51
|
Erlich AT, Tryon LD, Crilly MJ, Memme JM, Moosavi ZSM, Oliveira AN, Beyfuss K, Hood DA. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res 2016; 5:187-197. [PMID: 28462117 PMCID: PMC5390460 DOI: 10.1016/j.imr.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle mitochondrial content and function are regulated by a number of specialized molecular pathways that remain to be fully defined. Although a number of proteins have been identified to be important for the maintenance of mitochondria in quiescent muscle, the requirement for these appears to decrease with the activation of multiple overlapping signaling events that are triggered by exercise. This makes exercise a valuable therapeutic tool for the treatment of mitochondrially based metabolic disorders. In this review, we summarize some of the traditional and more recently appreciated pathways that are involved in mitochondrial biogenesis in muscle, particularly during exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Hood
- Corresponding author. Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario M3J1P3, Canada.
| |
Collapse
|
52
|
Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (Lond) 2015; 12:59. [PMID: 26697098 PMCID: PMC4687103 DOI: 10.1186/s12986-015-0055-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of glycogen availability sheds new light on the role of the widely accepted energy source for adenosine triphosphate (ATP) resynthesis during endurance exercise. Indeed, several studies showed that endurance training with low glycogen availability leads to similar and sometimes even better adaptations and performance compared to performing endurance training sessions with replenished glycogen stores. In the case of resistance exercise, a few studies have been performed on the role of glycogen availability on the early post-exercise anabolic response. However, the effects of low glycogen availability on phenotypic adaptations and performance following prolonged resistance exercise remains unclear to date. This review summarizes the current knowledge about the effects of glycogen availability on skeletal muscle adaptations for both endurance and resistance exercise. Furthermore, it describes the role of glycogen availability when both exercise modes are performed concurrently.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands
| | - Maria T E Hopman
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands ; Radboud University, Radboud Institute for Health Sciences, Department of Physiology, Geert Grooteplein-West 32, 6525 GA Nijmegen, The Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
53
|
Minari ALA, Oyama LM, Dos Santos RVT. Downhill exercise-induced changes in gene expression related with macrophage polarization and myogenic cells in the triceps long head of rats. Inflammation 2015; 38:209-17. [PMID: 25249340 DOI: 10.1007/s10753-014-0024-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophages are one of the most heterogenic immune cells involved in skeletal muscle regeneration. After skeletal muscle damage, M1 phenotypes exhibit pro-inflammatory reaction. In a later stage, they are converted to M2 phenotypes with anti-inflammatory properties. To study when gene expressions of macrophage polarization are changed after damage induced by downhill exercise to exhaustion is the objective of this paper. Before (CTRL) and 0 h (G0), 24 h (G24), 48 h (G48) and 72 h (G72) after 18 bouts of downhill exercise, the animals were euthanised, and the triceps were dissected. We measured gene expression of macrophages (CD68 and CD163), myogenic cells (MyoD and myogenin) and quantified cytokine secretion (interleukin (IL)-6, IL-10 and tumour necrosis factor alpha (TNF-α)). The CD68 expression was lower in G72 compared with G24 (P = 0.005) while CD163 was higher in G48 compared with G24 (P = 0.04). The MyoD expression was higher in G72 compared with G0 (P = 0.04). The myogenin expression was lower in G24 compared with CTRL (P = 0.01) and restored in G72 compared with G24 (P = 0.007). The TNF-α was significantly higher at all times after 24 h (all compared with CTRL, with P = 0.03). The CD68 and CD163 expressions behaved distinctly after exercise, which indicates macrophage polarization between 24 and 48 h. The distinct expression of myogenin, concomitantly with MyoD elevation in G72, indicates that myogenic cell differentiation and the significant change of TNF-α level show an important role of this cytokine in these processes.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Departamento de Biociências, Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136,Vila Mathias, Santos/SP-CEP, 11015-020, Brazil
| | | | | |
Collapse
|
54
|
Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol 2015; 94:140-5. [PMID: 26526620 DOI: 10.1038/icb.2015.97] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Increase in the practice of sport by more and more numerous people in the Western countries is associated with an increase in muscle injuries, and in demand for improving muscle function and acceleration of muscle recovery after damage. Most of the treatments used target inflammation. Indeed, several lines of experimental evidence in animal models that are supported by human studies identify inflammatory cells, and particularly macrophages, as essential players in skeletal muscle regeneration. Macrophages act not only through their immune functions, but also control myogenesis and extracellular matrix remodeling by directly acting on myogenic precursors and fibro-adipogenic precursors. In light of these recent biological advances, the question of early treatment aiming at blunting inflammation after exercise-induced muscle injury is discussed.
