51
|
Lin WC, Huang CC, Chen HL, Chou KH, Chen PC, Tsai NW, Chen MH, Friedman M, Lin HC, Lu CH. Longitudinal brain structural alterations and systemic inflammation in obstructive sleep apnea before and after surgical treatment. J Transl Med 2016; 14:139. [PMID: 27188598 PMCID: PMC4901987 DOI: 10.1186/s12967-016-0887-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/28/2016] [Indexed: 01/10/2023] Open
Abstract
Background Systemic inflammation, neurocognitive impairments, and morphologic brain changes are associated with obstructive sleep apnea (OSA). Understanding their longitudinal evolution and interactions after surgical treatment provides clues to the pathogenesis of cognitive impairment and its reversibility. In the present study, we investigate clinical disease severity, systemic inflammation, cognitive deficits, and corresponding gray matter volume (GMV) changes in OSA, and the modifications following surgery. Methods Twenty-one patients with OSA (apnea-hypopnea index, AHI > 5) and 15 healthy volunteers (AHI < 5) underwent serial evaluation, including polysomnography, flow cytometry for leukocyte apoptosis categorization, cognitive function evaluation, and high-resolution brain scan. Disease severity, leukocyte apoptosis, cognitive function, and imaging data were collected to assess therapeutic efficacy 3 months after surgery. Results Pre-operatively, patients presented with worse cognitive function, worse polysomnography scores, and higher early leukocyte apoptosis associated with increased insular GMV. There was reduced GMV in the anterior cingulate gyrus before and after surgery in the cases compared to that in controls, suggesting an irreversible structural deficit. Post-operatively, there were significant improvements in different cognitive domains, including attention, executive and visuospatial function, and depression, and in early leukocyte apoptosis. There was also a significant decrease in GMVs after treatment, suggesting recovery from vasogenic edema in the precuneus, insula, and cerebellum. Improvement in early leukocyte apoptosis post-surgery predicted better recovery of precuneus GMV. Conclusions In OSA, increased disease severity and systemic inflammation can alter GMV in vulnerable regions. Surgical treatment may improve disease severity and systemic inflammation, with subsequent recovery in brain structures and functions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0887-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsien Chou
- Department of Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chin Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Michael Friedman
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, IL, USA.,Department of Otolaryngology, Advanced Center for Specialty Care, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Hsin-Ching Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung District, Kaohsiung, Taiwan. .,Sleep Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
52
|
Song TT, Bi YH, Gao YQ, Huang R, Hao K, Xu G, Tang JW, Ma ZQ, Kong FP, Coote JH, Chen XQ, Du JZ. Systemic pro-inflammatory response facilitates the development of cerebral edema during short hypoxia. J Neuroinflammation 2016; 13:63. [PMID: 26968975 PMCID: PMC4788817 DOI: 10.1186/s12974-016-0528-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-altitude cerebral edema (HACE) is the severe type of acute mountain sickness (AMS) and life threatening. A subclinical inflammation has been speculated, but the exact mechanisms underlying the HACE are not fully understood. METHODS Human volunteers ascended to high altitude (3860 m, 2 days), and rats were exposed to hypoxia in a hypobaric chamber (5000 m, 2 days). Human acute mountain sickness was evaluated by the Lake Louise Score (LLS), and plasma corticotrophin-releasing hormone (CRH) and cytokines TNF-α, IL-1β, and IL-6 were measured in rats and humans. Subsequently, rats were pre-treated with lipopolysaccharide (LPS, intraperitoneal (ip) 4 mg/kg, 11 h) to induce inflammation prior to 1 h hypoxia (7000 m elevation). TNF-α, IL-1β, IL-6, nitric oxide (NO), CRH, and aquaporin-4 (AQP4) and their gene expression, Evans blue, Na(+)-K(+)-ATPase activity, p65 translocation, and cell swelling were measured in brain by ELISA, Western blotting, Q-PCR, RT-PCR, immunohistochemistry, and transmission electron micrography. MAPKs, NF-κB pathway, and water permeability of primary astrocytes were demonstrated. All measurements were performed with or without LPS challenge. The release of NO, TNF-α, and IL-6 in cultured primary microglia by CRH stimulation with or without PDTC (NF-κB inhibitor) or CP154,526 (CRHR1 antagonist) were measured. RESULTS Hypobaric hypoxia enhanced plasma TNF-α, IL-1β, and IL-6 and CRH levels in human and rats, which positively correlated with AMS. A single LPS injection (ip, 4 mg/kg, 12 h) into rats increased TNF-α and IL-1β levels in the serum and cortex, and AQP4 and AQP4 mRNA expression in cortex and astrocytes, and astrocyte water permeability but did not cause brain edema. However, LPS treatment 11 h prior to 1 h hypoxia (elevation, 7000 m) challenge caused cerebral edema, which was associated with activation of NF-κB and MAPKs, hypoxia-reduced Na(+)-K(+)-ATPase activity and blood-brain barrier (BBB) disruption. Both LPS and CRH stimulated TNF-α, IL-6, and NO release in cultured rat microglia via NF-κB and cAMP/PKA. CONCLUSIONS Preexisting systemic inflammation plus a short severe hypoxia elicits cerebral edema through upregulated AQP4 and water permeability by TLR4 and CRH/CRHR1 signaling. This study revealed that both infection and hypoxia can cause inflammatory response in the brain. Systemic inflammation can facilitate onset of hypoxic cerebral edema through interaction of astrocyte and microglia by activation of TLR4 and CRH/CRHR1 signaling. Anti-inflammatory agents and CRHR1 antagonist may be useful for prevention and treatment of AMS and HACE.
