51
|
The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life (Basel) 2023; 13:life13020539. [PMID: 36836895 PMCID: PMC9967500 DOI: 10.3390/life13020539] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic Nephropathy (DN) is a serious complication of type I and II diabetes. It develops from the initial microproteinuria to end-stage renal failure. The main initiator for DN is chronic hyperglycemia. Hyperglycemia (HG) can stimulate the resident and non-resident renal cells to produce humoral mediators and cytokines that can lead to functional and phenotypic changes in renal cells and tissues, interference with cell growth, interacting proteins, advanced glycation end products (AGEs), etc., ultimately resulting in glomerular and tubular damage and the onset of kidney disease. Therefore, poor blood glucose control is a particularly important risk factor for the development of DN. In this paper, the types and mechanisms of DN cell damage are classified and summarized by reviewing the related literature concerning the effect of hyperglycemia on the development of DN. At the cellular level, we summarize the mechanisms and effects of renal damage by hyperglycemia. This is expected to provide therapeutic ideas and inspiration for further studies on the treatment of patients with DN.
Collapse
|
52
|
QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3357281. [PMID: 36760471 PMCID: PMC9904933 DOI: 10.1155/2023/3357281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Background QiHuangYiShen granules (QHYS), a traditional Chinese herbal medicine formula, have been used in clinical practice for treating diabetic kidney disease for several years by our team. The efficacy of reducing proteinuria and delaying the decline of renal function of QHYS has been proved by our previous studies. However, the exact mechanism by which QHYS exerts its renoprotection remains largely unknown. Emerging evidence suggests that lncRNA MALAT1 is abnormally expressed in diabetic nephropathy (DN) and can attenuate renal fibrosis by modulating podocyte epithelial-mesenchymal transition (EMT). Objective In the present study, we aimed to explore whether QHYS could modulate lncRNA MALAT1 expression and attenuate the podocyte EMT as well as the potential mechanism related to the Wnt/β-catenin signal pathway. Methods SD rats were fed with the high-fat-high-sucrose diet for 8 weeks and thereafter administered with 30 mg/kg streptozotocin intraperitoneally to replicate the DN model. Quality control of QHYS was performed using high-performance liquid chromatography. QHYS were orally administered at 1.25, 2.5, and 5 g/kg doses, respectively, to the DN model rats for 12 weeks. Body weight, glycated haemoglobin, blood urea nitrogen, serum creatinine, 24-h proteinuria, and kidney index were measured. The morphologic pathology of the kidney was evaluated by Hematoxylin-eosin and Masson's trichrome staining. The expression level of lncRNA MALAT1 was determined by quantitative real-time polymerase chain reaction. In addition, the expression levels of podocyte EMT protein markers and Wnt/β-catenin pathway proteins in renal tissues were evaluated by Western blotting and immunohistochemistry. Results The results showed that QHYS significantly reduced 24-h proteinuria, blood urea nitrogen, kidney index, and ameliorated glomerular hypertrophy and collagen fiber deposition in the kidney of DN rats. Importantly, QHYS significantly downregulated the expression level of lncRNA MALAT1, upregulated the expression of nephrin, the podocyte marker protein, downregulated the expression of desmin and FSP-1, and mesenchymal cell markers. Furthermore, QHYS significantly downregulated the expression levels of Wnt1, β-catenin, and active β-catenin. Conclusion Conclusively, our study revealed that QHYS significantly reduced proteinuria, alleviated renal fibrosis, and attenuated the podocyte EMT in DN rats, which may be associated with the downregulation of lncRNA MALAT1 expression and inhibition of the Wnt/β-catenin pathway.
Collapse
|
53
|
Bibliometric Analysis and Visualization of Research Progress in the Diabetic Nephropathy Field from 2001 to 2021. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4555609. [PMID: 36718276 PMCID: PMC9884171 DOI: 10.1155/2023/4555609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023]
Abstract
Methods The PubMed database was searched to identify all studies related to DN that were published from 2001 to 2021, with these studies being separated into four time-based groups. The characteristics of these studies were analyzed and extracted using BICOMB. Biclustering analyses for each of these groups were then performed using gCLUTO, with these results then being analyzed and GraphPad Prism 5 being used to construct strategy diagrams. The social network analyses (SNAs) for each group of studies were conducted using NetDraw and UCINET. Results In total, 18,889 DN-associated studies published from 2001 to 2021 and included in the PubMed database were incorporated into the present bibliometric analysis. Biclustering analysis and strategy diagrams revealed that active areas of research interest in the DN field include studies of the drug-based treatment, diagnosis, etiology, pathology, physiopathology, and epidemiology of DN. The specific research topics associated with these individual areas, however, have evolved over time in a dynamic manner. Strategy diagrams and SNA results revealed podocyte metabolism as an emerging research hotspot in the DN research field from 2010 to 2015, while DN-related microRNAs, signal transduction, and mesangial cell metabolism have emerged as more recent research hotspots in the interval from 2016 to 2021. Conclusion Through analyses of PubMed-indexed studies pertaining to DN published since 2001, the results of this bibliometric analysis offer a knowledge framework and insight into active and historical research hotspots in the DN research space, enabling investigators to readily understand the dynamic evolution of this field over the past two decades. Importantly, these analyses also enable the prediction of future DN-related research hotspots, thereby potentially guiding more focused and impactful research efforts.