Collapse
|
55
|
Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med 2015; 45:577-85. [PMID: 25601394 DOI: 10.1007/s40279-015-0304-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maximizing the hypertrophic response to resistance training (RT) is thought to be best achieved by proper manipulation of exercise program variables including exercise selection, exercise order, length of rest intervals, intensity of maximal load, and training volume. An often overlooked variable that also may impact muscle growth is repetition duration. Duration amounts to the sum total of the concentric, eccentric, and isometric components of a repetition, and is predicated on the tempo at which the repetition is performed. OBJECTIVE We conducted a systematic review and meta-analysis to determine whether alterations in repetition duration can amplify the hypertrophic response to RT. METHODS Studies were deemed eligible for inclusion if they met the following criteria: (1) were an experimental trial published in an English-language refereed journal; (2) directly compared different training tempos in dynamic exercise using both concentric and eccentric repetitions; (3) measured morphologic changes via biopsy, imaging, and/or densitometry; (4) had a minimum duration of 6 weeks; (5) carried out training to muscle failure, defined as the inability to complete another concentric repetition while maintaining proper form; and (6) used human subjects who did not have a chronic disease or injury. A total of eight studies were identified that investigated repetition duration in accordance with the criteria outlined. RESULTS Results indicate that hypertrophic outcomes are similar when training with repetition durations ranging from 0.5 to 8 s. CONCLUSIONS From a practical standpoint it would seem that a fairly wide range of repetition durations can be employed if the primary goal is to maximize muscle growth. Findings suggest that training at volitionally very slow durations (>10s per repetition) is inferior from a hypertrophy standpoint, although a lack of controlled studies on the topic makes it difficult to draw definitive conclusions.
Collapse
Affiliation(s)
- Brad J Schoenfeld
- Department of Health Science, Lehman College, 250 Bedford Park Blvd West, Bronx, NY, 10468, USA,
| | | | | |
Collapse
|
56
|
Calik MW, Shankarappa SA, Langert KA, Stubbs EB. Forced Exercise Preconditioning Attenuates Experimental Autoimmune Neuritis by Altering Th1 Lymphocyte Composition and Egress. ASN Neuro 2015; 7:7/4/1759091415595726. [PMID: 26186926 PMCID: PMC4550317 DOI: 10.1177/1759091415595726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain–Barré syndrome. Adult male Lewis rats remained sedentary (control) or were preconditioned with forced exercise (1.2 km/day × 3 weeks) prior to P2-antigen induction of EAN. Sedentary rats developed a monophasic course of EAN beginning on postimmunization day 12.3 ± 0.2 and reaching peak severity on day 17.0 ± 0.3 (N = 12). By comparison, forced-exercise preconditioned rats exhibited a similar monophasic course but with significant (p < .05) reduction of disease severity. Analysis of popliteal lymph nodes revealed a protective effect of exercise preconditioning on leukocyte composition and egress. Compared with sedentary controls, forced exercise preconditioning promoted a sustained twofold retention of P2-antigen responsive leukocytes. The percentage distribution of pro-inflammatory (Th1) lymphocytes retained in the nodes from sedentary EAN rats (5.1 ± 0.9%) was significantly greater than that present in nodes from forced-exercise preconditioned EAN rats (2.9 ± 0.6%) or from adjuvant controls (2.0 ± 0.3%). In contrast, the percentage of anti-inflammatory (Th2) lymphocytes (7–10%) and that of cytotoxic T lymphocytes (∼20%) remained unaltered by forced exercise preconditioning. These data do not support an exercise-inducible shift in Th1:Th2 cell bias. Rather, preconditioning with forced exercise elicits a sustained attenuation of EAN severity, in part, by altering the composition and egress of autoreactive proinflammatory (Th1) lymphocytes from draining lymph nodes.
