51
|
|
52
|
Ishikawa M, Ota Y, Nagai M, Kusaka G, Tanaka Y, Naritaka H. Ultrasonography Monitoring with Superb Microvascular Imaging Technique in Brain Tumor Surgery. World Neurosurg 2017; 97:749.e11-749.e20. [DOI: 10.1016/j.wneu.2016.10.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 01/16/2023]
|
53
|
Lekht I, Brauner N, Bakhsheshian J, Chang KE, Gulati M, Shiroishi MS, Grant EG, Christian E, Zada G. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series. Neurosurg Focus 2016; 40:E6. [PMID: 26926064 DOI: 10.3171/2015.11.focus15570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of extent of resection. Further prospective studies will help standardize the role of iCEUS in neurosurgery.
Collapse
Affiliation(s)
| | | | - Joshua Bakhsheshian
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ki-Eun Chang
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Eisha Christian
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gabriel Zada
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
54
|
Mattei L, Prada F, Legnani FG, Perin A, Olivi A, DiMeco F. Neurosurgical tools to extend tumor resection in hemispheric low-grade gliomas: conventional and contrast enhanced ultrasonography. Childs Nerv Syst 2016; 32:1907-14. [PMID: 27659832 DOI: 10.1007/s00381-016-3186-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/07/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE Pediatric low-grade gliomas (LGGs) are the most frequent solid tumor in childhood. Based on an increasing number of literature reports, maximal safe resection is recommended as the first line of treatment whenever possible. However, distinguishing tumor tissue from the surrounding normal brain is often challenging with infiltrating neoplasms, even with the assistance of intraoperative, microscopic and conventional neuronavigation systems. Therefore, any technique that enhances the detection and visualization of LGGs intraoperatively is certainly desirable. METHODS In this paper, we reviewed the role of intraoperative conventional ultrasound and contrast-enhanced ultrasound (CEUS) as a tool for extending tumor resection in LGGs. Moreover, our experience with this technology is reported and discussed. RESULTS Both B-mode and CEUS are helpful in highlighting LGGs, detecting tumor margins and providing additional information such as vascularization, thus improving the safety of a more radical resection. CONCLUSIONS Although the full potentialities of the method are yet to be explored, intraoperative ultrasound is a promising tool in oncologic surgery and LGG surgery.
Collapse
Affiliation(s)
- Luca Mattei
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy.
| | - Francesco Prada
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy
| | - Federico Giuseppe Legnani
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy
| | - Alessandro Perin
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy
| | - Alessandro Olivi
- Istituto di Neurochirurgia, Fondazione Policlinico Universitario "A. Gemelli" Università Cattolica e del Sacro Cuore, Largo A. Gemelli 8, 00186, Rome, Italy
| | - Francesco DiMeco
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy.,Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
55
|
Sastry R, Bi WL, Pieper S, Frisken S, Kapur T, Wells W, Golby AJ. Applications of Ultrasound in the Resection of Brain Tumors. J Neuroimaging 2016; 27:5-15. [PMID: 27541694 DOI: 10.1111/jon.12382] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/23/2022] Open
Abstract
Neurosurgery makes use of preoperative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of preoperative imaging for neuronavigation, however, is diminished by the well-characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography, has dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies.
Collapse
Affiliation(s)
- Rahul Sastry
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tina Kapur
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - William Wells
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
56
|
Technical principles in glioma surgery and preoperative considerations. J Neurooncol 2016; 130:243-252. [DOI: 10.1007/s11060-016-2171-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/01/2016] [Indexed: 01/16/2023]
|
57
|
Yang C, Lee DH, Mangraviti A, Su L, Zhang K, Zhang Y, Zhang B, Li W, Tyler B, Wong J, Wang KKH, Velarde E, Zhou J, Ding K. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model. Med Phys 2016; 42:4762-72. [PMID: 26233204 DOI: 10.1118/1.4926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. METHODS Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. RESULTS Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T2, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = - 0.527, p < 0.05), time to peak (r = - 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = - 0.589, p < 0.01) and time to peak (r = - 0.543, p < 0.05). CONCLUSIONS MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.