Collapse
Affiliation(s)
- Ting-Ting Song
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Hua Bi
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Qi Gao
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rui Huang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Ke Hao
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Gang Xu
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia-Wei Tang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Qiang Ma
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Fan-Ping Kong
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - John H Coote
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xue-Qun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| | - Ji-Zeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
53
|
Barker KR, Conroy AL, Hawkes M, Murphy H, Pandey P, Kain KC. Biomarkers of hypoxia, endothelial and circulatory dysfunction among climbers in Nepal with AMS and HAPE: a prospective case-control study. J Travel Med 2016; 23:taw005. [PMID: 26984355 PMCID: PMC5731443 DOI: 10.1093/jtm/taw005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms underlying acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) are not fully understood. We hypothesized that regulators of endothelial function, circulatory homeostasis, hypoxia and cell stress contribute to the pathobiology of AMS and HAPE. METHODS We conducted a prospective case-control study of climbers developing altitude illness who were evacuated to the CIWEC clinic in Kathmandu, compared to healthy acclimatized climbers. ELISA was used to measure plasma biomarkers of the above pathways. RESULTS Of the 175 participants, there were 71 cases of HAPE, 54 cases of AMS and 50 acclimatized controls (ACs). Markers of endothelial function were associated with HAPE: circulating levels of endothelin-1 (ET-1) were significantly elevated and levels of sKDR (soluble kinase domain receptor) were significantly decreased in cases of HAPE compared to AC or AMS. ET-1 levels were associated with disease severity as indicated by oxygen saturation. Angiopoietin-like 4 (Angptl4) and resistin, a marker of cell stress, were associated with AMS and HAPE irrespective of severity. Corin and angiotensin converting enzyme, regulators of volume homeostasis, were significantly decreased in HAPE compared to AC. CONCLUSION Our findings indicate that regulators of endothelial function, vascular tone and cell stress are altered in altitude illness and may mechanistically contribute to the pathobiology of HAPE.
Collapse
Affiliation(s)
- Kevin R Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Michael Hawkes
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada, Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada and
| | - Holly Murphy
- CIWEC Hospital and Travel Medicine Center, Kathmandu, Nepal
| | - Prativa Pandey
- CIWEC Hospital and Travel Medicine Center, Kathmandu, Nepal
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada, The Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, ON, Canada,
| |
Collapse
|
54
|
Boos CJ, Woods DR, Varias A, Biscocho S, Heseltine P, Mellor AJ. High Altitude and Acute Mountain Sickness and Changes in Circulating Endothelin-1, Interleukin-6, and Interleukin-17a. High Alt Med Biol 2015; 17:25-31. [PMID: 26680502 DOI: 10.1089/ham.2015.0098] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Hypoxia induces an inflammatory response, which is enhanced by exercise. High altitude (HA) leads to endothelial activation and may be proinflammatory. The relationship between endothelial activation, inflammation, and acute mountain sickness (AMS) and its severity has never been examined. METHODS Forty-eight trekkers were studied during a progressive trek at 3833, 4450, and 5129 m at rest postascent (exercise), and then again at rest 