Collapse
Affiliation(s)
- Michael W Calik
- Center for Narcolepsy, Sleep and Health Research, Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Sahadev A Shankarappa
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA Center for Nanoscience and Molecular Medicine, Amrita institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kelly A Langert
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Evan B Stubbs
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
57
|
Ogborn DI, McKay BR, Crane JD, Safdar A, Akhtar M, Parise G, Tarnopolsky MA. Effects of age and unaccustomed resistance exercise on mitochondrial transcript and protein abundance in skeletal muscle of men. Am J Physiol Regul Integr Comp Physiol 2015; 308:R734-41. [PMID: 25695287 DOI: 10.1152/ajpregu.00005.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/13/2015] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction may contribute to age-associated muscle atrophy. Previous data has shown that resistance exercise (RE) increases mitochondrial gene expression and enzyme activity in older adults; however, the acute response to RE has not been well characterized. To characterize the acute mitochondrial response to unaccustomed RE, healthy young (21 ± 3 yr) and older (70 ± 4 yr) men performed a unilateral RE bout for the knee extensors. Muscle biopsies were taken at rest and 3, 24, and 48 h following leg press and knee extension exercise. The expression of the mitochondrial transcriptional regulator proliferator-activated receptor γ coactivator 1-α (PGC-1α) mRNA was increased at 3 h postexercise; however, all other mitochondrial variables decreased over the postexercise period, irrespective of age. ND1, ND4, and citrate synthase (CS) mRNA were all lower at 48 h postexercise, along with specific protein subunits of complex II, III, IV, and ATP synthase. Mitochondrial DNA (mtDNA) copy number decreased by 48 h postexercise, and mtDNA deletions were higher in the older adults and remained unaffected by acute exercise. Elevated mitophagy could not explain the reduction in mitochondrial proteins and DNA, because there was no increase in ubiquitinated voltage-dependent anion channel (VDAC) or its association with PTEN-induced putative kinase 1 (Pink1) or Parkin, and elevated p62 content indicated an impairment or reduction in autophagocytic flux. In conclusion, age did not influence the response of specific mitochondrial transcripts, proteins, and DNA to a bout of RE.
Collapse
Affiliation(s)
| | | | | | - Adeel Safdar
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachussets
| | | | | | | |
Collapse
|
58
|
Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle. Eur J Appl Physiol 2015; 115:1185-94. [DOI: 10.1007/s00421-015-3116-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
59
|
Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise. Sci Data 2014; 1:140041. [PMID: 25984345 PMCID: PMC4432635 DOI: 10.1038/sdata.2014.41] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022] Open
Abstract
Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate direct comparison between essentially different modes of exercise and the ability to identify true exercise effect, necessitate implementation of independent non-exercise control subjects. Furthermore, muscle transcriptome data made available through previous exercise studies can be difficult to extract and interpret by individuals that are inexperienced with bioinformatics procedures. In a comparative study, we therefore; (1) investigated the human skeletal muscle transcriptome responses to differentiated exercise and non-exercise control intervention, and; (2) set out to develop a straightforward search tool to allow for easy access and interpretation of our data. We provide a simple-to-use spread sheet containing transcriptome data allowing other investigators to easily see how mRNA of their gene(s) of interest behave in skeletal muscle following exercise, both endurance, resistance and non-exercise, to better aid hypothesis-driven question in this field of research.
