51
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
52
|
Zielinski MR, Taishi P, Clinton JM, Krueger JM. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation. Eur J Neurosci 2012; 35:1789-98. [PMID: 22540145 DOI: 10.1111/j.1460-9568.2012.08112.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.
Collapse
Affiliation(s)
- Mark R Zielinski
- Sleep and Performance Research Center, Programs in Neuroscience, WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | | | | | |
Collapse
|
53
|
Landolt HP, Rétey JV, Adam M. Reduced neurobehavioral impairment from sleep deprivation in older adults: contribution of adenosinergic mechanisms. Front Neurol 2012; 3:62. [PMID: 22557989 PMCID: PMC3338069 DOI: 10.3389/fneur.2012.00062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/02/2012] [Indexed: 01/23/2023] Open
Abstract
A night without sleep is followed by enhanced sleepiness, increased low-frequency activity in the waking EEG, and reduced vigilant attention. The magnitude of these changes is highly variable among healthy individuals. Findings in young men of low and high subjective caffeine sensitivity suggest that adenosinergic mechanisms contribute to inter-individual differences in sleep deprivation-induced changes in EEG theta activity, as well as optimal performance on the psychomotor vigilance task (PVT). In comparison to young subjects, healthy adults of older age typically feel less sleepy after sleep deprivation, and show fewer response lapses, and faster reaction times on the PVT, especially in the morning after the night without sleep. We hypothesized that age-related changes in adenosine signal transmission underlie reduced vulnerability to sleep deprivation in older individuals. To test this hypothesis, the combined effects of prolonged wakefulness and the adenosine receptor antagonist, caffeine, on an antero-posterior power gradient in EEG theta activity and PVT performance were analyzed in healthy older and caffeine-insensitive and -sensitive young men. The results show that age-related differences in sleep loss-induced changes in brain rhythmic activity and neurobehavioral functions are mirrored in young individuals of low and high sensitivity to the stimulant effects of caffeine. Moreover, the effects of sleep deprivation and caffeine on regional theta power and vigilant attention are inversely correlated across older and young age groups. Genetic variants of the adenosine A2A receptor gene contribute to individual differences in neurobehavioral performance in rested and sleep deprived state, and modulate the actions of caffeine in wakefulness and sleep. Based upon this evidence, we propose that age-related differences in A2A receptor-mediated signal transduction could be involved in age-related changes in the vulnerability to acute sleep deprivation.
Collapse
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich Zürich, Switzerland
| | | | | |
Collapse
|
54
|
Davis CJ, Clinton JM, Jewett KA, Zielinski MR, Krueger JM. Delta wave power: an independent sleep phenotype or epiphenomenon? J Clin Sleep Med 2012; 7:S16-8. [PMID: 22003323 DOI: 10.5664/jcsm.1346] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electroencephalographic (EEG) δ waves during non-rapid eye movement sleep (NREMS) after sleep deprivation are enhanced. That observation eventually led to the use of EEG δ power as a parameter to model process S in the two-process model of sleep. It works remarkably well as a model parameter because it often co-varies with sleep duration and intensity. Nevertheless there is a large volume of literature indicating that EEG δ power is regulated independently of sleep duration. For example, high amplitude EEG δ waves occur in wakefulness after systemic atropine administration or after hyperventilation in children. Human neonates have periods of sleep with an almost flat EEG. Similarly, elderly people have reduced EEG δ power, yet retain substantial NREMS. Rats provided with a cafeteria diet have excess duration of NREMS but simultaneously decreased EEG δ power for days. Mice challenged with influenza virus have excessive EEG δ power and NREMS. In contrast, if mice lacking TNF receptors are infected, they still sleep more but have reduced EEG δ power. Sleep regulatory substances, e.g., IL1, TNF, and GHRH, directly injected unilaterally onto the cortex induce state-dependent ipsilateral enhancement of EEG δ power without changing duration of organism sleep. IL1 given systemically enhances duration of NREMS but reduces EEG δ power in mice. Benzodiazepines enhance NREMS but inhibit EEG δ power. If duration of NREMS is an indicator of prior sleepiness then simultaneous EEG δ power may or may not be a useful index of sleepiness. Finally, most sleep regulatory substances are cerebral vasodilators and blood flow affects EEG δ power. In conclusion, it seems unlikely that a single EEG measure will be reliable as a marker of sleepiness for all conditions.