24 hours later. Twenty of the subjects were also tested at rest pre- and postexercise at sea level (SL) at 6 weeks preascent. We examined plasma levels of the interleukin 6 (IL-6), 17a (IL-17a), and endothelin-1 (ET-1) along with oxygen saturation (SpO2) and Lake Louise scores (LLS). RESULTS ET-1 (5.7 ± 2.1 vs. 4.3 ± 1.9 pg/mL; p < 0.001), IL-6 (3.3 ± 3.3 vs. 2.4 ± 2.3 pg/mL; p = 0.007), and IL-17a (1.3 ± 3.0 vs. 0.46 ± 0.4 pg/mL; p < 0.001) were all overall significantly higher at HA versus SL. There was a paired increase in ET-1 and IL-6 with exercise versus rest at SL, 3833, 4450, and 5129 m (p < 0.05). There was a negative correlation between LLS and SpO2 (r = -0.32; 95% confidence interval [CI] -0.21 to -0.42; p < 0.001) and a positive correlation between LLS and IL-6 (r = 0.16; 0.0-0.27; p = 0.007) and ET-1 levels (r = 0.29; 0.18-0.39; p < 0.001. Altitude, ET-1, IL-6, and SpO2 were all univariate predictors of AMS. On multivariate analysis, ET-1 (p = 0.002) and reducing SpO2 (p = 0.02) remained as the only independent predictors (overall r(2) = 0.16; p < 0.001) of AMS. ET-1 (p = 03) and SpO2 were (p = 0.01) also independent predictors of severe AMS (overall r(2) = 0.19; p < 0.001). CONCLUSIONS HA leads to endothelial activation and an inflammatory response. The rise in ET-1 and IL-6 is heavily influenced by the degree of exercise and hypoxia. ET-1 is an independent predictor of both AMS and its severity.
Collapse
Affiliation(s)
- Christopher John Boos
- 1 Department of Cardiology, Poole Hospital NHS Foundation Trust , Poole, Dorset, United Kingdom .,2 Department of Postgraduate Medical Education, Bournemouth University , Bournemouth, United Kingdom
| | - David R Woods
- 3 Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary , Newcastle, United Kingdom .,4 Defence Medical Services , Lichfield, United Kingdom .,5 University of Newcastle , Newcastle upon Tyne, United Kingdom .,6 Leeds Beckett University , Leeds, United Kingdom
| | | | | | | | - Adrian J Mellor
- 4 Defence Medical Services , Lichfield, United Kingdom .,7 Singulex, Inc. , Alameda, California.,8 James Cook University Hospital , Middlesbrough, United Kingdom
| |
Collapse
|
55
|
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2015; 120:204-15. [PMID: 26294748 DOI: 10.1152/japplphysiol.00443.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Pharmacotherapy in acute mountain sickness (AMS) for the past half century has largely rested on the use of carbonic anhydrase (CA) inhibitors, such as acetazolamide, and corticosteroids, such as dexamethasone. The benefits of CA inhibitors are thought to arise from their known ventilatory stimulation and resultant greater arterial oxygenation from inhibition of renal CA and generation of a mild metabolic acidosis. The benefits of corticosteroids include their broad-based anti-inflammatory and anti-edemagenic effects. What has emerged from more recent work is the strong likelihood that drugs in both classes act on other pathways and signaling beyond their classical actions to prevent and treat AMS. For the CA inhibitors, these include reduction in aquaporin-mediated transmembrane water transport, anti-oxidant actions, vasodilation, and anti-inflammatory effects. In the case of corticosteroids, these include protection against increases in vascular endothelial and blood-brain barrier permeability, suppression of inflammatory cytokines and reactive oxygen species production, and sympatholysis. The loci of action of both classes of drug include the brain, but may also involve the lung as revealed by benefits that arise with selective administration to the lungs by inhalation. Greater understanding of their pluripotent actions and sites of action in AMS may help guide development of better drugs with more selective action and fewer side effects.