Collapse
|
54
|
Cai Y, Chen S, Jiang X, Wu Q, Xu Y, Wang F. LncRNA X Inactive Specific Transcript Exerts a Protective Effect on High Glucose-Induced Podocytes by Promoting the Podocyte Autophagy via miR-30d-5p/BECN-1 Axis. Int J Endocrinol 2023; 2023:3187846. [PMID: 36908288 PMCID: PMC10005869 DOI: 10.1155/2023/3187846] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Inhibiting podocyte autophagy promotes the development of diabetic nephropathy (DN). This study aims to explore the upstream regulatory mechanism of the autophagy-related gene BECN1 in high glucose (HG)-induced podocytes. C57BL/6 mice were treated with 50 mg/kg streptozotocin to construct a DN model. Biochemical indexes, pathological morphology of renal tissue, the morphology of renal podocytes, and the expressions of autophagy-related proteins in DN mice and normal mice were detected. The upstream miRNAs of BECN1 and the upstream long noncoding RNAs (lncRNAs) of miR-30d-5p were predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Mouse podocyte clone 5 (MPC5) cells were exposed to HG to construct a DN cell model. The levels of miR-30d-5p, X inactive specific transcript (XIST), and BECN1 in mouse kidney and MPC5 cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The regulation of XIST/miR-30d-5p on the viability, apoptosis as well as proteins related to apoptosis, epithelial-mesenchymal transition (EMT), and autophagy in MPC5 cells were determined by rescue experiments. The levels of glucose, urinary protein, serum creatinine, and blood urea nitrogen were upregulated, but the kidney tissues and podocytes were damaged in DN mice. XIST targeted miR-30d-5p to promote viability while suppressing the apoptosis of HG-induced MPC5 cells. In kidney tissues or HG-induced MPC5 cells, the expressions of Beclin-1, light chain 3 (LC3) II/I, XIST, B-celllymphoma-2 (Bcl-2), and E-cadherin were downregulated, while the expressions of P62, miR-30d-5p, Bcl-2-associated X protein (Bax), cleaved-caspase-3, vimentin, and alpha-smooth muscle actin (α-SMA) were upregulated, which were reversed by XIST overexpression. The reversal effect of XIST overexpression was offset by miR-30d-5p mimic. Collectively, XIST promotes the autophagy of podocytes by regulating the miR-30d-5p/BECN1 axis to protect podocytes from HG-induced injury.
Collapse
Affiliation(s)
- Ying Cai
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Sheng Chen
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Xiaoli Jiang
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Qiyuan Wu
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Yong Xu
- Instrument R&D Center, Medical System Biotechnology Co., Ltd., Ningbo, China
| | - Fang Wang
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| |
Collapse
|
55
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
56
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
57
|
Therapeutic efficacy of dapagliflozin on diabetic kidney disease in rats. Int Immunopharmacol 2022; 113:109272. [DOI: 10.1016/j.intimp.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
58
|
Li H, Dai W, Liu Z, He L. Renal Proximal Tubular Cells: A New Site for Targeted Delivery Therapy of Diabetic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:ph15121494. [PMID: 36558944 PMCID: PMC9786989 DOI: 10.3390/ph15121494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have been clinically investigated for the treatment of DKD. However, a large proportion of patients still develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery strategies have epoch-making significance and great application prospects for the treatment of DKD. In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently, the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | - Liyu He
- Correspondence: ; Tel.: +86-731-8529-2064
| |
Collapse
|
59
|
Liu X, Wang X, Ma H, Zhang W. Mechanisms underlying acupuncture therapy in chronic kidney disease: A narrative overview of preclinical studies and clinical trials. FRONTIERS IN NEPHROLOGY 2022; 2:1006506. [PMID: 37675019 PMCID: PMC10479635 DOI: 10.3389/fneph.2022.1006506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) is associated with high incidence, low awareness, and high disability rates among the population. Moreover, the disease significantly affects the physical and mental health of patients. Approximately 25% of patients with CKD develop end-stage renal disease (ESRD) within 20 years of diagnosis and have to rely on renal replacement therapy, which is associated with high mortality, heavy economic burden, and symptoms including fatigue, pain, insomnia, uremia pruritus, and restless leg syndrome. Currently, the means to delay the progress of CKD are insufficient; therefore, developing strategies for delaying CKD progression has important practical implications. In recent years, more and more people are accepting the