5311
| | - Xiao-Huang Du
- Research Division, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Sheng-Ya Zeng
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; (J.-Y.Z.); (S.-Y.Z.)
| |
Collapse
|
56
|
Shibata S, Fu Q, Bivens TB, Hastings JL, Wang W, Levine BD. Short-term exercise training improves the cardiovascular response to exercise in the postural orthostatic tachycardia syndrome. J Physiol 2012; 590:3495-505. [PMID: 22641777 DOI: 10.1113/jphysiol.2012.233858] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have suggested the presence of cardiac atrophy as a key component of the pathogenesis of the postural orthostatic tachycardia syndrome (POTS), similar to physical deconditioning. It has also been shown that exercise intolerance is associated with a reduced stroke volume (SV) in POTS, and that the high heart rate (HR) observed at rest and during exercise in these patients is due to this low SV. We tested the hypotheses that (a) circulatory control during exercise is normal in POTS; and (b) that physical ‘reconditioning' with exercise training improves exercise performance in patients with POTS. Nineteen (18 women) POTS patients completed a 3 month training programme. Cardiovascular responses during maximal exercise testing were assessed in the upright position before and after training. Resting left ventricular diastolic function was evaluated by Doppler echocardiography. Results were compared with those of 10 well-matched healthy sedentary controls. A lower SV resulted in a higher HR in POTS at any given oxygen uptake (V(O(2))) during exercise while the cardiac output (Q(c))-V(O(2)) relationship was normal. V(O(2peak)) was lower in POTS than controls (26.1 ± 1.0 (SEM) vs. 36.3 ± 0.9 ml kg-1 min-1; P < 0.001) due to a lower peak SV (65 ± 3 vs. 80 ± 5 ml; P = 0.009). After training in POTS, HR became lower at any given due to increased SV without changes in the – relationship. V(O(2peak)) increased by 11% (P < 0.001) due to increased peak SV (P = 0.021) and was proportional to total blood volume. Peak HR was similar, but HR recovery from exercise was faster after training than before training (P = 0.036 for training and 0.009 for interaction). Resting diastolic function was mostly normal in POTS before training, though diastolic suction was impaired (P = 0.023). There were no changes in any Doppler index after training. These results suggest that short-term exercise training improves physical fitness and cardiovascular responses during exercise in patients with POTS.
Collapse
Affiliation(s)
- Shigeki Shibata
- Institute for Exercise and Environmental Medicine, 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, USA
| | | | | | | | | | | |
Collapse
|
57
|
Short-Term Hematological Effects Upon Completion of a Four-Week Simulated Altitude Camp. Int J Sports Physiol Perform 2012; 7:79-83. [DOI: 10.1123/ijspp.7.1.79] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hemoglobin mass (tHb) is considered to be a main factor for sea-level performance after “live high–train low” (LHTL) altitude training, but little research has focused on the persistence of tHb following cessation of altitude exposure. The aim of the case study was to investigate short-term effects of various hematological measures including tHb upon completion of a simulated altitude camp. Five female cyclists spent 26 nights at simulated altitude (LHTL, 16.6 ± 0.4 h/d, 3000 m in an altitude house) where tHb was measured at baseline, at cessation of the camp, and 9 d thereafter. Venous blood measures (hemoglobin concentration, hematocrit, %reticulocytes, serum erythropoietin, ferritin, lactate dehydrogenase, and haptoglobin) were determined at baseline; on day 21 during LHTL; and at days 2, 5, and 9 after LHTL. Hemoglobin mass increased by 5.5% (90% confidence limits [CL] 2.5 to 8.5%, very likely) after the LHTL training camp. At day 9 after simulated LHTL, tHb decreased by 3.0% (90%CL −5.1 to −1.0%, likely). There was a substantial decrease in serum EPO (−34%, 90%CL −50 to −12%) at 2 d after return to sea level and a rise in ferritin (23%, 90%CL 3 to 46%) coupled with a decrease in %reticulocytes (−23%, 90%CL −34 to −9%) between day 5 and 9 after LHTL. Our findings show that following a hypoxic intervention with a beneficial tHb outcome, there may be a high probability of a rapid tHb decrease upon return to normoxic conditions. This highlights a rapid component in red-cell control and may have implications for the appropriate timing of altitude training in relation to competition.
Collapse
|
58
|
Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol 2012; 12:243-52. [PMID: 21962068 DOI: 10.1089/ham.2010.1086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study tested the hypothesis that intermittent hypoxia treatment (IHT) modulates circulating hematopoietic stem and progenitor cells (HSPC) and augments humoral and cellular components of innate immunity in young, healthy men. Ten subjects (group 1: age 31±4 yr) were studied before and at 1 and 7 days after a 14-day IHT program consisting of four 5-min bouts/day of breathing 10% O2, lowering arterial O2 saturation to 84% to 85%, with intervening 5-min room-air exposures. Five more subjects (group 2: age 29±5 yr) were studied during 1 IHT session. Immunofluorescence detected HSPCs as CD45+CD34+ cells in peripheral blood. Phagocytic and bactericidal activities of neutrophils, circulating immunoglobulins (IgM, IgG, IgA), immune complexes, complement, and cytokines (erythropoietin, TNF-α, IL-4, IFN-γ) were measured. In group 1, the HSPC count fell 27% below pre-IHT baseline 1 week after completing IHT, without altering erythrocyte and reticulocyte counts. The IHT program also activated complement, increased circulating platelets, augmented phagocytic and bactericidal activities of neutrophils, sharply lowered circulating TNF-α and IL-4 by >90% and ∼75%, respectively, and increased IFN-γ, particularly 1 week after IHT. During acute IHT (group 2), HSPC increased by 51% after the second hypoxia bout and by 19% after the fourth bout, and total leukocyte, neutrophil, monocyte, and lymphocyte counts also increased; but these effects subsided by 30 min post-IHT. Collectively, these results demonstrate that IHT enhances innate immunity by mobilizing HSPC, activating neutrophils, and increasing circulating complement and immunoglobulins. These findings support the potential for eventual application of IHT for immunotherapy.
Collapse
|
59
|
Anderson JD, Honigman B. The effect of altitude-induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection? High Alt Med Biol 2011; 12:45-55. [PMID: 21452965 DOI: 10.1089/ham.2010.1021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the global prevalence of heart disease continuing to increase and large populations living at altitude around the world, we review the concept of altitude and cardioprotection. Current epidemiologic data, as well as the basic science and molecular mechanisms involved in acute, intermittent, and chronic exposure to altitude, are discussed. Intermittent and chronic exposures have been demonstrated to increase coronary vasculature, decrease infarction size, and provide more efficient metabolism and better cardiac functional recovery postischemia. Mechanisms demonstrated in these situations include those mediated by the hypoxia inducible factor, as well as reactive oxygen species, certain ion channels, and protein kinases. Although current epidemiologic studies are difficult to interpret owing to many confounders, many studies point to the possibility that living at altitude provides cardiovascular protection. Further research is needed to determine if the bench studies showing mechanisms consistent with cardioprotection translate to the population living at altitude.