Collapse
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Health Care System, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
56
|
Berger MM, Macholz F, Mairbäurl H, Bärtsch P. Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction? J Appl Physiol (1985) 2015; 119:1143-51. [PMID: 26089545 DOI: 10.1152/japplphysiol.00156.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/17/2015] [Indexed: 01/14/2023] Open
Abstract
Preconditioning refers to exposure to brief episodes of potentially adverse stimuli and protects against injury during subsequent exposures. This was first described in the heart, where episodes of ischemia/reperfusion render the myocardium resistant to subsequent ischemic injury, which is likely caused by reactive oxygen species (ROS) and proinflammatory processes. Protection of the heart was also found when preconditioning was performed in an organ different from the target, which is called remote ischemic preconditioning (RIPC). The mechanisms causing protection seem to include stimulation of nitric oxide (NO) synthase, increase in antioxidant enzymes, and downregulation of proinflammatory cytokines. These pathways are also thought to play a role in high-altitude diseases: high-altitude pulmonary edema (HAPE) is associated with decreased bioavailability of NO and increased generation of ROS, whereas mechanisms causing acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) seem to involve cytotoxic effects by ROS and inflammation. Based on these apparent similarities between ischemic damage and AMS, HACE, and HAPE, it is reasonable to assume that RIPC might be protective and improve altitude tolerance. In studies addressing high-altitude/hypoxia tolerance, RIPC has been shown to decrease pulmonary arterial systolic pressure in normobaric hypoxia (13% O2) and at high altitude (4,342 m). Our own results indicate that RIPC transiently decreases the severity of AMS at 12% O2. Thus preliminary studies show some benefit, but clearly, further experiments to establish the efficacy and potential mechanism of RIPC are needed.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany;
| | - Franziska Macholz
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Heimo Mairbäurl
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany; and Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Peter Bärtsch
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany; and
| |
Collapse
|
57
|
The influence of a mild thermal challenge and severe hypoxia on exercise performance and serum BDNF. Eur J Appl Physiol 2015; 115:2135-48. [DOI: 10.1007/s00421-015-3193-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/21/2015] [Indexed: 01/27/2023]
|
58
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia ZP. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25778288 DOI: 10.1111/apha.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS.
Collapse
Affiliation(s)
- H Lu
- Key Laboratory of the Plateau of Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Mishra KP, Sharma N, Soree P, Gupta RK, Ganju L, Singh SB. Hypoxia-Induced Inflammatory Chemokines in Subjects with a History of High-Altitude Pulmonary Edema. Indian J Clin Biochem 2015; 31:81-6. [PMID: 26855492 DOI: 10.1007/s12291-015-0491-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
High altitude hypoxia is known to induce an inflammatory response in immune cells. Hypoxia induced inflammatory chemokines may contribute to the development of high altitude pulmonary edema (HAPE) by causing damage to the lung endothelial cells and thereby capillary leakage. In the present study, we were interested to know whether chronic inflammation may contribute to HAPE susceptibility. We examined the serum levels of macrophage inflammatory protein-1α (MIP-1α), monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 in group (1) HAPE Susceptible subjects (n = 20) who had past history of HAPE and group (2) Control (n = 18) consist of subjects who had stayed at high altitude for 2 years without any history of HAPE. The data obtained confirmed that circulating MCP-1, MIP-1α were significantly upregulated in HAPE-S individuals as compared to the controls suggestive of chronic inflammation. However, it is not certain whether chronic inflammation is cause or consequence of previous episode of HAPE. The moderate systemic increase of these inflammatory markers may reflect considerable local inflammation. The existence of enhanced level of inflammatory chemokines found in this study support the hypothesis that subjects with past history of HAPE have higher baseline chronic inflammation which may contribute to HAPE susceptibility.
Collapse
Affiliation(s)
- K P Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Navita Sharma
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Poonam Soree
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - R K Gupta
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - Lilly Ganju
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| | - S B Singh
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 India
| |
Collapse
|
61
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia ZP. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25753758 DOI: 10.1111/apha.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia we suggest that directly or indirectly blunting specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that 1) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2 ) as low as 25 mmHg without AMS symptoms, 2) paradoxically AMS usually develops at much higher PaO2 levels, and 3) several biomarkers, suggesting initial activation of specific pathways at such PaO2 , are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Lu
- Key Laboratory of the plateau of environmental damage control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
62
|
The lungs in acute mountain sickness: victim, perpetrator, or both? Am J Med 2014; 127:899-900. [PMID: 24950487 DOI: 10.1016/j.amjmed.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022]
|
63
|
Abstract
High altitude headache (HAH) has been defined by the International Headache Society as a headache that appears within 24 hours after ascent to 2,500 m or higher [1••]. The headache can appear in isolation or as part of acute mountain sickness (AMS), which has more dramatic symptoms than the headache alone. If symptoms are ignored, more serious conditions such as high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE), or even death may ensue. While there is no definitive understanding of the underlying pathophysiologic mechanism, it is speculated that HAH occurs from the combination of hypoxemia-induced intracranial vasodilation and subsequent cerebral edema. There are a number of preventive measures that can be adopted prior to ascending, including acclimatization and various medications. A variety of pharmacological interventions are also available to clinicians to treat this extremely widespread condition.