Collapse
Affiliation(s)
- Chen Yang
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Dong-Hoon Lee
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Lin Su
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Kai Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Yin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Wenxiao Li
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
58
|
Arlt F, Chalopin C, Müns A, Meixensberger J, Lindner D. Intraoperative 3D contrast-enhanced ultrasound (CEUS): a prospective study of 50 patients with brain tumours. Acta Neurochir (Wien) 2016; 158:685-694. [PMID: 26883549 DOI: 10.1007/s00701-016-2738-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Reliable intraoperative resection control during surgery of malignant brain tumours is associated with the longer overall survival of patients. B-mode ultrasound (BUS) is a familiar intraoperative imaging application in neurosurgical procedures and supplies excellent image quality. However, due to resection-induced artefacts, its ability to distinguish between tumour borders, oedema, surrounding tissue and tumour remnants is sometimes limited. In experienced hands, this "bright rim effect" could be reduced. However, it should be determined, if contrast-enhanced ultrasound can improve this situation by providing high-quality imaging during the resection. The aim of this clinical study was to examine contrast-enhanced and three-dimensional reconstructed ultrasound (3D CEUS) in brain tumour surgery regarding the uptake of contrast agent pre- and post-tumour resection, imaging quality and in comparison with postoperative magnetic resonance imaging in different tumour entities. METHODS Fifty patients, suffering from various brain tumours intra-axial and extra-axial, who had all undergone surgery with the support of neuronavigation in our neurosurgical department, were included in the study. Their median age was 56 years (range, 28-79). Ultrasound imaging was performed before the Dura was opened and for resection control at the end of tumour resection as defined by the neurosurgeon. A high-end ultrasound (US) device (Toshiba Aplio XG®) with linear and sector probes for B-mode and CEUS was used. Navigation and 3D reconstruction were performed with a LOCALITE SonoNavigator® and the images were transferred digitally (DVI) to the navigation system. The contrast agent consists of echoic micro-bubbles showing tumour vascularisation. The ultrasound images were compared with the corresponding postoperative MR data in order to determine the accuracy and imaging quality of the tumours and tumour remnants after resection. RESULTS Different types of tumours were investigated. High, dynamic contrast agent uptake was observed in 19 of 21 patients (90 %) suffering from glioblastoma, while in 2 patients uptake was low and insufficient. In 52.4 % of glioblastoma and grade III astrocytoma patients CEUS led to an improved delineation in comparison to BUS and showed a high-resolution imaging quality of the tumour margins and tumour boarders. Grade II and grade III astrocytoma (n = 6) as well as metastasis (n = 18) also showed high contrast agent uptake, which led in 50 % to an improved imaging quality. In 5 of these 17 patients, intraoperative CEUS for resection control showed tumour remnants, leading to further tumour resection. Patients treated with CEUS showed no increased neurological deficits after tumour resection. No pharmacological side-effects occurred. CONCLUSIONS Three-dimensional CEUS is a reliable intraoperative imaging modality and could improve imaging quality. Ninety percent of the high-grade gliomas (HGG, glioblastoma and astrocytoma grade III) showed high contrast uptake with an improved imaging quality in more than 50 %. Gross total resection and incomplete resection of glioblastoma were adequately highlighted by 3D CEUS intraoperatively. The application of US contrast agent could be a helpful imaging tool, especially for resection control in glioblastoma surgery.
Collapse
Affiliation(s)
- Felix Arlt
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinik Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| | - Claire Chalopin
- ICCAS (Innovation Centre Computer Assisted Surgery), Semmelweisstr 14, 04103, Leipzig, Germany
| | - Andrea Müns
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinik Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Jürgen Meixensberger
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinik Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
- ICCAS (Innovation Centre Computer Assisted Surgery), Semmelweisstr 14, 04103, Leipzig, Germany
| | - Dirk Lindner
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinik Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| |
Collapse
|
59
|
Rosado E, Riccabona M. Off-Label Use of Ultrasound Contrast Agents for Intravenous Applications in Children: Analysis of the Existing Literature. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:487-496. [PMID: 26839372 DOI: 10.7863/ultra.15.02030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/20/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The purpose of this study was to collect and analyze the published data related to intravenous (IV) use of ultrasound (US) contrast agents in children. METHODS We searched the literature to collect all of the published studies reporting the IV administration of a second-generation US contrast agent in children. RESULTS We analyzed 9 case series and 5 case reports, as well as 5 individual cases, of pediatric contrast-enhanced US use reported in a study group that also included adults. We found that 502 children underwent contrast-enhanced US examinations (mean age, 9.7 years; range, 1 day-18 years). Most patients (89%) were injected with the sulfur hexafluoride contrast agent SonoVue (Bracco SpA, Milan, Italy). The mean dose used was 1.5 mL (range, 0.1-9.6 mL). Only 10 patients (2%) had adverse reactions related to the contrast agent administration: 1 life-threatening anaphylactic shock and 9 mild transitory adverse effects. We additionally found 38 papers in which the study groups included at least 1 child; thus, we obtained a total of 540 reported cases of off-label use of IV US contrast agents in children. The most frequent target organ was the liver, and most indications were related to space-occupying lesion characterization and abdominal evaluations after blunt trauma. Some studies also evaluated the diagnostic performance of contrast-enhanced US in different clinical scenarios and found very good accuracy. Concordance between contrast-enhanced US imaging and the respective reference-standard imaging methods ranged between 83% and 100% in different studies. CONCLUSIONS Our results support the idea that the IV use of US contrast agents in children is safe, feasible, diagnostically robust, and effective.