Collapse
Affiliation(s)
- John D Anderson
- Department of Emergency Medicine, Denver Health Medical Center, Denver, Colorado, USA.
| | | |
Collapse
|
60
|
Mao TY, Fu LL, Wang JS. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J Appl Physiol (1985) 2011; 111:382-91. [DOI: 10.1152/japplphysiol.00096.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite enhancing cardiopulmonary and muscular fitness, the effect of hypoxic exercise training (HE) on hemorheological regulation remains unclear. This study investigates how HE modulates erythrocyte rheological properties and further explores the underlying mechanisms in the hemorheological alterations. Twenty-four sedentary males were randomly divided into hypoxic (HE; n = 12) and normoxic (NE; n = 12) exercise training groups. The subjects were trained on 60% of maximum work rate under 15% (HE) or 21% (NE) O2condition for 30 min daily, 5 days weekly for 5 wk. The results demonstrated that HE 1) downregulated CD47 and CD147 expressions on erythrocytes, 2) decreased actin and spectrin contents in erythrocytes, 3) reduced erythrocyte deformability under shear flow, and 4) diminished erythrocyte volume changed by hypotonic stress. Treatment of erythrocytes with H2O2that mimicked in vivo prooxidative status resulted in the cell shrinkage, rigidity, and phosphatidylserine exposure, whereas HE enhanced the eryptotic responses to H2O2. However, HE decreased the degrees of clotrimazole to blunt ionomycin-induced shrinkage, rigidity, and cytoskeleton breakdown of erythrocytes, referred to as Gardos effects. Reduced erythrocyte deformability by H2O2was inversely related to the erythrocyte Gardos effect on the rheological function. Conversely, NE intervention did not significantly change resting and exercise erythrocyte rheological properties. Therefore, we conclude that HE rather than NE reduces erythrocyte deformability and volume regulation, accompanied by an increase in the eryptotic response to oxidative stress. Simultaneously, this intervention depresses Gardos channel-modulated erythrocyte rheological functions. Results of this study provide further insight into erythrocyte senescence induced by HE.
Collapse
Affiliation(s)
- Tso-Yen Mao
- Graduate Institute of Physical Education, and
| | - Li-Lan Fu
- Department of Athletic Training and Health Science, National Taiwan Sport University; and
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
61
|
Abstract
It is possible to plan an altitude training (AT) period in such a way that the enhanced physical endurance obtained as a result of adaptation to hypoxia will appear and can be used to improve performance in competition. Yet finding rationales for usage of AT in highly trained swimmers is problematic. In practice AT, in its various forms, is still controversial, and an objective review of research concentrating on the advantages and disadvantages of AT has been presented in several scientific publications, including in no small part the observations of swimmers. The aim of this article is to review the various methods and present both the advantageous and unfavourable physiological changes that occur in athletes as a result of AT. Moreover, AT results in the sport of swimming have been collected. They include an approach towards primary models of altitude/hypoxic training: live high + train high, live high + train low, live low + train high, as well as subsequent methods: Intermittent Hypoxic Exposure (IHE) and Intermittent Hypoxic Training (IHT). Apnoea training, which is descended from freediving, is also mentioned, and which can be used with, or as a substitute for, the well-known IHE or IHT methods. In conclusion, swimmers who train using hypoxia may be among the best-trained athletes, and that even a slight improvement in physical endurance might result in the shortening of a swimming time in a given competition, and the achievement of a personal best, which is hard to obtain by normal training methods, when the personal results of the swimmer have reached a plateau.
Collapse
|
62
|
Fu Q, Vangundy TB, Shibata S, Auchus RJ, Williams GH, Levine BD. Exercise training versus propranolol in the treatment of the postural orthostatic tachycardia syndrome. Hypertension 2011; 58:167-75. [PMID: 21690484 DOI: 10.1161/hypertensionaha.111.172262] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have found recently that exercise training is effective in the treatment of the postural orthostatic tachycardia syndrome (POTS). Whether this nondrug treatment is superior to "standard" drug therapies, such as β-blockade, is unknown. We tested the hypothesis that exercise training but not β-blockade treatment improves symptoms, hemodynamics, and renal-adrenal responses in POTS patients. Nineteen patients (18 women and 1 man) completed a double-blind drug trial (propranolol or placebo) for 4 weeks, followed by 3 months of exercise training. Fifteen age-matched healthy individuals (14 women and 1 man) served as controls. A 2-hour standing test was performed before and after drug treatment and training. Hemodynamics, catecholamines, plasma renin activity, and aldosterone were measured supine and during 2-hour standing. We found that both propranolol and training significantly lowered standing heart rate. Standing cardiac output was lowered after propranolol treatment (P=0.01) but was minimally changed after training. The aldosterone:renin ratio during 2-hour standing remained unchanged after propranolol treatment (4.1±1.7 [SD] before versus 3.9±2.0 after; P=0.46) but modestly increased after training (5.2±2.9 versus 6.5±3.0; P=0.05). Plasma catecholamines were not affected by propranolol or training. Patient quality of life, assessed using the 36-item Short-Form Health Survey, was improved after training (physical functioning score 33±10 before versus 50±9 after; social functioning score 37±9 versus 48±6; both P<0.01) but not after propranolol treatment (34±10 versus 36±11, P=0.63; 39±7 versus 39±5, P=0.73). These results suggest that, for patients with POTS, exercise training is superior to propranolol at restoring upright hemodynamics, normalizing renal-adrenal responsiveness, and improving quality of life.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Suite 435, Dallas, TX 75231, USA.
