51
|
Ma C, Li Y, Zeng J, Wu X, Liu X, Wang Y. Mycobacterium bovis BCG triggered MyD88 induces miR-124 feedback negatively regulates immune response in alveolar epithelial cells. PLoS One 2014; 9:e92419. [PMID: 24705038 PMCID: PMC3976256 DOI: 10.1371/journal.pone.0092419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/21/2014] [Indexed: 11/22/2022] Open
Abstract
The emerging roles of microRNAs (miRNAs) and pulmonary epithelial cells in regulating the immune response against microbial invasion has attracted increasing attention in recent years, however, the immunoregulatory roles of miRNAs in the pulmonary epithelial cells in response to mycobacterial infection has not been fully demonstrated. In this study, we show that miR-124 expression is induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in A549 alveolar epithelial cells and murine lungs. miR-124 is able to modulate Toll-like receptor (TLR) signaling in A459 cells. In this regard, multiple components, including TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α of the TLR signaling cascade are directly regulated by miR-124 in response to BCG stimulation. In addition, miR-124 expression was induced upon MyD88 overexpression and/or BCG stimulation, while silencing MyD88 expression by small interfering RNA dramatically down-regulated miR-124 transcription in A549 cells. These results indicate an underlying negative feedback mechanism between miR-124 and MyD88 in alveolar epithelial cells to prevent an excessive inflammatory response during mycobacterial infection. These observations suggest that miR-124 is a potential target for preventive and therapeutic intervention against the pulmonary tuberculosis, an infectious disease caused by Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Chunyan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
- * E-mail: (XL); (YW)
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
- * E-mail: (XL); (YW)
| |
Collapse
|
52
|
Early Changes by (18)Fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 2014; 82:2400-4. [PMID: 24664509 DOI: 10.1128/iai.01599-13] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cynomolgus macaques infected with low-dose Mycobacterium tuberculosis develop both active tuberculosis and latent infection similar to those of humans, providing an opportunity to study the clinically silent early events in infection. (18)Fluorodeoxyglucose radiotracer with positron emission tomography coregistered with computed tomography (FDG PET/CT) provides a noninvasive method to measure disease progression. We sought to determine temporal patterns of granuloma evolution that distinguished active-disease and latent outcomes. Macaques (n = 10) were infected with low-dose M. tuberculosis with FDG PET/CT performed during infection. At 24 weeks postinfection, animals were classified as having active disease (n = 3) or latent infection (n = 6), with one "percolator" monkey. Imaging characteristics (e.g., lesion number, metabolic activity, size, mineralization, and distribution of lesions) were compared among active and latent groups. As early as 3 weeks postinfection, more pulmonary granulomas were observed in animals that would later develop active disease than in those that would develop latent infection. Over time, new lesions developed in active-disease animals but not in latent animals. Granulomas and mediastinal lymph nodes from active-disease but not latent animals consistently increased in metabolic activity at early time points. The presence of fewer lesions at 3 weeks and the lack of new lesion development in animals with latent infection suggest that innate and rapid adaptive responses are critical to preventing active tuberculosis. A greater emphasis on innate responses and/or rapid recruitment of adaptive responses, especially in the airway, should be emphasized in newer vaccine strategies.