traditional Chinese medical technique "acupuncture." Acupuncture has been shown to improve the uncomfortable symptoms of various diseases through stimulation (needling, medicinal moxibustion, infrared radiation, and acupressure) of acupoints. Its application has been known for thousands of years, and its safety and efficacy have been verified. As a convenient and inexpensive complementary therapy for CKD, acupuncture has recently been gaining interest among clinicians and scientists. Nevertheless, although clinical trials and meta-analysis findings have demonstrated the efficacy of acupuncture in reducing albuminuria, improving glomerular filtration rate, relieving symptoms, and improving the quality of life of patients with CKD, the underlying mechanisms involved are still not completely understood. Few studies explored the correlation between acupuncture and renal pathological diagnosis. The aim of this study was to conduct a literature review summarizing the currently known mechanisms by which acupuncture could delay the progress of CKD and improve symptoms in patients with ESRD. This review help provide a theoretical basis for further research regarding the influence of acupuncture on renal pathology in patients with CKD, as well as the differences between specific therapeutic mechanisms of acupuncture in different renal pathological diagnosis. The evidence in this review indicates that acupuncture may produce marked effects on blocking and reversing the critical risk factors of CKD progression (e.g., hyperglycemia, hypertension, hyperlipidemia, obesity, aging, and anemia) to improve the survival of patients with CKD via mechanisms including oxidative stress inhibition, reducing inflammatory effects, improving hemodynamics, maintaining podocyte structure, and increasing energy metabolism.
Collapse
Affiliation(s)
- Xinyin Liu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoran Wang
- Department of Nephrology, The First People’s Hospital of Hangzhou Lin’An District, Hangzhou, China
| | - Hongzhen Ma
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wen Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
60
|
cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 2022; 25:105145. [PMID: 36176590 PMCID: PMC9513272 DOI: 10.1016/j.isci.2022.105145] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal diseases. DKD does not have efficacious treatment. The cGAS-STING pathway is activated in podocytes at the early stage of kidney dysfunction, which is associated with the activation of STING downstream effectors TBK1 and NF-κB but not IRF3. Lipotoxicity induces mitochondrial damage and mtDNA leakage to the cytosol through Bcl-2 associated X protein (BAX) in podocytes. BAX-mediated mtDNA cytosolic leakage can activate the cGAS-STING pathway in the absence of lipotoxicity and is sufficient to cause podocyte injury. Depletion of cytosolic mtDNA, genetic STING knockdown, or pharmacological inhibition of STING or TBK1 alleviates podocyte injury and improves renal functions in cultured podocytes or mouse models of diabetes and obesity. These results suggest that the mtDNA-cGAS-STING pathway promotes podocyte injury and is a potential therapeutic target for DKD or other obesity-related kidney diseases.
Collapse
|
61
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
62
|
hucMSC-sEVs-Derived 14-3-3ζ Serves as a Bridge between YAP and Autophagy in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3281896. [PMID: 36199425 PMCID: PMC9527117 DOI: 10.1155/2022/3281896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 12/29/2022]
Abstract
As nanoscale membranous vesicles, human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEVs) have attracted extensive attention in the field of tissue regeneration. Under the premise that the mechanisms of hucMSC-sEVs on the treatment of diabetic kidney disease (DKD) have not been revealed clearly, we constructed DKD rat model with success. After tail vein injection, hucMSC-sEVs effectively reduced blood glucose, maintained body weight and improved renal function in DKD rats. Notably, we found that hucMSC-sEVs suppressed YAP expression in renal cortical regions. Further in vitro experiments, we confirmed that the expression of YAP in the nucleus of renal podocytes was increased, and the level of autophagy was inhibited in the high-glucose environment, which could be reversed by intervention with hucMSC-sEVs. We screened out the key protein 14-3-3ζ, which could not only promote YAP cytoplasmic retention instead of entering the nucleus, but also enhance the level of autophagy in the cytoplasm. Ultimately, excessive YAP protein was removed by autophagy, a classic way of protein degradation. In conclusion, our study provides new strategies for the prevention of DKD and proposes the possibility of hucMSC-sEVs becoming a new treatment for DKD in the future.