| | | | | | | | | | | |
Collapse
|
63
|
An attempt to quantify the placebo effect from a three-week simulated altitude training camp in elite race walkers. Int J Sports Physiol Perform 2011; 5:521-34. [PMID: 21266736 DOI: 10.1123/ijspp.5.4.521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To quantify physiological and performance effects of hypoxic exposure, a training camp, the placebo effect, and a combination of these factors. METHODS Elite Australian and International race walkers (n = 17) were recruited, including men and women. Three groups were assigned: 1) Live High:Train Low (LHTL, n = 6) of 14 h/d at 3000 m simulated altitude; 2) Placebo (n = 6) of 14 h/d of normoxic exposure (600 m); and 3) Nocebo (n = 5) living in normoxia. All groups undertook similar training during the intervention. Physiological and performance measures included 10-min maximal treadmill distance, peak oxygen uptake (VO2peak), walking economy, and hemoglobin mass (Hbmass). RESULTS Blinding failed, so the Placebo group was a second control group aware of the treatment. All three groups improved treadmill performance by approx. 4%. Compared with Placebo, LHTL increased Hbmass by 8.6% (90% CI: 3.5 to 14.0%; P = .01, very likely), VO2peak by 2.7% (-2.2 to 7.9%; P = .34, possibly), but had no additional improvement in treadmill distance (-0.8%, -4.6 to 3.8%; P = .75, unlikely) or economy (-8.2%, -24.1 to 5.7%; P = .31, unlikely). Compared with Nocebo, LHTL increased Hbmass by 5.5% (2.5 to 8.7%; P = .01, very likely), VO2peak by 5.8% (2.3 to 9.4%; P = .02, very likely), but had no additional improvement in treadmill distance (0.3%, -1.9 to 2.5%; P = .75, possibly) and had a decrease in walking economy (-16.5%, -30.5 to 3.9%; P = .04, very likely). CONCLUSION Overall, 3-wk LHTL simulated altitude training for 14 h/d increased Hbmass and VO2peak, but the improvement in treadmill performance was not greater than the training camp effect.
Collapse
|
64
|
Standardising analysis of carbon monoxide rebreathing for application in anti-doping. J Sci Med Sport 2011; 14:100-5. [DOI: 10.1016/j.jsams.2010.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 01/31/2010] [Accepted: 07/29/2010] [Indexed: 11/19/2022]
|
65
|
Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats. Basic Res Cardiol 2011; 106:329-42. [PMID: 21298517 DOI: 10.1007/s00395-011-0159-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/13/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
Intermittent hypobaric hypoxia (IHH) preconditioning protects the heart against ischemic injuries. However, little is known about the therapeutic effect of IHH on myocardial infarction (MI). The aim of this study was to test whether IHH treatment influences infarct size and cardiac performance after MI. Seven days after sham operation or left anterior descending coronary artery ligation, male Sprague-Dawley rats were randomly exposed to normoxia or one 6-h period each day of IHH (5,000 m) for 14 and 28 days. Echocardiography analysis showed that IHH significantly reduced left ventricular (LV) dilation and improved cardiac performance after 14- or 28-day treatment compared with MI-normoxic groups. The improvement of LV function was further confirmed in isolated perfused MI-IHH hearts. Such protection was associated with attenuated infarct size, myocardial fibrosis, and apoptotic cardiomyocytes. IHH treatment also enhanced coronary flow and phosphorylation of heat shock protein 27 in both sham and MI groups compared with the control groups. In addition, IHH increased the capillary density and vascular endothelial growth factor expression in peri-infarcted zones compared with sham-IHH and MI-normoxic groups. Our data demonstrated for the first time that IHH treatment exerts a therapeutic effect on MI by attenuating progressive myocardial remodeling and improving myocardial contractility. IHH treatment might provide a unique and promising therapeutic approach for ischemic heart diseases.
Collapse
|
66
|
de Paula P, Niebauer J. Effects of high altitude training on exercise capacity: fact or myth. Sleep Breath 2010; 16:233-9. [DOI: 10.1007/s11325-010-0445-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
|
67
|
Steiner T, Wehrlin JP. Comparability of haemoglobin mass measured with different carbon monoxide-based rebreathing procedures and calculations. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 71:19-29. [PMID: 21091271 DOI: 10.3109/00365513.2010.534174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Measurements of haemoglobin mass (Hb(mass)) with the carbon monoxide (CO) rebreathing method provide valuable information in the field of sports medicine, and have markedly increased during the last decade. However, several different approaches (as a combination of the rebreathing procedure and subsequent calculations) for measuring Hb(mass) are used, and routine measurements have indicated that the Hb(mass) differs substantially among various approaches. Therefore, the aim of this study was to compare the Hb(mass) of the seven most commonly used approaches, and then to provide conversion factors for an improved comparability of Hb(mass) measured with the different approaches. METHODS Seventeen subjects (healthy, recreationally active, male, age 27.1 ± 1.8 y) completed 3 CO-rebreathing measurements in randomized order. One was based on the 12-min original procedure (CO(original)), and two were based on the 2-min optimized procedure (CO(new)). From these measurements Hb(mass) for seven approaches (CO(originalA-E); CO(newA-B)) was calculated. RESULTS Hb(mass) estimations differed among these approaches (p < 0.01). Hb(mass) averaged 960 ± 133 g (CO(newB)), 981 ± 136 g (CO(newA)), 989 ± 130 g (CO(originalE)), 993 ± 126 g (CO(originalA,D)), 1030 ± 130 g (CO(originalB)), and 1053 ± 133 g (CO(originalC)). Procedural variations had a minor influence on measured Hb(mass). CONCLUSIONS The relevant discrepancies between the CO-rebreathing approaches originate mainly from different underlying calculations for Hb(mass). Provided Hb(mass) enabled the development of conversion factors to compare average Hb(mass) values measured with different CO-rebreathing approaches. These factors can be used to develop reasonable Hb(mass) reference ranges for both clinical and athletic purposes.
Collapse
Affiliation(s)
- Thomas Steiner
- Section for Elite Sports, Swiss Federal Institute of Sports, Magglingen, Switzerland.
| | | |
Collapse
|
68
|
Li P, Huang J, Tian HJ, Huang QY, Jiang CH, Gao YQ. Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis. Exp Hematol 2010; 39:37-46. [PMID: 20977927 DOI: 10.1016/j.exphem.2010.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hypoxia at high altitudes can lead to increased production of red blood cells through the hormone erythropoietin (EPO). In this study, we observed how the EPO-unresponsive hematopoietic stem cell (HSC) compartment responds to high-altitude hypoxic environments and contributes to erythropoiesis. MATERIALS AND METHODS Using a mouse model at simulated high altitude, the bone marrow (BM) and spleen lineage marker(-)Sca-1(+)c-Kit(+) (LSK) HSC compartment were observed in detail. Normal LSK cells were then cultured under different conditions (varying EPO levels, oxygen concentrations, and BM supernatants) to investigate the causes of the HSC responses. RESULTS Hypoxic mice exhibited a marked expansion in BM and spleen LSK compartments, which were associated with enhanced proliferation. BM HSCs seemed to play a more important role in erythropoiesis at high altitude than spleen HSCs. There was also a lineage fate change of BM HSCs in hypoxic mice that was manifested in increased megakaryocyte-erythrocyte progenitors and periodically reduced granulocyte-macrophage progenitors in the BM. The LSK cells in hypoxic mice displayed upregulated erythroid-specific GATA-1 and downregulated granulocyte-macrophage-specific PU.1 messenger RNA expression, as well as the capacity to differentiate into more erythroid precursors after culture. BM culture supernatant from hypoxic mice (but not elevated EPO or varying O(2) tension) could induce expansion and erythroid-priority differentiation of the HSC population, a phenomenon partially caused by increasing interleukin-3 and interleukin-6 secretion in the BM. CONCLUSIONS The present study suggests a new EPO-independent HSC mechanism of high-altitude erythrocytosis.