Collapse
|
60
|
Lindholm ME, Huss M, Solnestam BW, Kjellqvist S, Lundeberg J, Sundberg CJ. The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J 2014; 28:4571-81. [PMID: 25016029 DOI: 10.1096/fj.14-255000] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human skeletal muscle health is important for quality of life and several chronic diseases, including type II diabetes, heart disease, and cancer. Skeletal muscle is a tissue widely used to study mechanisms behind different diseases and adaptive effects of controlled interventions. For such mechanistic studies, knowledge about the gene expression profiles in different states is essential. Since the baseline transcriptome has not been analyzed systematically, the purpose of this study was to provide a deep reference profile of female and male skeletal muscle. RNA sequencing data were analyzed from a large set of 45 resting human muscle biopsies. We provide extensive information on the skeletal muscle transcriptome, including 5 previously unannotated protein-coding transcripts. Global transcriptional tissue homogeneity was strikingly high, within both a specific muscle and the contralateral leg. We identified >23,000 known isoforms and found >5000 isoforms that differ between the sexes. The female and male transcriptome was enriched for genes associated with oxidative metabolism and protein catabolic processes, respectively. The data demonstrate remarkably high tissue homogeneity and provide a deep and extensive baseline reference for the human skeletal muscle transcriptome, with regard to alternative splicing, novel transcripts, and sex differences in functional ontology.transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing.
Collapse
Affiliation(s)
- Malene E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden;
| | - Mikael Huss
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; and
| | - Beata W Solnestam
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Sanela Kjellqvist
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; and
| | - Joakim Lundeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden
| | - Carl J Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
61
|
Ogborn DI, McKay BR, Crane JD, Parise G, Tarnopolsky MA. The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout. Am J Physiol Regul Integr Comp Physiol 2014; 307:R664-9. [PMID: 25009220 DOI: 10.1152/ajpregu.00511.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress results from an imbalance between the abundance of synthesized proteins and the folding capacity of the ER. In response, the unfolded protein response (UPR) attempts to restore ER function by attenuating protein synthesis and inducing chaperone expression. Resistance exercise (RE) stimulates protein synthesis; however, a postexercise accumulation of unfolded proteins may activate the UPR. Aging may impair protein folding, and the accumulation of oxidized and misfolded proteins may stimulate the UPR at rest in aged muscle. Eighteen younger (n = 9; 21 ± 3 yr) and older (n = 9; 70 ± 4 yr) untrained men completed a single, unilateral bout of RE using the knee extensors (four sets of 10 repetitions at 75% of one repetition maximum on the leg press and leg extension) to determine whether the UPR is increased in resting, aged muscle and whether RE stimulates the UPR. Muscle biopsies were taken from the nonexercised and exercised vastus lateralis at 3, 24, and 48 h postexercise. Age did not affect any of the proteins and transcripts related to the UPR. Glucose-regulated protein 78 (GRP78) and protein kinase R-like ER protein kinase (PERK) proteins were increased at 48 h postexercise, whereas inositol-requiring enzyme 1 alpha (IRE1α) was elevated at 24 h and 48 h. Despite elevated protein, GRP78 and PERK mRNA was unchanged; however, IRE1α mRNA was increased at 24 h postexercise. Activating transcription factor 6 (ATF6) mRNA increased at 24 h and 48 h, whereas ATF4, CCAAT/enhancer-binding protein homologous protein (CHOP), and growth arrest and DNA damage protein 34 mRNA were unchanged. These data suggest that RE activates specific pathways of the UPR (ATF6/IRE1α), whereas PERK/eukaryotic initiation factor 2 alpha/CHOP does not. In conclusion, acute RE results in UPR activation, irrespective of age.