Collapse
|
63
|
Yu H, Chen Y, Ma H, Wang Z, Zhang R, Jiao J. TRPC6 mediates high glucose-induced mitochondrial fission through activation of CDK5 in cultured human podocytes. Front Physiol 2022; 13:984760. [PMID: 36213244 PMCID: PMC9535336 DOI: 10.3389/fphys.2022.984760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial abnormalities contribute to the development of diabetic nephropathy (DN). However, the precise mechanisms of mitochondrial dysfunction in DN remain unclear. Transient receptor potential canonical channel-6 (TRPC6), a non-selective cation channel permeable to Ca2+, has been shown to regulate mitochondrial dynamics. This study was therefore aimed to explore the regulatory role and mechanisms of TRPC6 in high glucose (HG)-induced mitochondrial dysfunction in podocytes. Here we found that TRPC6 expression and TRPC6-induced Ca2+ influx were increased in HG-treated podocytes. Furthermore, the TRPC6 inhibitor and TRPC6 siRNA ameliorated mitochondrial dysfunction and apoptosis in HG-treated podocytes. BAPTA-AM, an intracellular calcium chelating agent, attenuated mitochondrial fission under HG conditions as well. Then, we found the activity of calpain and cyclin-dependent kinase 5 (CDK5) was markedly enhanced in HG-treated podocytes, which can be blocked by pretreatment with the TRPC6 inhibitor. Calpain-1 inhibition by calpeptin or by calpain-1 siRNA transfection not only attenuated HG-induced mitochondrial fission but also reduced the activity of CDK5. Additionally, the CDK5 inhibitor and its siRNA decreased mitochondrial fragmentation in HG-treated podocytes. Collectively, we revealed the essential role of TRPC6 in regulating HG-induced mitochondrial fission and apoptosis through the calpain-1/CDK5 pathway in human podocytes, which may provide new insights into the pathogenesis of DN.
Collapse
Affiliation(s)
- Haomiao Yu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yili Chen
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huimin Ma
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihan Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Nephrology, Harbin Medical University, Harbin, China
- *Correspondence: Jundong Jiao,
| |
Collapse
|
64
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
65
|
Liu T, Jin Q, Ren F, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Potential therapeutic effects of natural compounds targeting autophagy to alleviate podocyte injury in glomerular diseases. Biomed Pharmacother 2022; 155:113670. [PMID: 36116248 DOI: 10.1016/j.biopha.2022.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Podocyte injury is a common cause of proteinuric kidney diseases. Uncontrollable progressive podocyte loss accelerates glomerulosclerosis and increases the risk of end-stage renal disease. To date, owing to the complex pathological mechanism, effective therapies for podocyte injury have been limited. Accumulating evidence supports the indispensable role of autophagy in the maintenance of podocyte homeostasis. A variety of natural compounds and their derivatives have been found to regulate autophagy through multiple targets, including promotes nuclear transfer of transcription factor EB and lysosomal repair. Here, we reviewed the recent studies on the use of natural compounds and their derivatives as autophagy regulators and discussed their potential applications in ameliorating podocyte injury. Several known natural compounds with autophagy-regulatory properties, such as quercetin, silibinin, kaempferol, and artemisinin, and their medical uses were also discussed. This review will help in improving the understanding of the podocyte protective mechanism of natural compounds and promote their development for clinical use.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
66
|
Ozkan S, Isildar B, Ercin M, Gezginci-Oktayoglu S, Konukoglu D, Neşetoğlu N, Oncul M, Koyuturk M. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res Ther 2022; 13:438. [PMID: 36056427 PMCID: PMC9438289 DOI: 10.1186/s13287-022-03121-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs)-derived conditioned media (CM) can be increased after preconditioning with various chemical agents. The aim of this study is comparative evaluation of effects of N-CM and DFS-CM which are collected from normal (N) and deferoxamine (DFS) preconditioned umbilical cord-derived MSCs on rat diabetic nephropathy (DN) model. Methods After incubation of the MSCs in serum-free medium with/without 150 µM DFS for 48 h, the contents of N-CM and DFS-CM were analyzed by enzyme-linked immunosorbent assay. Diabetes (D) was induced by single dose of 55 mg/kg streptozotocin. Therapeutic effects of CMs were evaluated by biochemical, physical, histopathological and immunohistochemical analysis. Results The concentrations of vascular endothelial growth factor alpha, nerve growth factor and glial-derived neurotrophic factor in DFS-CM increased, while one of brain-derived neurotrophic factor decreased in comparison with N-CM. The creatinine clearance rate increased significantly in both treatment groups, while the improvement in albumin/creatinine ratio and renal mass index values were only significant for D + DFS-CM group. Light and electron microscopic deteriorations and loss of podocytes-specific nephrin and Wilms tumor-1 (WT-1) expressions were significantly restored in both treatment groups. Tubular beclin-1 expression was significantly increased for DN group, but it decreased in both treatment groups. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cell death increased in the tubules of D group, while it was only significantly decreased for D + DFS-CM group. Conclusions DFS-CM can be more effective in the treatment of DN by reducing podocyte damage and tubular apoptotic cell death and regulating autophagic activity with its more concentrated secretome content than N-CM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03121-6.