Collapse
Affiliation(s)
- Christopher J Davis
- WWAMI Medical Education Program, Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA.
| | | | | | | | | |
Collapse
|
55
|
Clinton JM, Davis CJ, Zielinski MR, Jewett KA, Krueger JM. Biochemical regulation of sleep and sleep biomarkers. J Clin Sleep Med 2012; 7:S38-42. [PMID: 22003330 DOI: 10.5664/jcsm.1360] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Symptoms commonly associated with sleep loss and chronic inflammation include sleepiness, fatigue, poor cognition, enhanced sensitivity to pain and kindling stimuli, excess sleep and increases in circulating levels of tumor necrosis factor α (TNF) in humans and brain levels of interleukin-1 β (IL1) and TNF in animals. Cytokines including IL1 and TNF partake in non-rapid eye movement sleep (NREMS) regulation under physiological and inflammatory conditions. Administration of exogenous IL1 or TNF mimics the accumulation of these cytokines occurring during sleep loss to the extent that it induces the aforementioned symptoms. Extracellular ATP associated with neuro- and glio-transmission, acting via purine type 2 receptors, e.g., the P2X7 receptor, has a role in glia release of IL1 and TNF. These substances in turn act on neurons to change their intrinsic membrane properties and sensitivities to neurotransmitters and neuromodulators such as adenosine, glutamate and GABA. These actions change the network input-output properties, i.e., a state shift for the network. State oscillations occur locally within cortical columns and are defined using evoked response potentials. One such state, so defined, shares properties with whole animal sleep in that it is dependent on prior cellular activity--it shows homeostasis. The cortical column sleep-like state is induced by TNF and is associated with experimental performance detriments. ATP released extracellularly as a consequence of cellular activity is posited to initiate a mechanism by which the brain tracks its prior sleep-state history to induce/prohibit sleep. Thus, sleep is an emergent property of populations of local neural networks undergoing state transitions. Specific neuronal groups participating in sleep depend upon prior network use driving local network state changes via the ATP-cytokine-adenosine mechanism. Such considerations add complexity to finding biochemical markers for sleepiness.
Collapse
Affiliation(s)
- James M Clinton
- Sleep and Performance Research Center, WWAMI Medical Education Program, WA State University, Spokane, WA 99164, USA.
| | | | | | | | | |
Collapse
|
56
|
Taishi P, Davis CJ, Bayomy O, Zielinski MR, Liao F, Clinton JM, Smith DE, Krueger JM. Brain-specific interleukin-1 receptor accessory protein in sleep regulation. J Appl Physiol (1985) 2012; 112:1015-22. [PMID: 22174404 PMCID: PMC3311656 DOI: 10.1152/japplphysiol.01307.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-1β is involved in several brain functions, including sleep regulation. It promotes non-rapid eye movement (NREM) sleep via the IL-1 type I receptor. IL-1β/IL-1 receptor complex signaling requires adaptor proteins, e.g., the IL-1 receptor brain-specific accessory protein (AcPb). We have cloned and characterized rat AcPb, which shares substantial homologies with mouse AcPb and, compared with AcP, is preferentially expressed in the brain. Furthermore, rat somatosensory cortex AcPb mRNA varied across the day with sleep propensity, increased after sleep deprivation, and was induced by somnogenic doses of IL-1β. Duration of NREM sleep was slightly shorter and duration of REM sleep was slightly longer in AcPb knockout than wild-type mice. In response to lipopolysaccharide, which is used to induce IL-1β, sleep responses were exaggerated in AcPb knockout mice, suggesting that, in normal mice, inflammation-mediated sleep responses are attenuated by AcPb. We conclude that AcPb has a role in sleep responses to inflammatory stimuli and, possibly, in physiological sleep regulation.
Collapse
Affiliation(s)
- Ping Taishi
- Sleep and Performance Research Center, WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Krueger JM. TRANSLATION OF BRAIN ACTIVITY INTO SLEEP. HIROSAKI IGAKU = HIROSAKI MEDICAL JOURNAL 2012; 63:S1-S16. [PMID: 24795496 PMCID: PMC4007690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytokines including tumor necrosis factor alpha (TNF) play a role in sleep regulation in health and disease. Hypothalamic and cerebral cortical levels of TNF mRNA or TNF protein have diurnal variations with higher levels associated with greater sleep propensity. Sleep loss is associated with enhanced brain TNF. Central or systemic TNF injections enhance sleep. Inhibition of TNF using the soluble TNF receptor, or anti-TNF antibodies, or a TNF siRNA reduces spontaneous sleep. Mice lacking the TNF 55 kD receptor have less spontaneous sleep. Injection of TNF into sleep regulatory circuits, e.g. the hypothalamus, promotes sleep. In normal humans, plasma levels of TNF co-vary with EEG slow wave activity (SWA) and in multiple disease states plasma TNF increases in parallel with sleep propensity. Downstream mechanisms of TNF-enhanced sleep include nitric oxide, adenosine, prostaglandins and activation of nuclear factor kappa B. Neuronal use induces cortical neurons to express TNF and if applied directly to cortical columns TNF induces a functional sleep-like state within the column. TNF mechanistically has several synaptic functions. TNF-sleep data led to the idea that sleep is a fundamental property of neuronal/glial networks such as cortical columns and is dependent upon past activity within such assemblies. This view of brain organization of sleep has profound implications for sleep function that are briefly reviewed herein.