Collapse
Affiliation(s)
- Daniel I Ogborn
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bryon R McKay
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Justin D Crane
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
62
|
Effect of exercise training on skeletal muscle cytokine expression in the elderly. Brain Behav Immun 2014; 39:80-6. [PMID: 24434040 DOI: 10.1016/j.bbi.2014.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/08/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12weeks of resistance exercise training in young (n=8, 20.3±0.8yr) and elderly men (n=8, 66.9±1.6yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as 'pro-inflammatory') increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.
Collapse
|
63
|
Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, Gordon PM. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (1985) 2014; 116:693-702. [DOI: 10.1152/japplphysiol.01366.2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program ( training+acute). The dominant arm was either unexercised ( control) or subjected to the same acute exercise bout as the trained arm ( acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations.
Collapse
Affiliation(s)
- G. A. Nader
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - F. von Walden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - C. Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - J. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - L. Gutmann
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - E. E. Pistilli
- Byrd Health Science Center, West Virginia University, Morgantown, West Virginia; and
| | - P. M. Gordon
- School of Education, Health, Human Performance, and Recreation, Baylor University, Waco, Texas
| |
Collapse
|
64
|
Keildson S, Fadista J, Ladenvall C, Hedman ÅK, Elgzyri T, Small KS, Grundberg E, Nica AC, Glass D, Richards JB, Barrett A, Nisbet J, Zheng HF, Rönn T, Ström K, Eriksson KF, Prokopenko I, Spector TD, Dermitzakis ET, Deloukas P, McCarthy MI, Rung J, Groop L, Franks PW, Lindgren CM, Hansson O. Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity. Diabetes 2014; 63:1154-65. [PMID: 24306210 PMCID: PMC3931395 DOI: 10.2337/db13-1301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10(-5)) and 49 expression-insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment-insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10(-4)). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10(-6)) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016-0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r(2) = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10(-3)). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Sarah Keildson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Joao Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Åsa K. Hedman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Targ Elgzyri
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Elin Grundberg
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Alexandra C. Nica
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Daniel Glass
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
| | - J. Brent Richards
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
- Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - James Nisbet
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Hou-Feng Zheng
- Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tina Rönn
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Kristoffer Ström
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | | | | | | | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Johan Rung
- European Molecular Biology Laboratory–European Bioinformatics Institute, Cambridge, U.K
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Paul W. Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Ola Hansson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
- Corresponding author: Ola Hansson,
| |
Collapse
|
65
|
Murton AJ, Billeter R, Stephens FB, Des Etages SG, Graber F, Hill RJ, Marimuthu K, Greenhaff PL. Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training. J Appl Physiol (1985) 2014; 116:113-25. [DOI: 10.1152/japplphysiol.00426.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We sought to ascertain the time course of transcriptional events that occur in human skeletal muscle at the outset of resistance exercise (RE) training in RE naive individuals and determine whether the magnitude of response was associated with exercise-induced muscle damage. Sixteen RE naive men were recruited; eight underwent two sessions of 5 × 30 maximum isokinetic knee extensions (180°/s) separated by 48 h. Muscle biopsies of the vastus lateralis, obtained from different sites, were taken at baseline and 24 h after each exercise bout. Eight individuals acted as nonexercise controls with biopsies obtained at the same time intervals. Transcriptional changes were assessed by microarray and protein levels of heat shock protein (HSP) 27 and αB-crystallin in muscle cross sections by immunohistochemistry as a proxy measure of muscle damage. In control subjects, no probe sets were significantly altered (false discovery rate < 0.05), and HSP27 and αB-crystallin protein remained unchanged throughout the study. In exercised subjects, significant intersubject variability following the initial RE bout was observed in the muscle transcriptome, with greatest changes occurring in subjects with elevated HSP27 and αB-crystallin protein. Following the second bout, the transcriptome response was more consistent, revealing a cohort of probe sets associated with immune activation, the suppression of oxidative metabolism, and ubiquitination, as differentially regulated. The results reveal that the initial transcriptional response to RE is variable in RE naive volunteers, potentially associated with muscle damage and unlikely to reflect longer term adaptations to RE training. These results highlight the importance of considering multiple time points when determining the transcriptional response to RE and associated physiological adaptation.