Collapse
Affiliation(s)
- Peng Li
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
69
|
Vogtel M, Michels A. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol 2010; 10:206-13. [PMID: 20386436 DOI: 10.1097/aci.0b013e32833903a6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the impact that exposure to intermittent hypoxic training (IHT) could have on bronchial asthma and chronic obstructive pulmonary disease (COPD). This is of particular interest, as an increasing number of patients suffer from severe symptoms of bronchial asthma and COPD and desire more effective and efficient treatment options with fewer side effects. RECENT FINDINGS Exposure to IHT has been shown to raise baroreflex sensitivity to normal levels and to selectively increase hypercapnic ventilatory response, total exercise time, total haemoglobin mass, and lung diffusion capacity for carbon monoxide in COPD patients. However, evidence proving that IHT leads to health benefit effects in bronchial asthma patients has not been produced by recent literature. SUMMARY Recent research outlines the value of IHT as a therapeutic strategy for the treatment of COPD patients, leading to more efficient ventilation. Additionally, IHT might represent an attractive method to complement the known beneficial effects of exercise training and to rebalance early autonomic dysfunction in COPD patients. Future research examining the potential risks and benefits of IHT could pave the way for the development of new therapeutic approaches for patients suffering from bronchial asthma and COPD.
Collapse
Affiliation(s)
- Myriam Vogtel
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital Cologne, Cologne, Germany.
| | | |
Collapse
|
70
|
Fu Q, Vangundy TB, Galbreath MM, Shibata S, Jain M, Hastings JL, Bhella PS, Levine BD. Cardiac origins of the postural orthostatic tachycardia syndrome. J Am Coll Cardiol 2010; 55:2858-68. [PMID: 20579544 DOI: 10.1016/j.jacc.2010.02.043] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/06/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The purpose of this study was to test the hypothesis that a small heart coupled with reduced blood volume contributes to the postural orthostatic tachycardia syndrome (POTS) and that exercise training improves this syndrome. BACKGROUND Patients with POTS have marked increases in heart rate during orthostasis. However, the underlying mechanisms are unknown and the effective therapy is uncertain. METHODS Twenty-seven POTS patients underwent autonomic function tests, cardiac magnetic resonance imaging, and blood volume measurements. Twenty-five of them participated in a 3-month specially designed exercise training program with 19 completing the program; these patients were re-evaluated after training. Results were compared with those of 16 healthy controls. RESULTS Upright heart rate and total peripheral resistance were greater, whereas stroke volume and cardiac output were smaller in patients than in controls. Baroreflex function was similar between groups. Left ventricular mass (median [25th, 75th percentiles], 1.26 g/kg [1.12, 1.37 g/kg] vs. 1.45 g/kg [1.34, 1.57 g/kg]; p < 0.01) and blood volume (60 ml/kg [54, 64 ml/kg] vs. 71 ml/kg [65, 78 ml/kg]; p < 0.01) were smaller in patients than in controls. Exercise training increased left ventricular mass and blood volume by approximately 12% and approximately 7% and decreased upright heart rate by 9 beats/min [1, 17 beats/min]. Ten of 19 patients no longer met POTS criteria after training, whereas patient quality of life assessed by the 36-item Short-Form Health Survey was improved in all patients after training. CONCLUSIONS Autonomic function was intact in POTS patients. The marked tachycardia during orthostasis was attributable to a small heart coupled with reduced blood volume. Exercise training improved or even cured this syndrome in most patients. It seems reasonable to offer POTS a new name based on its underlying pathophysiology, the "Grinch syndrome," because in this famous children's book by Dr. Seuss, the main character had a heart that was "two sizes too small."
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas 75231, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN. Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: a preliminary report. Appl Physiol Nutr Metab 2010; 35:548-59. [DOI: 10.1139/h10-044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effects of intermittent hypoxic exposure (IHE) on cerebral and muscle oxygenation, arterial oxygen saturation (SaO2), and respiratory gas exchange during a 20-km cycle time trial (20TT) were examined (n = 9) in a placebo-controlled randomized design. IHE (7:3 min hypoxia to normoxia) involved 90-min sessions for 10 days, with SaO2 clamped at ∼80%. Prior to, and 2 days after the intervention, a 20TT was performed. During the final minute of the 20TT, in the IHE group only, muscle oxyhemoglobin (oxy-Hb) was elevated (mean ± 95% confidence interval 1.3 ± 1.2 ΔµM, p = 0.04), whereas cerebral oxy-Hb was reduced (–1.9% ± 1.0%, p < 0.01) post intervention compared with baseline. The 20TT performance was unchanged between groups (p = 0.7). In the IHE group, SaO2 was higher (1.0 ± 0.7Δ%, p = 0.006) and end-tidal PCO2 was lower (–1.2 ± 0.1 mm Hg, p = 0.01) during the final stage of the 20TT post intervention compared with baseline. In summary, reductions in muscle oxy-Hb and systemic SaO2 occurring at exercise intensities close to maximal at the end of a 20TT were offset by IHE, although this was not translated into improved performance.