Collapse
Affiliation(s)
- Elsa Rosado
- Department of Radiology, Hospital Prof Doutor Fernando Fonseca, Amadora, Portugal (E.R.); Department of Radiology, Division of Pediatric Radiology, Universitätsklinikum LKH, Graz, Austria (M.R.).
| | - Michael Riccabona
- Department of Radiology, Hospital Prof Doutor Fernando Fonseca, Amadora, Portugal (E.R.); Department of Radiology, Division of Pediatric Radiology, Universitätsklinikum LKH, Graz, Austria (M.R.)
| |
Collapse
|
60
|
Prada F, Bene MD, Fornaro R, Vetrano IG, Martegani A, Aiani L, Sconfienza LM, Mauri G, Solbiati L, Pollo B, DiMeco F. Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 2016; 40:E7. [PMID: 26926065 DOI: 10.3171/2015.11.focus15573] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the capability of contrast-enhanced ultrasound (CEUS) to identify residual tumor mass during glioblastoma multiforme (GBM) surgery, to increase the extent of resection. METHODS The authors prospectively evaluated 10 patients who underwent surgery for GBM removal with navigated ultrasound guidance. Navigated B-mode and CEUS were performed prior to resection, during resection, and after complete tumor resection. Areas suspected for residual tumors on B-mode and CEUS studies were localized within the surgical field with navigated ultrasound and samples were sent separately for histopathological analysis to confirm tumor presence. RESULTS In all cases tumor remnants were visualized as hyperechoic areas on B-mode, highlighted as CEUS-positive areas, and confirmed as tumoral areas on histopathological analysis. In 1 case only, CEUS partially failed to demonstrate residual tumor because the residual hyperechoic area was devascularized prior to ultrasound contrast agent injection. In all cases CEUS enhanced B-mode findings. CONCLUSIONS As has already been shown in other neoplastic lesions in other organs, CEUS is extremely specific in the identification of residual tumor. The ability of CEUS to distinguish between tumor and artifacts or normal brain on B-mode is based on its capacity to show the vascularization degree and not the echogenicity of the tissues. Therefore, CEUS can play a decisive role in the process of maximizing GBM resection.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Aiani
- Department of Radiology, Ospedale Valduce, Como
| | | | - Giovanni Mauri
- Department of Radiology, IRCCS Policlinico San Donato, Milan
| | - Luigi Solbiati
- Department of Radiology, Humanitas Research Hospital, Rozzano, Italy; and
| | - Bianca Pollo
- Neuropathology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan
| | - Francesco DiMeco
- Departments of 1 Neurosurgery and
- Department of Neurosurgery, Johns Hopkins Medical School, Baltimore, Maryland
| |
Collapse
|
61
|
Perspectives in Intraoperative Diagnostics of Human Gliomas. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:479014. [PMID: 26543495 PMCID: PMC4620377 DOI: 10.1155/2015/479014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/25/2015] [Indexed: 12/31/2022]
Abstract
Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment.