Collapse
Affiliation(s)
- A. J. Murton
- MRC/ARUK Centre for Musculoskeletal Ageing Research, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - R. Billeter
- MRC/ARUK Centre for Musculoskeletal Ageing Research, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - F. B. Stephens
- MRC/ARUK Centre for Musculoskeletal Ageing Research, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - S. G. Des Etages
- Pfizer Global Research and Development, Groton, Connecticut; and
| | - F. Graber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - R. J. Hill
- Pfizer Global Research and Development, Groton, Connecticut; and
| | - K. Marimuthu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - P. L. Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
66
|
Nishimune H, Stanford JA, Mori Y. Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 2013; 49:315-24. [PMID: 24122772 DOI: 10.1002/mus.24095] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
Abstract
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS 3051, HLSIC Room 2073, Kansas City, Kansas, 66160, USA
| | | | | |
Collapse
|
67
|
Neubauer O, Sabapathy S, Ashton KJ, Desbrow B, Peake JM, Lazarus R, Wessner B, Cameron-Smith D, Wagner KH, Haseler LJ, Bulmer AC. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling. J Appl Physiol (1985) 2013; 116:274-87. [PMID: 24311745 DOI: 10.1152/japplphysiol.00909.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.
Collapse
Affiliation(s)
- Oliver Neubauer
- Emerging Field Oxidative Stress and DNA Stability, Research Platform Active Aging, and Department of Nutritional Sciences, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Iwasa M, Aoi W, Mune K, Yamauchi H, Furuta K, Sasaki S, Takeda K, Harada K, Wada S, Nakamura Y, Sato K, Higashi A. Fermented milk improves glucose metabolism in exercise-induced muscle damage in young healthy men. Nutr J 2013; 12:83. [PMID: 23767790 PMCID: PMC3689045 DOI: 10.1186/1475-2891-12-83] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023] Open
Abstract
Background This study investigated the effect of fermented milk supplementation on glucose metabolism associated with muscle damage after acute exercise in humans. Methods Eighteen healthy young men participated in each of the three trials of the study: rest, exercise with placebo, and exercise with fermented milk. In the exercise trials, subjects carried out resistance exercise consisting of five sets of leg and bench presses at 70–100% 12 repetition maximum. Examination beverage (fermented milk or placebo) was taken before and after exercise in double-blind method. On the following day, we conducted an analysis of respiratory metabolic performance, blood collection, and evaluation of muscle soreness. Results Muscle soreness was significantly suppressed by the consumption of fermented milk compared with placebo (placebo, 14.2 ± 1.2 score vs. fermented milk, 12.6 ± 1.1 score, p < 0.05). Serum creatine phosphokinase was significantly increased by exercise, but this increase showed a tendency of suppression after the consumption of fermented milk. Exercise significantly decreased the respiratory quotient (rest, 0.88 ± 0.01 vs. placebo, 0.84 ± 0.02, p < 0.05), although this decrease was negated by the consumption of fermented milk (0.88 ± 0.01, p < 0.05). Furthermore, exercise significantly reduced the absorption capacity of serum oxygen radical (rest, 6.9 ± 0.4 μmol TE/g vs. placebo, 6.0 ± 0.3 μmol TE/g, p < 0.05), although this reduction was not observed with the consumption of fermented milk (6.2 ± 0.3 μmol TE/g). Conclusion These results suggest that fermented milk supplementation improves glucose metabolism and alleviates the effects of muscle soreness after high-intensity exercise, possibly associated with the regulation of antioxidant capacity.