Collapse
Affiliation(s)
- Michael J. Hamlin
- Department of Social Science, Parks, Recreation, Tourism, and Sport, Environment Society and Design Division, P.O. Box 84, Lincoln University, Canterbury 7647, New Zealand
- New Zealand Academy of Sport, Dunedin, New Zealand
- Department of Human Kinetics, University of British Columbia Okanagan, Kelowna, BC V6T 1Z1, Canada
| | - Helen C. Marshall
- Department of Social Science, Parks, Recreation, Tourism, and Sport, Environment Society and Design Division, P.O. Box 84, Lincoln University, Canterbury 7647, New Zealand
- New Zealand Academy of Sport, Dunedin, New Zealand
- Department of Human Kinetics, University of British Columbia Okanagan, Kelowna, BC V6T 1Z1, Canada
| | - John Hellemans
- Department of Social Science, Parks, Recreation, Tourism, and Sport, Environment Society and Design Division, P.O. Box 84, Lincoln University, Canterbury 7647, New Zealand
- New Zealand Academy of Sport, Dunedin, New Zealand
- Department of Human Kinetics, University of British Columbia Okanagan, Kelowna, BC V6T 1Z1, Canada
| | - Philip N. Ainslie
- Department of Social Science, Parks, Recreation, Tourism, and Sport, Environment Society and Design Division, P.O. Box 84, Lincoln University, Canterbury 7647, New Zealand
- New Zealand Academy of Sport, Dunedin, New Zealand
- Department of Human Kinetics, University of British Columbia Okanagan, Kelowna, BC V6T 1Z1, Canada
| |
Collapse
|
72
|
Effectiveness of intermittent training in hypoxia combined with live high/train low. Eur J Appl Physiol 2010; 110:379-87. [PMID: 20503055 DOI: 10.1007/s00421-010-1516-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
Elite athletes often undertake altitude training to improve sea-level athletic performance, yet the optimal methodology has not been established. A combined approach of live high/train low plus train high (LH/TL+TH) may provide an additional training stimulus to enhance performance gains. Seventeen male and female middle-distance runners with maximal aerobic power (VO2max) of 65.5 +/- 7.3 mL kg(-1) min(-1) (mean +/- SD) trained on a treadmill in normobaric hypoxia for 3 weeks (2,200 m, 4 week(-1)). During this period, the train high (TH) group (n = 9) resided near sea-level (approximately 600 m) while the LH/TL+TH group (n = 8) stayed in normobaric hypoxia (3,000 m) for 14 hours day(-1). Changes in 3-km time trial performance and physiological measures including VO2max, running economy and haemoglobin mass (Hb(mass)) were assessed. The LH/TL+TH group substantially improved VO2max (4.8%; +/-2.8%, mean; +/-90% CL), Hb(mass) (3.6%; +/-2.4%) and 3-km time trial performance (-1.1%; +/-1.0%) immediately post-altitude. There was no substantial improvement in time trial performance 2 weeks later. The TH group substantially improved VO2max (2.2%; +/-1.8%), but had only trivial changes in Hb(mass) and 3-km time-trial performance. Compared with TH, combined LH/TL+TH substantially improved VO2max (2.6%; +/-3.2%), Hb(mass) (4.3%; +/-3.2%), and time trial performance (-0.9%; +/-1.4%) immediately post-altitude. LH/TL+TH elicited greater enhancements in physiological capacities compared with TH, however, the transfer of benefits to time-trial performance was more variable.
Collapse
|
73
|
Fu Q, VanGundy TB, Shibata S, Auchus RJ, Williams GH, Levine BD. Menstrual cycle affects renal-adrenal and hemodynamic responses during prolonged standing in the postural orthostatic tachycardia syndrome. Hypertension 2010; 56:82-90. [PMID: 20479333 DOI: 10.1161/hypertensionaha.110.151787] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 500,000 American premenopausal women have the postural orthostatic tachycardia syndrome (POTS). We tested the hypothesis that in POTS women during orthostasis, activation of the renin-angiotensin-aldosterone system is greater, leading to better compensated hemodynamics in the midluteal phase (MLP) than in the early follicular phase of the menstrual cycle. Ten POTS women and 11 healthy women (controls) consumed a constant diet 3 days before testing. Hemodynamics and renal-adrenal hormones were measured while supine and during 2-hour standing. We found that blood pressure was similar, heart rate and total peripheral resistance were greater, and cardiac output and stroke volume were lower in POTS subjects than in controls during 2-hour standing. In controls, hemodynamic parameters were indistinguishable between menstrual phases. In POTS subjects, cardiac output and stroke volume were lower and total peripheral resistance was greater in the early follicular phase than MLP after 30 minutes of standing; however, blood pressure and heart rate were similar between phases. Plasma renin activity (9+/-6 [SD] versus 13+/-9 ng/mL per hour; P=0.04) and aldosterone (43+/-22 versus 55+/-25 ng/dL; P=0.02) were lower in the early follicular phase than MLP in POTS subjects after 2 hours of standing. Catecholamine responses were similar between phases. The percentage rate of subjects having presyncope was greater in the early follicular phase than MLP for both groups (chi(2) P<0.01). These results suggest that the menstrual cycle modulates the renin-angiotensin-aldosterone system and affects hemodynamics during orthostasis in POTS. The high estrogen and progesterone in the MLP are associated with greater increases in renal-adrenal hormones and presumably more volume retention, which improve late-standing tolerance in these patients.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Tex 75231, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Wang JS, Wu MH, Mao TY, Fu TC, Hsu CC. Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. J Appl Physiol (1985) 2010; 109:219-29. [PMID: 20431021 DOI: 10.1152/japplphysiol.00138.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic preconditioning prevents cerebrovascular/cardiovascular disorders by increasing resistance to acute ischemic stress, but severe hypoxic exposure disturbs vascular hemodynamics. This study compared how various exercise regimens with/without hypoxia affect hemodynamics and oxygenation in cardiac, muscle, and cerebral tissues during severe hypoxic exposure. Sixty sedentary males were randomly divided into five groups. Each group (n = 12) received one of five interventions: 1) normoxic (21% O(2)) resting control, 2) hypoxic (15% O(2)) resting control, 3) normoxic exercise (50% maximum work rate under 21% O(2); N-E group), 4) hypoxic-relative exercise (50% maximal heart rate reserve under 15% O(2); H-RE group), or 5) hypoxic-absolute exercise (50% maximum work rate under 15% O(2); H-AE group) for 30 min/day, 5 days/wk, for 4 wk. A recently developed noninvasive bioreactance device was used to measure cardiac hemodynamics, and near-infrared spectroscopy was used to assess perfusion and oxygenation in the vastus lateralis (VL)/gastrocnemius (GN) muscles and frontal cerebral lobe (FC). Our results demonstrated that the H-AE group had a larger improvement in aerobic capacity compared with the N-E group. Both H-RE and H-AE ameliorated the suppression of cardiac stroke volume and the GN hyperemic response (Delta total Hb/min) and reoxygenation rate by acute 12% O(2) exposure. Simultaneously, the two hypoxic interventions enhanced perfusion (Delta total Hb) and O(2) extraction [Delta deoxyHb] of the VL muscle during the 12% O(2) exercise. Although acute 12% O(2) exercise decreased oxygenation (Delta O(2)Hb) of the FC, none of the 4-wk interventions influenced the cerebral perfusion and oxygenation during normoxic/hypoxic exercise tests. Therefore, we conclude that moderate hypoxic exercise training improves cardiopulmonary fitness and increases resistance to disturbance of cardiac hemodynamics by severe hypoxia, concurrence with enhancing O(2) delivery/utilization in skeletal muscles but not cerebral tissues.