Collapse
Affiliation(s)
- J Ivan Lopez
- University of Nevada School of Medicine, Reno, Nevada,
| | | | | |
Collapse
|
64
|
Sightings edited by Erik R. Swenson and Peter Bärtsch. High Alt Med Biol 2014. [DOI: 10.1089/ham.2014.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
65
|
Tang E, Chen Y, Luo Y. Dexamethasone for the prevention of acute mountain sickness: Systematic review and meta-analysis. Int J Cardiol 2014; 173:133-8. [DOI: 10.1016/j.ijcard.2014.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/01/2014] [Accepted: 03/09/2014] [Indexed: 01/28/2023]
|
66
|
Subudhi AW, Bourdillon N, Bucher J, Davis C, Elliott JE, Eutermoster M, Evero O, Fan JL, Houten SJV, Julian CG, Kark J, Kark S, Kayser B, Kern JP, Kim SE, Lathan C, Laurie SS, Lovering AT, Paterson R, Polaner DM, Ryan BJ, Spira JL, Tsao JW, Wachsmuth NB, Roach RC. AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent. PLoS One 2014; 9:e92191. [PMID: 24658407 PMCID: PMC3962396 DOI: 10.1371/journal.pone.0092191] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.
Collapse
Affiliation(s)
- Andrew W. Subudhi
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado, United States of America
| | - Nicolas Bourdillon
- Institute of Sports Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jenna Bucher
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Christopher Davis
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jonathan E. Elliott
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Morgan Eutermoster
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Oghenero Evero
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jui-Lin Fan
- Institute of Sports Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Lemanic Doctoral School of Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Sonja Jameson-Van Houten
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Colleen G. Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jonathan Kark
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sherri Kark
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Bengt Kayser
- Institute of Sports Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julia P. Kern
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - See Eun Kim
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Corinna Lathan
- AnthroTronix, Inc., Silver Spring, Maryland, United States of America
| | - Steven S. Laurie
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Andrew T. Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Ryan Paterson
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David M. Polaner
- Departments of Anesthesiology and Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States of America
| | - Benjamin J. Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - James L. Spira
- United States Department of Veterans Affairs, National Center for PTSD, Pacific Islands Health Care System, and Department of Psychiatry, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Jack W. Tsao
- Wounded, Ill & Injured Directorate (M9), United States Navy Bureau of Medicine and Surgery, Falls Church, Virginia, United States of America
| | - Nadine B. Wachsmuth
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Robert C. Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
67
|
Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant 2014; 29:497-506. [PMID: 23525530 PMCID: PMC3938295 DOI: 10.1093/ndt/gft051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/24/2013] [Indexed: 01/07/2023] Open
Abstract
In high-altitude climbers, the kidneys play a crucial role in acclimatization and in mountain sickness syndromes [acute mountain sickness (AMS), high-altitude cerebral edema, high-altitude pulmonary edema] through their roles in regulating body fluids, electrolyte and acid-base homeostasis. Here, we discuss renal responses to several high-altitude-related stresses, including changes in systemic volume status, renal plasma flow and clearance, and altered acid-base and electrolyte status. Volume regulation is considered central both to high-altitude adaptation and to maladaptive development of mountain sickness. The rapid and powerful diuretic response to the hypobaric hypoxic stimulus of altitude integrates decreased circulating concentrations of antidiuretic hormone, renin and aldosterone, increased levels of natriuretic hormones, plasma and urinary epinephrine, norepinephrine, endothelin and urinary adrenomedullin, with increased insensible fluid losses and reduced fluid intake. The ventilatory and hormonal responses to hypoxia may predict susceptibility to AMS, also likely influenced by multiple genetic factors. The timing of altitude increases and adaptation also modifies the body's physiologic responses to altitude. While hypovolemia develops as part of the diuretic response to altitude, coincident vascular leak and extravascular fluid accumulation lead to syndromes of high-altitude sickness. Pharmacological interventions, such as diuretics, calcium blockers, steroids, phosphodiesterase inhibitors and β-agonists, may potentially be helpful in preventing or attenuating these syndromes.