Collapse
Affiliation(s)
- James M. Krueger
- WWAMI Medical Education Program; Sleep and Performance Research Center, Washington State University, Spokane, WA 99210-1495, Fax 509-358-7882
| |
Collapse
|
58
|
Jewett KA, Krueger JM. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. VITAMINS AND HORMONES 2012; 89:241-57. [PMID: 22640617 PMCID: PMC4030541 DOI: 10.1016/b978-0-12-394623-2.00013-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two substances, the cytokines interleukin-1 beta (IL1β) and tumor necrosis factor alpha (TNFα), known for their many physiological roles, for example, cognition, synaptic plasticity, and immune function, are also well characterized in their actions of sleep regulation. These substances promote non-rapid eye movement sleep and can induce symptoms associated with sleep loss such as sleepiness, fatigue, and poor cognition. IL1β and TNFα are released from glia in response to extracellular ATP. They bind to their receptors on neurons resulting in neuromodulator and neurotransmitter receptor up/downregulation (e.g., adenosine and glutamate receptors) leading to altered neuronal excitability and function, that is, a state change in the local network. Synchronization of state between local networks leads to emergent whole brain oscillations, such as sleep/wake cycles.
Collapse
Affiliation(s)
- Kathryn A Jewett
- WWAMI Medical Education Program, Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | | |
Collapse
|
59
|
Abstract
One of the functions of sleep is to maintain energy balance in the brain. There are a variety of hypotheses related to how metabolic pathways interact with sleep/wake regulation. A major finding that demonstrates an interaction between sleep and metabolic homeostasis is the involvement of adenosine in sleep homeostasis. An accumulation of adenosine is supplied from ATP, which can act as an energy currency in the cell. Extracellularly, ATP can act as an activity-dependent signaling molecule, especially in regard to communication between neurons and glia, including astrocytes. Furthermore, the intracellular AMP/ATP ratio controls the activity of AMP-activated protein kinase, which is a potent energy regulator and is recently reported to play a role in the regulation of sleep homeostasis. Brain ATP may support multiple functions in the regulation of the sleep/wake cycle and sleep homeostasis.
Collapse
Affiliation(s)
- Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| | | |
Collapse
|
60
|
Wisor JP, Clegern WC, Schmidt MA. Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss. Sleep 2011; 34:1335-45. [PMID: 21966065 DOI: 10.5665/sleep.1274] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
STUDY OBJECTIVES Sleep loss triggers changes in inflammatory signaling pathways in the brain and periphery. The mechanisms that underlie these changes are ill-defined. The Toll-like receptor 4 (TLR4) activates inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss. Here we describe the baseline electroencephalographic sleep phenotype and the biochemical and electroencephalographic responses to sleep loss in TLR4-deficient mice. DESIGN, MEASUREMENTS AND RESULTS TLR4-deficient mice and wild type controls were subjected to electroencephalographic and electromyographic recordings during spontaneous sleep/wake cycles and during and after sleep restriction sessions of 3, 6, and 24-h duration, during which sleep was disrupted by an automated sleep restriction system. Relative to wild type control mice, TLR4-deficient mice exhibited an increase in the duration of the primary daily waking bout occurring at dark onset in a light/dark cycle. The amount of time spent in non-rapid eye movement sleep by TLR4-deficient mice was reduced in proportion to increased wakefulness in the hours immediately after dark onset. Subsequent to sleep restriction, EEG measures of increased sleep drive were attenuated in TLR4-deficient mice relative to wild-type mice. TLR4 was enriched 10-fold in brain cells positive for the cell surface marker CD11b (cells of the monocyte lineage) relative to CD11b-negative cells in wild type mouse brains. To assess whether this population was affected selectively by TLR4 knockout, flow cytometry was used to count F4/80- and CD45-positive cells in the brains of sleep deprived and time of day control mice. While wild-type mice exhibited a significant reduction in the number of CD11b-positive cells in the brain after 24-h sleep restriction, TLR4-deficient mice did not. CONCLUSION These data demonstrate that innate immune signaling pathways active in the monocyte lineage, including presumably microglia, detect and mediate in part the cerebral reaction to sleep loss.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Sleep and Performance Research Center, Washington State University, Spokane, WA 99210-1945, USA.