Collapse
Affiliation(s)
- Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan.
| | | | | | | | | |
Collapse
|
75
|
Garvican LA, Martin DT, McDonald W, Gore CJ. Seasonal variation of haemoglobin mass in internationally competitive female road cyclists. Eur J Appl Physiol 2010; 109:221-31. [DOI: 10.1007/s00421-009-1349-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2009] [Indexed: 11/24/2022]
|
76
|
Effects of interval hypoxia on exercise tolerance: special focus on patients with CAD or COPD. Sleep Breath 2009; 14:209-20. [DOI: 10.1007/s11325-009-0289-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
|
77
|
Time course of haemoglobin mass during 21 days live high:train low simulated altitude. Eur J Appl Physiol 2009; 106:399-406. [PMID: 19294411 DOI: 10.1007/s00421-009-1027-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the time course of changes in haemoglobin mass (Hb(mass)) in well-trained cyclists in response to live high:train low (LHTL). Twelve well-trained male cyclists participated in a 3-week LHTL protocol comprising 3,000 m simulated altitude for ~14 h/day. Prior to LHTL duplicate baseline measurements were made of Hb(mass), maximal oxygen consumption (VO(2max)) and serum erythropoietin (sEPO). Hb(mass) was measured weekly during LHTL and twice in the week thereafter. There was a 3.3% increase in Hb(mass) and no change in VO(2max) after LHTL. The mean Hb(mass) increased at a rate of ~1% per week and this was maintained in the week after cessation of LHTL. The sEPO concentration peaked after two nights of LHTL but there was only a trivial correlation (r = 0.04, P = 0.89) between the increase in sEPO and the increase in Hb(mass). Athletes seeking to gain erythropoietic benefits from moderate altitude need to spend >12 h/day in hypoxia.
Collapse
|
78
|
|
79
|
Gore CJ, McSharry PE, Hewitt AJ, Saunders PU. Preparation for football competition at moderate to high altitude. Scand J Med Sci Sports 2008; 18 Suppl 1:85-95. [DOI: 10.1111/j.1600-0838.2008.00836.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
80
|
Abstract
Reticulocytes are the transitional cells from erythroblasts to mature erythrocytes. Reticulocytes are present in blood for a period of 1-4 days and can be recognized by staining with supravital dyes, such as new methylene blue, or fluorescent markers, which couple residual nucleic acid molecules, a hallmark of the immature forms of erythrocytes. Although reticulocytes could be counted through a microscope (there is a standard of International Committee for Standardisation in Haematology for manual counting), this method is reported to be time consuming, inaccurate and imprecise. The integration of the reticulocyte count in automated haematology systems allowed the widespread use of these parameters, although the lack of calibration material and different markers, technologies and software used in automated systems could engender discrepancies among data obtained from different analytical systems.The importance of reticulocytes in sports medicine derives from their sensitivity, the highest among haematology parameters, in identifying the bone marrow stimulation, especially when recombinant human erythropoietin is fraudulently used. Automated systems are also able to supply information on volume, density and the haemoglobin content of reticulocytes. Some of the related parameters are also used in algorithms for identifying abnormal stimulation of bone marrow as reticulocytes haematocrit. The pre-analytical variability of reticulocytes (transportation, storage, biological variability) should be taken into account in sports medicine also. Reticulocytes remain stable for almost 24 hours at 4 degrees C from blood drawing, they are affected by transportation, and biological variability is not high in general. It could be remarked, however, that the intra-individual variability is high when compared with other haematological parameters such as haemoglobin and haematocrit. The intervals of data reported in athletes are very similar to reference intervals characterizing the general population.The reticulocyte count shows some modifications after training and during the competition season. The variability induced by exercise cannot be overlooked since the so-called haematological passport, a personal athlete's document in which haemoglobin and other parameters are registered, may be introduced by sports federations. Exposure to naturally high altitude and 'living high-training low' programmes determined contentious results on reticulocytes. Simulated high altitude induced by intermittent hypobaric hypoxia does not modify reticulocytes, despite an increase in erythropoietin serum concentration. The variability among athletes competing in different sport disciplines is apparently limited. The knowledge of the behaviour of reticulocytes in training and competitions is crucial for defining their role in an antidoping control context. It is important for sport physicians and clinical pathologists to know the reticulocyte variability in the general population and in athletes, the pre-analytical warnings, the different methodologies for counting reticulocytes and the derived parameters automatically available, and, finally, the possible influence of training, competitions, type of sport and altitude.
Collapse
Affiliation(s)
- Giuseppe Banfi
- IRCCS Istituto Galeazzi, via R. Galeazzi 4, Milan, Italy.
| |
Collapse
|
81
|
Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood) 2008; 233:627-50. [PMID: 18408145 DOI: 10.3181/0710-mr-267] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During acute episodes of hypoxia, chemoreceptor-mediated sympathetic activity increases heart rate, cardiac output, peripheral resistance and systemic arterial pressure. However, different intermittent hypoxia paradigms produce remarkably divergent effects on systemic arterial pressure in the post-hypoxic steady state. The hypertensive effects of obstructive sleep apnea (OSA) vs. the depressor effects of therapeutic hypoxia exemplify this divergence. OSA, a condition afflicting 15-25% of American men and 5-10% of women, has been implicated in the pathogenesis of systemic hypertension and is a major risk factor for heart disease and stroke. OSA imposes a series of brief, intense episodes of hypoxia and hypercapnia, leading to persistent, maladaptive chemoreflex-mediated activation of the sympathetic nervous system which culminates in hypertension. Conversely, extensive evidence in animals and humans has shown controlled intermittent hypoxia conditioning programs to be safe, efficacious modalities for prevention and treatment of hypertension. This article reviews the pertinent literature in an attempt to reconcile the divergent effects of intermittent hypoxia therapy and obstructive sleep apnea on hypertension. Special emphasis is placed on research conducted in the nations of the former Soviet Union, where intermittent hypoxia conditioning programs are being applied therapeutically to treat hypertension in patients. Also reviewed is evidence regarding mechanisms of the pro- and anti-hypertensive effects of intermittent hypoxia.
Collapse
|
82
|
Saunders PU, Telford RD, Pyne DB, Hahn AG, Gore CJ. Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport 2008; 12:67-72. [PMID: 18069063 DOI: 10.1016/j.jsams.2007.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 08/17/2007] [Accepted: 08/18/2007] [Indexed: 11/18/2022]
Abstract
There is conflicting evidence whether hypoxia improves running economy (RE), maximal O(2) uptake (V(O)(2max)), haemoglobin mass (Hb(mass)) and performance, and what total accumulated dose is necessary for effective adaptation. The aim of this study was to determine the effect of an extended hypoxic exposure on these physiological and performance measures. Nine elite middle distance runners were randomly assigned to a live high-train low simulated altitude group (ALT) and spent 46+/-8 nights (mean+/-S.D.) at 2860+/-41m. A matched control group (CON, n=9) lived and trained near sea level ( approximately 600m). ALT decreased submaximal V(O)(2) (Lmin(-1)) (-3.2%, 90% confidence intervals, -1.0% to -5.2%, p=0.02), increased Hb(mass) (4.9%, 2.3-7.6%, p=0.01), decreased submaximal heart rate (-3.1%, -1.8% to -4.4%, p=0.00) and had a trivial increase in V(O)(2max) (1.5%, -1.6 to 4.8; p=0.41) compared with CON. There was a trivial correlation between change in Hb(mass) and change in V(O)(2max) (r=0.04, p=0.93). Hypoxic exposure of approximately 400h was sufficient to improve Hb(mass), a response not observed with shorter exposures. Although total O(2) carrying capacity was improved, the mechanism(s) to explain the lack of proportionate increase in V(O)(2max) were not identified.