Collapse
Affiliation(s)
- Alexander S. Goldfarb-Rumyantzev
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Transplant Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seth L. Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Abstract
Carbonic anhydrase (CA) inhibitors, particularly acetazolamide, have been used at high altitude for decades to prevent or reduce acute mountain sickness (AMS), a syndrome of symptomatic intolerance to altitude characterized by headache, nausea, fatigue, anorexia and poor sleep. Principally CA inhibitors act to further augment ventilation over and above that stimulated by the hypoxia of high altitude by virtue of renal and endothelial cell CA inhibition which oppose the hypocapnic alkalosis resulting from the hypoxic ventilatory response (HVR), which acts to limit the full expression of the HVR. The result is even greater arterial oxygenation than that driven by hypoxia alone and greater altitude tolerance. The severity of several additional diseases of high attitude may also be reduced by acetazolamide, including high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE) and chronic mountain sickness (CMS), both by its CA-inhibiting action as described above, but also by more recently discovered non-CA inhibiting actions, that seem almost unique to this prototypical CA inhibitor and are of most relevance to HAPE. This chapter will relate the history of CA inhibitor use at high altitude, discuss what tissues and organs containing carbonic anhydrase play a role in adaptation and maladaptation to high altitude, explore the role of the enzyme and its inhibition at those sites for the prevention and/or treatment of the four major forms of illness at high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA, USA,
| |
Collapse
|
69
|
Julian CG, Subudhi AW, Hill RC, Wilson MJ, Dimmen AC, Hansen KC, Roach RC. Exploratory proteomic analysis of hypobaric hypoxia and acute mountain sickness in humans. J Appl Physiol (1985) 2013; 116:937-44. [PMID: 24265281 DOI: 10.1152/japplphysiol.00362.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our objective in this exploratory study was to identify novel biomarkers of importance for acute mountain sickness (AMS) using discovery-based proteomic methods. Peripheral blood samples were collected and AMS symptoms were assessed in 20 healthy volunteers prior to [-15 h (baseline) and 0 h; 1,609 m; barometric pressure = 625 mmHg] and after a 9-h exposure to hypobaric hypoxia (9 h; 4,875 m; barometric pressure = 425 mmHg). AMS status was assessed using the Lake Louise Questionnaire. Plasma samples were pooled according to AMS status at each time point. Protein composition of the samples was determined by a GeLC-MS/MS approach using two analytical platforms (LTQ-XL linear ion trap mass spectrometer and a LTQ-FT ultra hybrid mass spectrometer) for technical replication. Spectral counting was used to make semiquantitative comparisons of protein abundance between AMS-susceptible (AMS) and AMS-resistant (AMS·R) subjects with exposure to hypobaric hypoxia. After 9 h of hypoxia, the abundance of proteins with antioxidant properties (i.e., peroxiredoxin 6, glutathione peroxidase, and sulfhydryl oxidase 1) rose in AMS but not AMS·R. Our exploratory analyses suggest that exposure to hypobaric hypoxia enhances enzymatic antioxidant systems in AMS vs. AMS·R, which, we propose, may be an overcompensation for hypoxia-induced oxidant production. On the basis of our findings we 1) speculate that quenching oxidant activity may have adverse downstream effects that are of pathophysiological importance for AMS such as interrupting oxidant-sensitive cell signaling and gene transcription and 2) question the existing assumption that increased oxidant production in AMS is pathological.
Collapse
Affiliation(s)
- Colleen G Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | | | | | | | | |
Collapse
|
70
|
Spliethoff K, Meier D, Aeberli I, Gassmann M, Langhans W, Maggiorini M, Lutz TA, Goetze O. Reduced Insulin Sensitivity as a Marker for Acute Mountain Sickness? High Alt Med Biol 2013; 14:240-50. [DOI: 10.1089/ham.2012.1128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Kerstin Spliethoff
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) Zurich, Switzerland
| | - Daniela Meier
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Isabelle Aeberli
- Clinic for Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) Zurich, Switzerland
| | - Marco Maggiorini
- Medical Intensive Care Unit, University Hospital Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) Zurich, Switzerland
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) Zurich, Switzerland
| | - Oliver Goetze
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP) Zurich, Switzerland
- Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
71
|
Abstract
Altitude physiology began with Paul Bert in 1878. Chronic mountain sickness (CMS) was defined by Carlos Monge in the 1940s in the Peruvian Andes as consisting of excess polycythemia. Hurtado et al performed studies in the Peruvian Andes in the 1950s to 1960s which defined acclimatization in healthy altitude natives, including polycythemia, moderate pulmonary hypertension, and low systemic blood pressure (BP). Electrocardiographic changes of right ventricular hypertrophy (RVH) were noted. Acclimatization of newcomers to altitude involves hyperventilation stimulated by hypoxia and is usually benign. Acute mountain sickness (AMS) in travelers to altitude is characterized by hypoxia-induced anorexia, dyspnea, headache, insomnia, and nausea. The extremes of AMS are high-altitude cerebral edema and high-altitude pulmonary edema. The susceptible high-altitude resident can lose their tolerance to altitude and develop CMS, also referred to as Monge disease. The CMS includes extreme polycythemia, severe RVH, excess pulmonary hypertension, low systemic BP, arterial oxygen desaturation, and hypoventilation.