Collapse
Affiliation(s)
- Serbay Ozkan
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Basak Isildar
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Merve Ercin
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dildar Konukoglu
- Medical Biochemistry Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Neşet Neşetoğlu
- Faculty of Pharmacy, Drug Application and Research Center, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- Cerrahpasa Faculty of Medicine, Obstetrics and Gynecology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey.
| |
Collapse
|
67
|
Liu T, Li CY, Chen H, Liu J, Zhong LL, Tang MM, Wang WB, Huang JP, Jiang XS. tBHQ attenuates podocyte injury in diabetic nephropathy by inhibiting NADPH oxidase-derived ROS generation via the Nrf2/HO-1 signalling pathway. Heliyon 2022; 8:e10515. [PMID: 36119860 PMCID: PMC9479023 DOI: 10.1016/j.heliyon.2022.e10515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Oxidative stress plays a crucial role in podocyte injury in diabetic nephropathy (DN). tert-Butylhydroquinone (tBHQ) is an activator of Nrf2 that exerts protective effects in diabetic mice, but the underlying mechanism of tBHQ in the podocytes of DN is not fully understood. Materials and methods A high glucose (HG)-induced HK2 cell model and streptozotocin-induced rat model of DN were established and treated with tBHQ or apocynin. The expression levels of Nrf2, HO-1, NOX2 and NOX4 were determined by Western blot or immunohistochemical staining. The level of oxidative stress in podocytes or kidney tissues was assessed using DCFH-DA or dihydroethidium (DHE) staining. Cell injury was assessed by F-actin staining and flow cytometry analysis. Key findings We showed that HG treatment increased the expressions of NOX2 and NOX4 and enhanced ROS production in podocytes. Inhibition of NADPH oxidase activity by apocynin dramatically attenuated HG-induced ROS production and further alleviated cell injury and apoptosis in podocytes. Moreover, we found that HG inhibited the Nrf2/HO-1 signalling pathway in podocytes; however, tBHQ treatment significantly activated the Nrf2 signalling pathway, inhibited NADPH oxidase activity, and attenuated ROS production and cell injury in HG-treated podocytes. Furthermore, we observed that tBHQ treatment partially attenuated renal injury, activated the Nrf2 signalling pathway, inhibited NADPH oxidase activity and reduced ROS generation in the kidneys of STZ-induced diabetic rats. Significance These results suggest that tBHQ exerts a protective role in hyperglycaemia-induced podocyte injury, and that the potential protective mechanism of tBHQ involves inhibiting NADPH oxidase-derived ROS generation by activating the Nrf2/HO-1 signalling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Chang-Yan Li
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Hao Chen
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Juan Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Li-Li Zhong
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Ming-Min Tang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Wen-Bo Wang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Jin-Ping Huang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| |
Collapse
|
68
|
Zhu X, Xu X, Du C, Su Y, Yin L, Tan X, Liu H, Wang Y, Xu L, Xu X. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomed Pharmacother 2022; 153:113438. [DOI: 10.1016/j.biopha.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022] Open
|
69
|
Lizotte F, Robillard S, Lavoie N, Rousseau M, Denhez B, Moreau J, Higgins S, Sabbagh R, Côté AM, Geraldes P. Enhanced SHP-1 Expression in Podocyturia Is Associated with Kidney Dysfunction in Patients with Diabetes. KIDNEY360 2022; 3:1710-1719. [PMID: 36514736 PMCID: PMC9717659 DOI: 10.34067/kid.0002152022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Background Diabetic kidney disease (DKD) remains the leading cause of end stage kidney disease worldwide. Despite significant advances in kidney care, there is a need to improve noninvasive techniques to predict the progression of kidney disease better for patients with diabetes. After injury, podocytes are shed in urine and may be used as a biologic tool. We previously reported that SHP-1 is upregulated in the kidney of diabetic mice, leading to podocyte dysfunction and loss. Our objective was to evaluate the expression levels of SHP-1 in urinary podocytes and kidney tissues of patients with diabetes. Methods In this prospective study, patients with and without diabetes were recruited for the quantification of SHP-1 in kidney tissues, urinary podocytes, and peripheral blood monocytes. Immunochemistry and mass spectrometry techniques were applied for kidney tissues. Urinary podocytes were counted, and expression of SHP-1 and podocyte markers were measured by quantitative PCR. Results A total of 66 participants (diabetic n=48, nondiabetic n=18) were included in the analyses. Diabetes was associated with increased SHP-1 expression in kidney tissues (P=0.03). Nephrin and podocin mRNA was not significantly increased in urinary podocytes from patients with diabetes compared with those without diabetes, whereas levels of SHP-1 mRNA expression significantly correlated with HbA1c and estimated glomerular filtration rate (eGFR). Additionally, follow-up (up to 2 years post recruitment) evaluation indicated that SHP-1 mRNA expression continued to increase with eGFR decline. Conclusions Levels of SHP-1 in urinary podocytes may serve as an additional marker of glomerular disease progression in this population.