Collapse
Affiliation(s)
- P U Saunders
- Department of Physiology, Australian Institute of Sport, Australia.
| | | | | | | | | |
Collapse
|
83
|
Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic "dose" on physiological responses and sea-level performance. Med Sci Sports Exerc 2007; 39:1590-9. [PMID: 17805093 DOI: 10.1249/mss.0b013e3180de49bd] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Live high-train low (LH+TL) altitude training was developed in the early 1990s in response to potential training limitations imposed on endurance athletes by traditional live high-train high (LH+TH) altitude training. The essence of LH+TL is that it allows athletes to "live high" for the purpose of facilitating altitude acclimatization, as manifest by a profound and sustained increase in endogenous erythropoietin (EPO) and ultimately an augmented erythrocyte volume, while simultaneously allowing athletes to "train low" for the purpose of replicating sea-level training intensity and oxygen flux, thereby inducing beneficial metabolic and neuromuscular adaptations. In addition to "natural/terrestrial" LH+TL, several simulated LH+TL devices have been developed to conveniently bring the mountain to the athlete, including nitrogen apartments, hypoxic tents, and hypoxicator devices. One of the key questions regarding the practical application of LH+TL is, what is the optimal hypoxic dose needed to facilitate altitude acclimatization and produce the expected beneficial physiological responses and sea-level performance effects? The purpose of this paper is to objectively answer that question, on the basis of an extensive body of research by our group in LH+TL altitude training. We will address three key questions: 1) What is the optimal altitude at which to live? 2) How many days are required at altitude? and 3) How many hours per day are required? On the basis of consistent findings from our research group, we recommend that for athletes to derive the physiological benefits of LH+TL, they need to live at a natural elevation of 2000-2500 m for >or=4 wk for >or=22 h.d(-1).
Collapse
Affiliation(s)
- Randall L Wilber
- Athlete Performance Laboratory, United States Olympic Committee, Colorado Springs, CO 80909, USA.
| | | | | |
Collapse
|
84
|
Truijens MJ, Rodríguez FA, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol (1985) 2007; 104:328-37. [PMID: 18048583 DOI: 10.1152/japplphysiol.01324.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate the effect of intermittent hypobaric hypoxia combined with sea level training on exercise economy, 23 well-trained athletes (13 swimmers, 10 runners) were assigned to either hypobaric hypoxia (simulated altitude of 4,000-5,500 m) or normobaric normoxia (0-500 m) in a randomized, double-blind design. Both groups rested in a hypobaric chamber 3 h/day, 5 days/wk for 4 wk. Submaximal economy was measured twice before (Pre) and after (Post) the treatment period using sport-specific protocols. Economy was estimated both from the relationship between oxygen uptake (V(.-)o2) and speed, and from the absolute V(.-)o2 at each speed using sport-specific protocols. V(.-)o2 was measured during the last 60 s of each (3-4 min) stage using Douglas bags. Ventilation (V(.-)E), heart rate (HR), and capillary lactate concentration ([La(-)]) were measured during each stage. Velocity at maximal V(.-)o2 (velocity at V(.-)o2max) was used as a functional indicator of changes in economy. The average V(.-)o2 for a given speed of the Pre values was used for Post test comparison using a two-way, repeated-measures ANOVA. Typical error of measurement of V(.-)o2 was 4.7% (95% confidence limits 3.6-7.1), 3.6% (2.8-5.4), and 4.2% (3.2-6.9) for speeds 1, 2, and 3, respectively. There was no change in economy within or between groups (ANOVA interaction P = 0.28, P = 0.23, and P = 0.93 for speeds 1, 2, and 3). No differences in submaximal HR, [La-], Ve, or velocity at V(.-)o2(max) were found between groups. It is concluded that 4 wk of intermittent hypobaric hypoxia did not improve submaximal economy in this group of well-trained athletes.
Collapse
Affiliation(s)
- Martin J Truijens
- Faculty of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
“Live high-train low” (LH+TL) altitude training allows athletes to “live high” for the purpose of facilitating altitude acclimatization, as characterized by a significant and sustained increase in endogenous erythropoietin and subsequent increase in erythrocyte volume, while simultaneously enabling them to “train low” for the purpose of replicating sea-level training intensity and oxygen flux, thereby inducing beneficial metabolic and neuromuscular adaptations. In addition to natural/terrestrial LH+TL, several simulated LH+TL devices have been developed including nitrogen apartments, hypoxic tents, and hypoxicator devices. One of the key issues regarding the practical application of LH+TL is what the optimal hypoxic dose is that is needed to facilitate altitude acclimatization and produce the expected beneficial physiological responses and sea-level performance effects. The purpose of this review is to examine this issue from a research-based and applied perspective by addressing the following questions: What is the optimal altitude at which to live, how many days are required at altitude, and how many hours per day are required? It appears that for athletes to derive the hematological benefits of LH+TL while using natural/terrestrial altitude, they need to live at an elevation of 2000 to 2500 m for >4 wk for >22 h/d. For athletes using LH+TL in a simulated altitude environment, fewer hours (12-16 h) of hypoxic exposure might be necessary, but a higher elevation (2500 to 3000 m) is required to achieve similar physiological responses.
Collapse
|
86
|
Gore CJ, Clark SA, Saunders PU. Nonhematological Mechanisms of Improved Sea-Level Performance after Hypoxic Exposure. Med Sci Sports Exerc 2007; 39:1600-9. [PMID: 17805094 DOI: 10.1249/mss.0b013e3180de49d3] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Altitude training has been used regularly for the past five decades by elite endurance athletes, with the goal of improving performance at sea level. The dominant paradigm is that the improved performance at sea level is due primarily to an accelerated erythropoietic response due to the reduced oxygen available at altitude, leading to an increase in red cell mass, maximal oxygen uptake, and competitive performance. Blood doping and exogenous use of erythropoietin demonstrate the unequivocal performance benefits of more red blood cells to an athlete, but it is perhaps revealing that long-term residence at high altitude does not increase hemoglobin concentration in Tibetans and Ethiopians compared with the polycythemia commonly observed in Andeans. This review also explores evidence of factors other than accelerated erythropoiesis that can contribute to improved athletic performance at sea level after living and/or training in natural or artificial hypoxia. We describe a range of studies that have demonstrated performance improvements after various forms of altitude exposures despite no increase in red cell mass. In addition, the multifactor cascade of responses induced by hypoxia includes angiogenesis, glucose transport, glycolysis, and pH regulation, each of which may partially explain improved endurance performance independent of a larger number of red blood cells. Specific beneficial nonhematological factors include improved muscle efficiency probably at a mitochondrial level, greater muscle buffering, and the ability to tolerate lactic acid production. Future research should examine both hematological and nonhematological mechanisms of adaptation to hypoxia that might enhance the performance of elite athletes at sea level.