Collapse
|
53
|
Li Y, Shi J, Yang J, Ma Y, Cheng L, Zeng J, Hao X, Ma C, Wang Y, Liu X. A Wnt/β-catenin negative feedback loop represses TLR-triggered inflammatory responses in alveolar epithelial cells. Mol Immunol 2014; 59:128-35. [PMID: 24603120 DOI: 10.1016/j.molimm.2014.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/20/2014] [Accepted: 02/08/2014] [Indexed: 01/27/2023]
Abstract
Increasing evidence has demonstrated that the epithelial cells in the lung play crucial roles in regulating certain inflammatory responses by modulating Wnt signaling during microbial infection. However, the anti-microbial functions of Wnt signaling in alveolar epithelial cells remain elusive. In this report, we show that Wnt/β-catenin signaling is repressed in A549 alveolar epithelial cells during a Toll-like receptor ligand stimulation with Mycobacterium bovis Bacillus Calmette-Guerin (BCG) or lipopolysaccharide (LPS). In addition to activating TLR signaling, a stimulation of BCG or LPS led to the up-regulation of a Wnt receptor Frizzled-1, cytosolic GSK3β and Axin, and the down-regulation of nuclear β-catenin, lymphoid enhancer factor 1 and transcription factor 4. While an enhancement of β-catenin activity suppressed the TLR signal response, and substantially led to alleviate the TLR ligand-induced pro-inflammatory responses. Importantly, gain and loss of function studies by overexpressing or silencing of TLR signaling adaptor, myeloid differentiation primary response gene 88 (MyD88) further demonstrated an inverse relationship between TLR signaling and canonical Wnt signaling in A549 cells. These data imply that Wnt/β-catenin signaling acts as a negative feedback loop to suppress inflammation in alveolar epithelial cells, and averts cell injury from excessive inflammatory reactions. This study thus reveals a novel immunoregulatory mechanism in alveolar epithelial cells in response to bacterial infection.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Juan Shi
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Long Cheng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiujing Hao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chunyan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, Ningxia 750021, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
54
|
Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé KC, Arrey F, Kuhlmann S, Bandermann S, Loewe D, Mollenkopf HJ, Vogelzang A, Meyer-Schwesinger C, Mittrücker HW, McEwen G, Kaufmann SHE. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 2014; 124:1268-82. [PMID: 24509076 DOI: 10.1172/jci72030] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/27/2013] [Indexed: 12/17/2022] Open
Abstract
Successful host defense against numerous pulmonary infections depends on bacterial clearance by polymorphonuclear leukocytes (PMNs); however, excessive PMN accumulation can result in life-threatening lung injury. Local expression of CXC chemokines is critical for PMN recruitment. The impact of chemokine-dependent PMN recruitment during pulmonary Mycobacterium tuberculosis infection is not fully understood. Here, we analyzed expression of genes encoding CXC chemokines in M. tuberculosis-infected murine lung tissue and found that M. tuberculosis infection promotes upregulation of Cxcr2 and its ligand Cxcl5. To determine the contribution of CXCL5 in pulmonary PMN recruitment, we generated Cxcl5(-/-) mice and analyzed their immune response against M. tuberculosis. Both Cxcr2(-/-) mice and Cxcl5(-/-) mice, which are deficient for only one of numerous CXCR2 ligands, exhibited enhanced survival compared with that of WT mice following high-dose M. tuberculosis infection. The resistance of Cxcl5(-/-) mice to M. tuberculosis infection was not due to heightened M. tuberculosis clearance but was the result of impaired PMN recruitment, which reduced pulmonary inflammation. Lung epithelial cells were the main source of CXCL5 upon M. tuberculosis infection, and secretion of CXCL5 was reduced by blocking TLR2 signaling. Together, our data indicate that TLR2-induced epithelial-derived CXCL5 is critical for PMN-driven destructive inflammation in pulmonary tuberculosis.