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Stéphanie Robillard
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Nicolas Lavoie
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Benoit Denhez
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Julie Moreau
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Sarah Higgins
- Department of Medicine, Division of Nephrology, Université de Sherbrooke, Québec, Canada
| | - Robert Sabbagh
- Department of Surgery, Université de Sherbrooke, Québec, Canada
| | - Anne-Marie Côté
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada,Department of Medicine, Division of Nephrology, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada,Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
70
|
Wang S, Zhang X, Wang Q, Wang R. Histone modification in podocyte injury of diabetic nephropathy. J Mol Med (Berl) 2022; 100:1373-1386. [PMID: 36040515 DOI: 10.1007/s00109-022-02247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone β-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
71
|
Lin L, Tian E, Ren J, Wu Z, Deng J, Yang J. Traditional Chinese Medicine in Treating Primary Podocytosis: From Fundamental Science to Clinical Research. Front Pharmacol 2022; 13:932739. [PMID: 36003509 PMCID: PMC9393213 DOI: 10.3389/fphar.2022.932739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Podocytes form a key component of the glomerular filtration barrier. Damage to podocytes is referred to as “podocyte disease.” There are many causes of podocyte injury, including primary injury, secondary injury, and gene mutations. Primary podocytosis mostly manifests as nephrotic syndrome. At present, first-line treatment is based on glucocorticoid administration combined with immunosuppressive therapy, but some patients still progress to end-stage renal disease. In Asia, especially in China, traditional Chinese medicine (TCM) still plays an important role in the treatment of kidney diseases. This study summarizes the potential mechanism of TCM and its active components in protecting podocytes, such as repairing podocyte injury, inhibiting podocyte proliferation, reducing podocyte apoptosis and excretion, maintaining podocyte skeleton structure, and upregulating podocyte-related protein expression. At the same time, the clinical efficacy of TCM in the treatment of primary podocytosis (including idiopathic membranous nephropathy, minimal change disease, and focal segmental glomerulosclerosis) is summarized to support the development of new treatment strategies for primary podocytosis.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - En Tian
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Jiangwen Ren
- Department of Nephrology, Rheumatism and Immunology, Jiulongpo District People’s Hospital of Chongqing, Chongqing, China
| | - Zhifeng Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | | | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
72
|
Li L, Feng Y, Zhang J, Zhang Q, Ren J, Sun C, Li S, Lei X, Luo G, Hu J, Huang Y. Microtubule associated protein 4 phosphorylation-induced epithelial-to-mesenchymal transition of podocyte leads to proteinuria in diabetic nephropathy. Cell Commun Signal 2022; 20:115. [PMID: 35902952 PMCID: PMC9331595 DOI: 10.1186/s12964-022-00883-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) involves various structural and functional changes because of chronic glycemic assault and kidney failure. Proteinuria is an early clinical manifestation of DN, but the associated pathogenesis remains elusive. This study aimed to investigate the role of microtubule associated protein 4 (MAP4) phosphorylation (p-MAP4) in proteinuria in DN and its possible mechanisms. METHODS In this study, the urine samples of diabetic patients and kidney tissues of streptozotocin (STZ)-induced diabetic mice were obtained to detect changes of p-MAP4. A murine model of hyperphosphorylated MAP4 was established to examine the effect of MAP4 phosphorylation in DN. Podocyte was applied to explore changes of kidney phenotypes and potential mechanisms with multiple methods. RESULTS Our results demonstrated elevated content of p-MAP4 in diabetic patients' urine samples, and increased kidney p-MAP4 in streptozocin (STZ)-induced diabetic mice. Moreover, p-MAP4 triggered proteinuria with aging in mice, and induced epithelial-to-mesenchymal transition (EMT) and apoptosis in podocytes. Additionally, p-MAP4 mice were much more susceptible to STZ treatment and showed robust DN pathology as compared to wild-type mice. In vitro study revealed high glucose (HG) triggered elevation of p-MAP4, rearrangement of microtubules and F-actin filaments with enhanced cell permeability, accompanied with dedifferentiation and apoptosis of podocytes. These effects were significantly reinforced by MAP4 hyperphosphorylation, and were rectified by MAP4 dephosphorylation. Notably, pretreatment of p38/MAPK inhibitor SB203580 reinstated all HG-induced pathological alterations. CONCLUSIONS The findings indicated a novel role for p-MAP4 in causing proteinuria in DN. Our results indicated the therapeutic potential of MAP4 in protecting against proteinuria and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Lingfei Li
- Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanhai Feng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Cheng Sun
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shujing Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Jiongyu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China. .,Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China. .,Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
73
|
Li B, Sun G, Yu H, Meng J, Wei F. Circ_0114428 promotes proliferation, fibrosis and EMT process of high glucose-induced glomerular mesangial cells through regulating the miR-185-5p/SMAD3 axis. Autoimmunity 2022; 55:462-472. [PMID: 35880624 DOI: 10.1080/08916934.2022.2103797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Circular RNA (circRNA) has been confirmed to be the key regulators of diabetic nephropathy (DN) progression. However, the role of circ_0114428 in the DN progression remains unclear. Glomerular mesangial cells (GMCs) were treated with high glucose (HG) to mimic DN cell models in vitro. The expression levels of circ_0114428, microRNA (miR)-185-5p, and SMAD3 mRNA were examined by quantitative real-time PCR. Cell proliferation ability was detected by MTT assay, EdU staining and flow cytometry. The protein levels of proliferation marker, fibrosis markers, epithelial-mesenchymal transition (EMT) markers and SMAD3 were measured by western blot assay. The interaction between miR-185-5p and circ_0114428 or SMAD3 was confirmed via dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Our data showed that circ_0114428 was upregulated in HG-induced GMCs. Circ_0114428 overexpression could aggravate the promotion effect of HG on the proliferation, fibrosis and EMT process of GMCs, while its knockdown had an opposite effect. In the terms of mechanisms, circ_0114428 could sponge miR-185-5p to regulate SMAD3. MiR-185-5p inhibitor could reverse the suppressive effect of circ_0114428 knockdown on the proliferation, fibrosis and EMT process in HG-induced GMCs. Also, SMAD3 overexpression abolished the inhibition of miR-185-5p on the proliferation, fibrosis and EMT process in HG-induced GMCs. Taken together, our data suggested that circ_0114428 might promote DN progression by regulating the miR-185-5p/SMAD3 axis.