Collapse
Affiliation(s)
- Thomas F Whayne
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
72
|
In Reply to “Ibuprofen for Prevention of Acute Mountain Sickness–Is Bigger Really Better?”. Wilderness Environ Med 2013; 24:178-9. [DOI: 10.1016/j.wem.2013.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/17/2022]
|
73
|
Billaut F, Gore CJ, Aughey RJ. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med 2013; 42:751-67. [PMID: 22845561 DOI: 10.1007/bf03262293] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60-120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, 'altitude' training (i.e. living and/or training in O(2)-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.
Collapse
Affiliation(s)
- François Billaut
- School of Sport and Exercise Science, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
74
|
Zafren K. Does Ibuprofen Prevent Acute Mountain Sickness? Wilderness Environ Med 2012; 23:297-9. [DOI: 10.1016/j.wem.2012.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022]
|
75
|
Mairer K, Göbel M, Defrancesco M, Wille M, Messner H, Loizides A, Schocke M, Burtscher M. MRI evidence: acute mountain sickness is not associated with cerebral edema formation during simulated high altitude. PLoS One 2012; 7:e50334. [PMID: 23226263 PMCID: PMC3511451 DOI: 10.1371/journal.pone.0050334] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022] Open
Abstract
Acute mountain sickness (AMS) is a common condition among non-acclimatized individuals ascending to high altitude. However, the underlying mechanisms causing the symptoms of AMS are still unknown. It has been suggested that AMS is a mild form of high-altitude cerebral edema both sharing a common pathophysiological mechanism. We hypothesized that brain swelling and consequently AMS development is more pronounced when subjects exercise in hypoxia compared to resting conditions. Twenty males were studied before and after an eight hour passive (PHE) and active (plus exercise) hypoxic exposure (AHE) (F(i)O(2) = 11.0%, P(i)O(2)∼80 mmHg). Cerebral edema formation was investigated with a 1.5 Tesla magnetic resonance scanner and analyzed by voxel based morphometry (VBM), AMS was assessed using the Lake Louise Score. During PHE and AHE AMS was diagnosed in 50% and 70% of participants, respectively (p>0.05). While PHE slightly increased gray and white matter volume and the apparent diffusion coefficient, these changes were clearly more pronounced during AHE but were unrelated to AMS. In conclusion, our findings indicate that rest and especially exercise in normobaric hypoxia are associated with accumulation of water in the extracellular space, however independent of AMS development. Thus, it is suggested that AMS and HACE do not share a common pathophysiological mechanism.
Collapse
Affiliation(s)
- Klemens Mairer
- Department of Sports Science, Medical Section, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Altitude Sickness in Climbers and Efficacy of NSAIDs Trial (ASCENT): randomized, controlled trial of ibuprofen versus placebo for prevention of altitude illness. Wilderness Environ Med 2012; 23:307-15. [PMID: 23098412 DOI: 10.1016/j.wem.2012.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/22/2012] [Accepted: 08/06/2012] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To study the effectiveness of ibuprofen versus placebo in preventing acute mountain sickness (AMS) and high altitude headache (HAH). METHODS Double-blind, randomized, placebo-controlled trial. RESULTS Two hundred ninety-four healthy Western trekkers were recruited on the Everest approach at 4280 m or 4358 m and randomly assigned to receive either 600 mg of ibuprofen or placebo 3 times daily before and during ascent to 4928 m. One hundred eighty-three of 294 participants completed the trial. Of the participants who did not complete the trial, 62 were lost to follow-up and another 49 broke trial protocol. In an intent-to-treat analysis (232 participants), ibuprofen was found to be more effective than placebo in reducing the incidence of AMS (24.4% vs 40.4%; P = .01) and the incidence of HAH (42.3% vs 60.5%; P < .01). Ibuprofen was also superior to placebo in reducing the severity of HAH (4.9% vs 14.7%; P = .01). The end point of oxygen saturation was also higher in the ibuprofen group (80.8 % vs 82.4%; P = .035). For the 183 participants who completed the trial and conformed to the protocol, the incidence of AMS between placebo and treatment groups was not significant (32.9% vs 22.7%; P = .129 for AMS incidence, 9.6% vs 8.2%; P = .74 for AMS severity, 54.8% vs 42.7%; P = .11 for HAH incidence, and 8.2% vs 3.6%; P = .18 for HAH severity). CONCLUSIONS Ibuprofen was found to be effective in preventing AMS in the intent-to-treat analysis group but not in those who completed the trial. This loss of significance in the subjects who completed the trial may be explained by persons in the placebo group having a higher burden of illness and associated decreased compliance with the protocol. An important limitation of this study may be the possibility that ibuprofen can mask headache, which is a compulsory criterion for the diagnosis of AMS.