Collapse
|
55
|
Lutay N, Håkansson G, Alaridah N, Hallgren O, Westergren-Thorsson G, Godaly G. Mycobacteria bypass mucosal NF-kB signalling to induce an epithelial anti-inflammatory IL-22 and IL-10 response. PLoS One 2014; 9:e86466. [PMID: 24489729 PMCID: PMC3904915 DOI: 10.1371/journal.pone.0086466] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023] Open
Abstract
The mechanisms by which mycobacteria subvert the inflammatory defence to establish chronic infection remain an unresolved question in the pathogenesis of tuberculosis. Using primary epithelial cells, we have analysed mycobacteria induced epithelial signalling pathways from activation of TLRs to cytokine secretion. Mycobacterium bovis bacilli Calmette-Guerin induced phosphorylation of glycogen synthase kinase (GSK)3 by PI3K-Akt in the signalling pathway downstream of TLR2 and TLR4. Mycobacteria did not suppress NF-κB by activating the peroxisome proliferator-activated receptor γ. Instead the pro-inflammatory NF-κB was bypassed by mycobacteria induced GSK3 inhibition that promoted the anti-inflammatory transcription factor CREB. Mycobacterial infection did not thus induce mucosal pro-inflammatory response as measured by TNFα and IFNγ secretion, but led to an anti-inflammatory IL-10 and IL-22 production. Apart from CREB, MAP3Ks p38 and ERK1/2 activated the transcription factor AP-1 leading to IL-6 production. Interestingly, blocking of TLR4 before infection decreased epithelial IL-6 secretion, but increased the CREB-activated IL-10 production. Our data indicate that mycobacteria suppress epithelial pro-inflammatory production by suppressing NF-κB activation thereby shifting the infection towards an anti-inflammatory state. This balance between the host immune response and the pathogen could determine the outcome of infection.
Collapse
Affiliation(s)
- Nataliya Lutay
- Division of Laboratory Medicine, Department of MIG, Lund University, Lund, Sweden
| | - Gisela Håkansson
- Division of Laboratory Medicine, Department of MIG, Lund University, Lund, Sweden
| | - Nader Alaridah
- Division of Laboratory Medicine, Department of MIG, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Division of Clinical Sciences, Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Gunilla Westergren-Thorsson
- Division of Vascular- and Respiratory Research Unit of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gabriela Godaly
- Division of Laboratory Medicine, Department of MIG, Lund University, Lund, Sweden
| |
Collapse
|
56
|
Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection--the double-edged sword? BIOMED RESEARCH INTERNATIONAL 2013; 2013:179174. [PMID: 24350246 PMCID: PMC3844256 DOI: 10.1155/2013/179174] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 02/08/2023]
Abstract
Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis (Mtb), remains a major cause of human death worldwide. Innate immunity provides host defense against Mtb. Phagocytosis, characterized by recognition of Mtb by macrophages and dendritic cells (DCs), is the first step of the innate immune defense mechanism. The recognition of Mtb is mediated by pattern recognition receptors (PRRs), expressed on innate immune cells, including toll-like receptors (TLRs), complement receptors, nucleotide oligomerization domain like receptors, dendritic cell-specific intercellular adhesion molecule grabbing nonintegrin (DC-SIGN), mannose receptors, CD14 receptors, scavenger receptors, and FCγ receptors. Interaction of mycobacterial ligands with PRRs leads macrophages and DCs to secrete selected cytokines, which in turn induce interferon-γ- (IFNγ-) dominated immunity. IFNγ and other cytokines like tumor necrosis factor-α (TNFα) regulate mycobacterial growth, granuloma formation, and initiation of the adaptive immune response to Mtb and finally provide protection to the host. However, Mtb can evade destruction by antimicrobial defense mechanisms of the innate immune system as some components of the system may promote survival of the bacteria in these cells and facilitate pathogenesis. Thus, although innate immunity components generally play a protective role against Mtb, they may also facilitate Mtb survival. The involvement of selected PRRs and cytokines on these seemingly contradictory roles is discussed.
Collapse
|
57
|
Verway M, Bouttier M, Wang TT, Carrier M, Calderon M, An BS, Devemy E, McIntosh F, Divangahi M, Behr MA, White JH. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog 2013; 9:e1003407. [PMID: 23762029 PMCID: PMC3675149 DOI: 10.1371/journal.ppat.1003407] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/24/2013] [Indexed: 02/08/2023] Open
Abstract
Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb) infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β) expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans. In 2010 there were ∼9 million cases of tuberculosis and 1.4 million deaths, representing the second largest cause of death worldwide and the leading cause of death from a curable disease. M. tuberculosis (Mtb) replicates within cells of the immune system called macrophages over an approximate 72 hour period, ultimately inducing cell death. Notably, macrophages are sites of vitamin D signaling, and there is broad evidence that vitamin D modulates macrophage responses to Mtb. Elevated levels of TB have long been associated with vitamin D deficiency, strongly suggesting that vitamin D supplementation may be of therapeutic benefit. In this study we profile the host macrophage response to Mtb infection through the use of high-throughput genomics techniques. From this we have discovered that the dominant function of vitamin D is the modulation of the levels of specific cytokines, mediators of immune cell to cell signaling. Of particular interest was the increase in IL-1β signaling, which we show to be directly regulated by vitamin D. We also show that this increase in IL-1β is critical for driving a signaling cascade between macrophages and lung epithelial cells leading to epithelial antimicrobial peptide production that helps to contain Mtb infection in our model culture system.