Collapse
Affiliation(s)
- Bo Li
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guijiang Sun
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haibo Yu
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jia Meng
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Wei
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
74
|
Zhao T, Li M, Xiang Q, Lie B, Chen D, Wang W, Li X, Xu T, Zhang X, Li Y, Dong R, Du X, Wang Y, Yang J, He B, Zhu Q, Duan T, Li Z, Xu Y. Yishen Huashi Granules Ameliorated the Development of Diabetic Nephropathy by Reducing the Damage of Glomerular Filtration Barrier. Front Pharmacol 2022; 13:872940. [PMID: 35935814 PMCID: PMC9353776 DOI: 10.3389/fphar.2022.872940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/21/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Diabetic nephropathy (DN) is one of the most common complications of diabetes and the primary cause of end-stage renal disease. At present, renin–angiotensin–aldosterone system (RAAS) blockers have been applied as first-class drugs to restrain development of DN; however, its long-term effect is limited. Recent evidence has shown definite effects of Chinese medicine on DN. Yishen Huashi (YSHS) granule is a traditional Chinese Medicine prescription that has been used in the clinic to treat DN, but its mechanism is not understood. Methods: In the present study, both in vitro and in vivo studies were carried out. The DN model was induced by STZ in Wistar rats, and GEnC and HPC cell lines were applied in the in vitro study. Quality of YSHS was evaluated by LC-MS/MS. A metabolomic study of urine was carried out by LC-MS; influence of YSHS on composition of DN was analyzed by network pharmacology. Mechanism of the YSHS on DN was analyzed by Q-PCR, Western Blot, and multi-immunological methods. Results: We found YSHS administration significantly reduced levels of HbA1c and mALB. Histopathological analysis found that YSHS preserved integrity of glomerular filtration barrier by preserving viability of glomerular endothelial cells and podocytes, inhibiting glomerular fibrosis, reducing oxidative stress damage, and enhancing cross-talk among glomerular endothelial cells and podocytes. Network pharmacology, differential metabolite analysis, as well as intracellular pathway experimental study demonstrated that the PI3K/AKT/mTOR signaling pathway played a pivotal role in it. Conclusion: Our present findings supplied new understanding toward the mechanism of YSHS on inhibiting DN.
Collapse
Affiliation(s)
- Tingting Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Minyi Li
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Qian Xiang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Beifeng Lie
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Deqi Chen
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Weiming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xuling Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Tiancheng Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yuntong Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Ruixue Dong
- State Key Laboratory of Quality Research in Chinese Medicines, School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Xinwen Du
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yilin Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Junzheng Yang
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Bao He
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Quan Zhu
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Tingting Duan
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- *Correspondence: Tingting Duan, ; Zhenghai Li, ; Youhua Xu,
| | - Zhenghai Li
- Institute of Consun Co., for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- *Correspondence: Tingting Duan, ; Zhenghai Li, ; Youhua Xu,
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
- State Key Laboratory of Quality Research in Chinese Medicines, School of Pharmacy, Macau University of Science and Technology, Macao, China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
- *Correspondence: Tingting Duan, ; Zhenghai Li, ; Youhua Xu,
| |
Collapse
|
75
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
76
|
Wu T, Yang X, Cong Y, Xia S, Liu B, Zou R, Zeng J, Yang H. Effects of Qidantang Granule on early stage of diabetic kidney disease in rats. Aging (Albany NY) 2022; 14:4888-4896. [PMID: 35696643 PMCID: PMC9217703 DOI: 10.18632/aging.204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Diabetic kidney disease (DKD), is one of the most common vascular diseases caused by diabetes, eventually progressing into glomerular sclerosis. Qidantang Granule is a traditional Chinese medicine that is commonly used for DKD. However, there is still no experimental evidence for its effectiveness on DKD. 8-week-old Sprague Dawley male rats were fed on high-fat and high-sugar diet for 4 weeks, and then intraperitoneally injected with 35 mg/kg streptozotocin (STZ) to induce diabetes. Diabetic rats were randomly divided into three groups, and orally administrated with vehicle, 50 mg/kg or 200 mg/kg Qidantang Granule respectively, once daily for 9 weeks. Qidantang Granule effectively reduced food and water intake, body weight and fasting blood glucose, decreased inflammation and oxidative stress, ameliorated renal injury through suppressing PI3K signaling pathway in STZ-induced DKD rats. Our results provide experimental evidence to demonstrate the pharmacological mechanism of Qidantang Granule in the treatment of DKD.