Collapse
|
77
|
Hypobaric Hypoxia and Reoxygenation Induce Proteomic Profile Changes in the Rat Brain Cortex. Neuromolecular Med 2012; 15:82-94. [DOI: 10.1007/s12017-012-8197-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
78
|
S K S S, Veeramohan, P H, Mathew T, S S, M C. Nifedipine inhibits hypoxia induced transvascular leakage through down regulation of NFkB. Respir Physiol Neurobiol 2012; 183:26-34. [PMID: 22627105 DOI: 10.1016/j.resp.2012.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
We have studied the prophylactic administration of nifedipine and its molecular mechanism involved in reducing the transvascular leakage and inflammation in rats under hypoxia. Rats exposed to an altitude of 7620m for 6h resulted into significant increase in transvascular leakage, oxidative stress with increased NFkB expression in lungs followed by significant increase in pro inflammatory cytokines (IL-1, TNF-α) with up regulation of cell adhesion molecules (ICAM-I, VCAM-I, E-selectin, and P-selectin) in the lungs over control. Prophylactic administration of nifedipine significantly reduced the transvascular leakage, oxidative stress, inhibited the up regulation of NFkB in lungs of rats compared to control. In addition, nifedipine significantly suppressed the levels of proinflammatory cytokines and cell adhesion molecules and stabilized the HIF1-α accumulation in the lungs of rats compared to control. These results indicate that, nifedipine has an inhibitory effect on initial leaking and showed reduction in progression of inflammation through down regulation of NFkB activity in lungs of rats under hypoxia.
Collapse
Affiliation(s)
- Sarada S K S
- Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 54, India.
| | | | | | | | | | | |
Collapse
|
79
|
Lipman GS, Kanaan NC, Holck PS, Constance BB, Gertsch JH. Ibuprofen prevents altitude illness: a randomized controlled trial for prevention of altitude illness with nonsteroidal anti-inflammatories. Ann Emerg Med 2012; 59:484-90. [PMID: 22440488 DOI: 10.1016/j.annemergmed.2012.01.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/05/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
STUDY OBJECTIVE Acute mountain sickness occurs in more than 25% of the tens of millions of people who travel to high altitude each year. Previous studies on chemoprophylaxis with nonsteroidal anti-inflammatory drugs are limited in their ability to determine efficacy. We compare ibuprofen versus placebo in the prevention of acute mountain sickness incidence and severity on ascent from low to high altitude. METHODS Healthy adult volunteers living at low altitude were randomized to ibuprofen 600 mg or placebo 3 times daily, starting 6 hours before ascent from 1,240 m (4,100 ft) to 3,810 m (12,570 ft) during July and August 2010 in the White Mountains of California. The main outcome measures were acute mountain sickness incidence and severity, measured by the Lake Louise Questionnaire acute mountain sickness score with a diagnosis of ≥ 3 with headache and 1 other symptom. RESULTS Eighty-six participants completed the study; 44 (51%) received ibuprofen and 42 (49%) placebo. There were no differences in demographic characteristics between the 2 groups. Fewer participants in the ibuprofen group (43%) developed acute mountain sickness compared with those receiving placebo (69%) (odds ratio 0.3, 95% confidence interval 0.1 to 0.8; number needed to treat 3.9, 95% confidence interval 2 to 33). The acute mountain sickness severity was higher in the placebo group (4.4 [SD 2.6]) than individuals receiving ibuprofen (3.2 [SD 2.4]) (mean difference 0.9%; 95% confidence interval 0.3% to 3.0%). CONCLUSION Compared with placebo, ibuprofen was effective in reducing the incidence of acute mountain sickness.
Collapse
Affiliation(s)
- Grant S Lipman
- Division of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA. grant
| | | | | | | | | | | |
Collapse
|
80
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2011. [DOI: 10.1089/ham.2011.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|