Collapse
Affiliation(s)
- Mark Verway
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Manuella Bouttier
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tian-Tian Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Marilyn Carrier
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Mario Calderon
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Beum-Soo An
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Emmanuelle Devemy
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Fiona McIntosh
- Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marcel A. Behr
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Infectious Diseases and Medical Microbiology, McGill University, Montreal, Quebec, Canada
| | - John H. White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
58
|
Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth. Infect Immun 2012; 81:381-9. [PMID: 23147039 DOI: 10.1128/iai.00950-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The respiratory epithelium is a physical and functional barrier actively involved in the clearance of environmental agents. The alveolar compartment is lined with membranous pneumocytes, known as type I alveolar epithelial cells (AEC I), and granular pneumocytes, type II alveolar epithelial cells (AEC II). AEC II are responsible for epithelial reparation upon injury and ion transport and are very active immunologically, contributing to lung defense by secreting antimicrobial factors. AEC II also secrete a broad variety of factors, such as cytokines and chemokines, involved in activation and differentiation of immune cells and are able to present antigen to specific T cells. Another cell type important in lung defense is the pulmonary macrophage (PuM). Considering the architecture of the alveoli, a good communication between the external and the internal compartments is crucial to mount effective responses. Our hypothesis is that being in the interface, AEC may play an important role in transmitting signals from the external to the internal compartment and in modulating the activity of PuM. For this, we collected supernatants from AEC unstimulated or stimulated in vitro with lipopolysaccharide (LPS). These AEC-conditioned media were used in various setups to test for the effects on a number of macrophage functions: (i) migration, (ii) phagocytosis and intracellular control of bacterial growth, and (iii) phenotypic changes and morphology. Finally, we tested the direct effect of AEC-conditioned media on bacterial growth. We found that AEC-secreted factors had a dual effect, on one hand controlling bacterial growth and on the other hand increasing macrophage activity.
Collapse
|
59
|
Li W, Deng G, Li M, Liu X, Wang Y. Roles of Mucosal Immunity against Mycobacterium tuberculosis Infection. Tuberc Res Treat 2012; 2012:791728. [PMID: 23213508 PMCID: PMC3504404 DOI: 10.1155/2012/791728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/12/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is one of the world's leading infectious causes of morbidity and mortality. As a mucosal-transmitted pathogen, Mtb infects humans and animals mainly through the mucosal tissue of the respiratory tract. Apart from providing a physical barrier against the invasion of pathogen, the major function of the respiratory mucosa may be to serve as the inductive sites to initiate mucosal immune responses and sequentially provide the first line of defense for the host to defend against this pathogen. A large body of studies in the animals and humans have demonstrated that the mucosal immune system, rather than the systemic immune system, plays fundamental roles in the host's defense against Mtb infection. Therefore, the development of new vaccines and novel delivery routes capable of directly inducing respiratory mucosal immunity is emphasized for achieving enhanced protection from Mtb infection. In this paper, we outline the current state of knowledge regarding the mucosal immunity against Mtb infection, including the development of TB vaccines, and respiratory delivery routes to enhance mucosal immunity are discussed.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Life Science, Ningxia University, 539 W. Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Life Science, Ningxia University, 539 W. Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Life Science, Ningxia University, 539 W. Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Life Science, Ningxia University, 539 W. Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Life Science, Ningxia University, 539 W. Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| |
Collapse
|