Collapse
|
69
|
Liu D, Sartor MA, Nader GA, Pistilli EE, Tanton L, Lilly C, Gutmann L, IglayReger HB, Visich PS, Hoffman EP, Gordon PM. Microarray analysis reveals novel features of the muscle aging process in men and women. J Gerontol A Biol Sci Med Sci 2013; 68:1035-44. [PMID: 23418191 DOI: 10.1093/gerona/glt015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To develop a global view of muscle transcriptional differences between older men and women and sex-specific aging, we obtained muscle biopsies from the biceps brachii of young and older men and women and profiled the whole-genome gene expression using microarray. A logistic regression-based method in combination with an intensity-based Bayesian moderated t test was used to identify significant sex- and aging-related gene functional groups. Our analysis revealed extensive sex differences in the muscle transcriptome of older individuals and different patterns of transcriptional changes with aging in men and women. In older women, we observed a coordinated transcriptional upregulation of immune activation, extracellular matrix remodeling, and lipids storage; and a downregulation of mitochondrial biogenesis and function and muscle regeneration. The effect of aging results in sexual dimorphic alterations in the skeletal muscle transcriptome, which may modify the risk for developing musculoskeletal and metabolic diseases in men and women.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Rampersaud E, Nathanson L, Farmer J, Meshbane K, Belton RL, Dressen A, Cuccaro M, Musto A, Daunert S, Deo S, Hudson N, Vance JM, Seo D, Mendez A, Dykxhoorn DM, Pericak-Vance MA, Goldschmidt-Clermont PJ. Genomic signatures of a global fitness index in a multi-ethnic cohort of women. Ann Hum Genet 2013; 77:147-57. [PMID: 23289938 DOI: 10.1111/ahg.12006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/17/2012] [Indexed: 11/30/2022]
Abstract
The rates of obesity and sedentary lifestyle are on a dramatic incline, with associated detrimental health effects among women in particular. Although exercise prescriptions are useful for overcoming these problems, success can be hampered by differential responsiveness among individuals in cardiovascular fitness indices (i.e. improvements in strength, lipids, VO(2) max). Genomic factors appear to play an important role in determining this inter-individual variation. We performed microarray analyses on mRNA in whole blood from 60 sedentary women from a multi-ethnic cohort who underwent 12 weeks of exercise, to identify gene subsets that were differentially expressed between individuals who experienced the greatest and least improvements in fitness. We identified 43 transcripts in 39 unique genes (FDR<10%; FC>1.5) whose expression increased the most in "high" versus "low" pre-menopausal female responders. These 39 genes were enriched in six biological pathways, including oxidative phosphorylation (p = 8.08 × 10(-3)). Several of the 39 genes (i.e. TIGD7, UQCRH, PSMA6, WDR12, TFB2M, USP15) have previously reported associations with fitness-related phenotypes. In summary, we identified gene signatures based on mRNA analysis that define responsiveness to exercise in a largely minority-based female cohort. Importantly, this study validates several genes/pathways previously associated with exercise responsiveness and extends these findings with additional novel genes.
Collapse
Affiliation(s)
- Evadnie Rampersaud
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Lammers G, van Duijnhoven NTL, Hoenderop JG, Horstman AM, de Haan A, Janssen TWJ, de Graaf MJJ, Pardoel EM, Verwiel ETP, Thijssen DHJ, Hopman MTE. The identification of genetic pathways involved in vascular adaptations after physical deconditioningversusexercise training in humans. Exp Physiol 2012; 98:710-21. [DOI: 10.1113/expphysiol.2012.068726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
72
|
Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. Eur J Appl Physiol 2012; 113:975-85. [DOI: 10.1007/s00421-012-2511-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/24/2012] [Indexed: 12/17/2022]
|
73
|
Pietrangelo T, Mancinelli R, Doria C, Di Tano G, Loffredo B, Fanò-Illic G, Fulle S. Endurance and resistance training modifies the transcriptional profile of the vastus lateralis skeletal muscle in healthy elderly subjects. SPORT SCIENCES FOR HEALTH 2012. [DOI: 10.1007/s11332-012-0107-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|