Collapse
|
62
|
Vetrano IG, Prada F, Nataloni IF, Bene MD, Dimeco F, Valentini LG. Discrete or diffuse intramedullary tumor? Contrast-enhanced intraoperative ultrasound in a case of intramedullary cervicothoracic hemangioblastomas mimicking a diffuse infiltrative glioma: technical note and case report. Neurosurg Focus 2015; 39:E17. [DOI: 10.3171/2015.5.focus15162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hemangioblastomas are benign, highly vascularized intramedullary lesions that may also extend into the intradural space. Surgery represents the standard therapy, with the goal of obtaining complete resection even at the risk of neurological morbidity. MRI is the gold standard for diagnosis and assessment of intramedullary tumors. Nevertheless, sometimes MRI may not accurately differentiate between different types of intramedullary tumors, in particular if they are associated with syringes or intra- and peritumoral cysts. This could subsequently affect surgical strategies. Intraoperative ultrasound (ioUS) has become in the last few years a very useful tool for use during neurosurgical procedures. Various ioUS modalities such as B-mode and Doppler have been applied during neurosurgical procedures. On the other hand, the use of contrast-enhanced ultrasound (CEUS) is not yet well defined and standardized in this field. We report a case of a young patient harboring a cervicothoracic intramedullary tumor, for which the preoperative neuroradiologi-cal diagnosis was in favor of a diffuse astrocytoma with nodular components whereas ioUS demonstrated 3 distinct intramedullary nodules. CEUS showed highly vascularized lesions, compatible with hemangioblastomas. These findings, particularly those obtained with CEUS, allowed better definition of the lesions for diagnosis, enhanced understanding of the physiopathological aspects, and permitted the localization of all 3 nodules, thus limiting spinal cord manipulation and allowing complete resection of the lesions, with an uneventful postoperative neurological course.
To the best of our knowledge, this is the first report of the use of intraoperative CEUS in a case of intramedullary hemangioblastoma.
Collapse
Affiliation(s)
- Ignazio G. Vetrano
- 1Department of Neurosurgery, Fondazione IRCCS “Istituto Neurologico C. Besta”
- 2University of Milan; and
| | - Francesco Prada
- 1Department of Neurosurgery, Fondazione IRCCS “Istituto Neurologico C. Besta”
| | - Ilaria F. Nataloni
- 2University of Milan; and
- 3Department of Thoracic Surgery, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milan, Italy; and
| | | | - Francesco Dimeco
- 1Department of Neurosurgery, Fondazione IRCCS “Istituto Neurologico C. Besta”
- 4Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Laura G. Valentini
- 1Department of Neurosurgery, Fondazione IRCCS “Istituto Neurologico C. Besta”
| |
Collapse
|
63
|
From Grey Scale B-Mode to Elastosonography: Multimodal Ultrasound Imaging in Meningioma Surgery-Pictorial Essay and Literature Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925729. [PMID: 26101779 PMCID: PMC4458537 DOI: 10.1155/2015/925729] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/10/2015] [Indexed: 11/17/2022]
Abstract
The main goal in meningioma surgery is to achieve complete tumor removal, when possible, while improving or preserving patient neurological functions. Intraoperative imaging guidance is one fundamental tool for such achievement. In this regard, intra-operative ultrasound (ioUS) is a reliable solution to obtain real-time information during surgery and it has been applied in many different aspect of neurosurgery. In the last years, different ioUS modalities have been described: B-mode, Fusion Imaging with pre-operative acquired MRI, Doppler, contrast enhanced ultrasound (CEUS), and elastosonography.
In this paper, we present our US based multimodal approach in meningioma surgery. We describe all the most relevant ioUS modalities and their intraoperative application to obtain precise and specific information regarding the lesion for a tailored approach in meningioma surgery. For each modality, we perform a review of the literature accompanied by a pictorial essay based on our routinely use of ioUS for meningioma resection.
Collapse
|
64
|
Filippini A, Prada F, Del Bene M, DiMeco F. Intraoperative cerebral ultrasound for third ventricle colloid cyst removal: case report. J Ultrasound 2014; 19:211-5. [PMID: 27635155 DOI: 10.1007/s40477-014-0151-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To assess the usefulness of intraoperative Ultrasound (ioUS) and Echo-Color-Doppler (ECD) for the surgical removal of a specific deep-sited lesion. METHODS Case report of a woman underwent surgery of a third ventricle colloid cyst removal. RESULTS The ioUS technique depicted the deep intraventricular lesion and all the anatomical structures surrounding the lesion; helping us defining the best trajectory for the safest surgical removal. CONCLUSION In our experience ioUS and ECD have demonstrated to be a reliable and useful intraoperative tool in neurosurgery, not only for superficial tumors but for deep intraventicular lesions as well.
Collapse
Affiliation(s)
- Assunta Filippini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133 Milan, Italy
| | - Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133 Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133 Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133 Milan, Italy
| |
Collapse
|