Collapse
|
87
|
Abstract
At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as used by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high+train high (LH+TH), 2) live high+train low (LH+TL), and 3) live low+train high (LL+TH). The LH+TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and hypobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH+TL is the altitude/hypoxic training strategy of LL+TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.
Collapse
Affiliation(s)
- Randall L Wilber
- Athlete Performance Laboratory, United States Olympic Committee, Colorado Springs, CO 80909, USA.
| |
Collapse
|
88
|
Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J Appl Physiol (1985) 2007; 103:1523-35. [PMID: 17690191 DOI: 10.1152/japplphysiol.01320.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This double-blind, randomized, placebo-controlled trial examined the effects of 4 wk of resting exposure to intermittent hypobaric hypoxia (IHE, 3 h/day, 5 days/wk at 4,000-5,500 m) or normoxia combined with training at sea level on performance and maximal oxygen transport in athletes. Twenty-three trained swimmers and runners completed duplicate baseline time trials (100/400-m swims, or 3-km run) and measures for maximal oxygen uptake (VO(2max)), ventilation (VE(max)), and heart rate (HR(max)) and the oxygen uptake at the ventilatory threshold (VO(2) at VT) during incremental treadmill or swimming flume tests. Subjects were matched for sex, sport, performance, and training status and divided randomly between hypobaric hypoxia (Hypo, n = 11) and normobaric normoxia (Norm, n = 12) groups. All tests were repeated within the first (Post1) and third weeks (Post2) after the intervention. Time-trial performance did not improve in either group. We could not detect a significant difference between groups for a change in VO(2max), VE(max), HR(max), or VO(2) at VT after the intervention (group x test interaction P = 0.31, 0.24, 0.26, and 0.12, respectively). When runners and swimmers were considered separately, Hypo swimmers appeared to increase VO(2max) (+6.2%, interaction P = 0.07) at Post2 following a precompetition taper and increased VO(2) at VT (+8.9 and +12.1%, interaction P = 0.007 and 0.006, at Post1 and Post2). We conclude that this "dose" of IHE was not sufficient to improve performance or oxygen transport in this heterogeneous group of athletes. Whether there are potential benefits of this regimen for specific sports or training/tapering strategies may require further study.
Collapse
Affiliation(s)
- Ferran A Rodríguez
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, 7232 Greenville Ave., Dallas, TX 75231, USA
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
For nearly 40 years, scientists and elite endurance athletes have been investigating the use of altitude in an effort to enhance exercise performance. While the results of many early studies on the use of altitude training for sea level performance enhancement have produced equivocal results, newer studies using the 'live high, train low' altitude training model have demonstrated significant improvements in red cell mass, maximal oxygen uptake, oxygen uptake at ventilatory threshold, and 3000m and 5000m race time. For the marathoner looking to add altitude training to their peak performance plans, residence at an altitude of 2000-2500m, a minimum of 20 hours per day, for 4 weeks, appears to hold the greatest potential for performance enhancement. Based on published mathematical models of marathon performance, a marathoner with a typical or average running economy who performed 'live high, train low' altitude training could experience an improvement of nearly 8.5 minutes (or approximately 5%) over the 26.2-mile race distance.
Collapse
Affiliation(s)
- Robert Chapman
- Department of Kinesiology, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
90
|
Ostadal B, Kolar F. Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol 2007; 158:224-36. [PMID: 17442631 DOI: 10.1016/j.resp.2007.03.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 01/28/2023]
Abstract
This review deals with the capability of the heart to adapt to chronic hypoxia in animals exposed to either natural or simulated high altitude. From the broad spectrum of related issues, we focused on the development and reversibility of both beneficial and adverse adaptive myocardial changes. Particular attention was paid to cardioprotective effects of adaptation to chronic high-altitude hypoxia and their molecular mechanisms. Moreover, interspecies and age differences in the cardiac sensitivity to hypoxia-induced effects in various experimental models were emphasized.
Collapse
Affiliation(s)
- B Ostadal
- Centre for Cardiovascular Research, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
91
|
Fu Q, Townsend NE, Shiller SM, Martini ER, Okazaki K, Shibata S, Truijens MJ, Rodríguez FA, Gore CJ, Stray-Gundersen J, Levine BD. Intermittent hypobaric hypoxia exposure does not cause sustained alterations in autonomic control of blood pressure in young athletes. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1977-84. [PMID: 17204591 DOI: 10.1152/ajpregu.00622.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent hypoxia (IH), which refers to the discontinuous use of hypoxia to reproduce some key features of altitude acclimatization, is commonly used in athletes to improve their performance. However, variations of IH are also used as a model for sleep apnea, causing sustained sympathoexcitation and hypertension in animals and, thus, raising concerns over the safety of this model. We tested the hypothesis that chronic IH at rest alters autonomic control of arterial pressure in healthy trained individuals. Twenty-two young athletes (11 men and 11 women) were randomly assigned to hypobaric hypoxia (simulated altitude of 4,000-5,500 m) or normoxia (500 m) in a double-blind and placebo-controlled design. Both groups rested in a hypobaric chamber for 3 h/day, 5 days/wk for 4 wk. In the sitting position, resting hemodynamics, including heart rate (HR), blood pressure (BP), cardiac output (Q(c), C(2)H(2) rebreathing), stroke volume (SV = Q(c)/HR), and total peripheral resistance (TPR = mean BP/Q(c)), were measured, dynamic cardiovascular regulation was assessed by spectral and transfer function analysis of cardiovascular variability, and cardiac-vagal baroreflex function was evaluated by a Valsalva maneuver, twice before and 3 days after the last chamber exposure. We found no significant differences in HR, BP, Q(c), SV, TPR, cardiovascular variability, or cardiac-vagal baroreflex function between the groups at any time. These results suggest that exposure to intermittent hypobaric hypoxia for 4 wk does not cause sustained alterations in autonomic control of BP in young athletes. In contrast to animal studies, we found no secondary evidence for sustained physiologically significant sympathoexcitation in this model.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX 75231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|