| | | | | |
Collapse
|
61
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
62
|
Davis CJ, Clinton JM, Taishi P, Bohnet SG, Honn KA, Krueger JM. MicroRNA 132 alters sleep and varies with time in brain. J Appl Physiol (1985) 2011; 111:665-72. [PMID: 21719725 DOI: 10.1152/japplphysiol.00517.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA) levels in brain are altered by sleep deprivation; however, the direct effects of any miRNA on sleep have not heretofore been described. We report herein that intracerebroventricular application of a miRNA-132 mimetic (preMIR-132) decreased duration of non-rapid-eye-movement sleep (NREMS) while simultaneously increasing duration of rapid eye movement sleep (REMS) during the light phase. Further, preMIR-132 decreased electroencephalographic (EEG) slow-wave activity (SWA) during NREMS, an index of sleep intensity. In separate experiments unilateral supracortical application of preMIR-132 ipsilaterally decreased EEG SWA during NREMS but did not alter global sleep duration. In addition, after ventricular or supracortical injections of preMIR-132, the mimetic-induced effects were state specific, occurring only during NREMS. After local supracortical injections of the mimetic, cortical miRNA-132 levels were higher at the time sleep-related EEG effects were manifest. We also report that spontaneous cortical levels of miRNA-132 were lower at the end of the sleep-dominant light period compared with at the end of the dark period in rats. Results suggest that miRNAs play a regulatory role in sleep and provide a new tool for investigating sleep regulation.
Collapse
Affiliation(s)
- Christopher J Davis
- Washington State University-Spokane, Health Sciences Bldg. 280E, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Krueger JM, Clinton JM, Winters BD, Zielinski MR, Taishi P, Jewett KA, Davis CJ. Involvement of cytokines in slow wave sleep. PROGRESS IN BRAIN RESEARCH 2011; 193:39-47. [PMID: 21854954 PMCID: PMC3645329 DOI: 10.1016/b978-0-444-53839-0.00003-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokines such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) play a role in sleep regulation in health and disease. TNFα or IL1β injection enhances non-rapid eye movement sleep. Inhibition of TNFα or IL1β reduces spontaneous sleep. Mice lacking TNFα or IL1β receptors sleep less. In normal humans and in multiple disease states, plasma levels of TNFα covary with EEG slow wave activity (SWA) and sleep propensity. Many of the symptoms induced by sleep loss, for example, sleepiness, fatigue, poor cognition, enhanced sensitivity to pain, are elicited by injection of exogenous TNFα or IL1β. IL1β or TNFα applied unilaterally to the surface of the cortex induces state-dependent enhancement of EEG SWA ipsilaterally, suggesting greater regional sleep intensity. Interventions such as unilateral somatosensory stimulation enhance localized sleep EEG SWA, blood flow, and somatosensory cortical expression of IL1β and TNFα. State oscillations occur within cortical columns. One such state shares properties with whole animal sleep in that it is dependent on prior cellular activity, shows homeostasis, and is induced by TNFα. Extracellular ATP released during neuro- and gliotransmission enhances cytokine release via purine type 2 receptors. An ATP agonist enhances sleep, while ATP antagonists inhibit sleep. Mice lacking the P2X7 receptor have attenuated sleep rebound responses after sleep loss. TNFα and IL1β alter neuron sensitivity by changing neuromodulator/neurotransmitter receptor expression, allowing the neuron to scale its activity to the presynaptic neurons. TNFα's role in synaptic scaling is well characterized. Because the sensitivity of the postsynaptic neuron is changed, the same input will result in a different network output signal and this is a state change. The top-down paradigm of sleep regulation requires intentional action from sleep/wake regulatory brain circuits to initiate whole-organism sleep. This raises unresolved questions as to how such purposeful action might itself be initiated. In the new paradigm, sleep is initiated within networks and local sleep is a direct consequence of prior local cell activity. Whole-organism sleep is a bottom-up, self-organizing, and emergent property of the collective states of networks throughout the brain.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.
| | | | | | | | | | | | | |
Collapse
|