Collapse
Affiliation(s)
- Tengfei Wu
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Xinyu Yang
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Yilei Cong
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Shisi Xia
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Bowen Liu
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Ran Zou
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Juanhua Zeng
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| | - Hua Yang
- Department of Endocrinology, Longhua Hospital, Shanghai University of TCM, Shanghai 200032, China
| |
Collapse
|
77
|
Alquraishi M, Chahed S, Alani D, Puckett DL, Dowker PD, Hubbard K, Zhao Y, Kim JY, Nodit L, Fatima H, Donohoe D, Voy B, Chowanadisai W, Bettaieb A. Podocyte specific deletion of PKM2 ameliorates LPS-induced podocyte injury through beta-catenin. Cell Commun Signal 2022; 20:76. [PMID: 35637461 PMCID: PMC9150347 DOI: 10.1186/s12964-022-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of β-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of β-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, β-catenin activation, and reduction in WT1 expression. CONCLUSIONS Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION Not applicable. Video abstract.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Department of Community Health Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samah Chahed
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dina Alani
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dexter L. Puckett
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Presley D. Dowker
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Katelin Hubbard
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Yi Zhao
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105 USA
| | - Ji Yeon Kim
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Laurentia Nodit
- Department of Pathology, University of Tennessee Medical Center, Knoxville, TN 37920 USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dallas Donohoe
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078 USA
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 USA
| |
Collapse
|
78
|
Jin J, Wang Y, Zheng D, Liang M, He Q. A Novel Identified Circular RNA, mmu_mmu_circRNA_0000309, Involves in Germacrone-Mediated Improvement of Diabetic Nephropathy Through Regulating Ferroptosis by Targeting miR-188-3p/GPX4 Signaling Axis. Antioxid Redox Signal 2022; 36:740-759. [PMID: 34913724 DOI: 10.1089/ars.2021.0063] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Diabetic nephropathy (DN) is characterized by microalbuminuria, mainly associated with pathological and morphological alterations of podocyte. New drug targeting podocyte injury is a promising approach for treating DN. The present study is aimed at developing new drug targeting podocyte injury for treating DN. Results: In this study, germacrone ameliorated kidney damage and inhibited podocyte apoptosis in a DN mouse model. Based on RNA-seq, mmu_mmu_circRNA_0000309, located in host gene vascular endothelial zinc finger 1 (Vezf1), showed a sharp decline in DN mice and a remarkable recovery in germacrone-challenged DN mice. mmu_circRNA_0000309 silence or miR-188-3p mimics abrogated the antiapoptosis and anti-injury effects of germacrone through aggravating mitochondria damage, and elevating reactive oxygen species and ferroptosis-related protein levels. Mechanistically, mmu_circRNA_0000309 competitively sponged miR-188-3p, and subsequently promoted glutathione peroxidase 4 (GPX4) expression, thereby inactivating ferroptosis-dependent mitochondrial damage and podocyte apoptosis. In addition, GPX4 overexpression neutralized mmu_circRNA_0000309 silence-mediated mitochondria damage and ferroptosis in germacrone-exposed MPC5 cells. Innovation: We describe the novel effect and mechanism of germacrone on treating DN, which is linked to ferroptosis for the first time. Conclusion: mmu_circRNA_0000309 silence mediates drug resistance to germacrone in DN mice. mmu_circRNA_0000309 sponges miR-188-3p, and subsequently upregulates GPX4 expression, inactivating ferroptosis-dependent mitochondrial function and podocyte apoptosis. Possibly germacrone-based treatment for DN can be further motivated by regulating mmu_circRNA_0000309/miR-188-3p/GPX4 signaling axis. Antioxid. Redox Signal. 36, 740-759.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Mingzhu Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
79
|
Dotare T, Ishiwata S, Matsue Y, Nakamura Y, Sunayama T, Maeda D, Yatsu S, Suda S, Kato T, Hiki M, Kasai T, Minamino T. Prevalence and Prognostic Relevance of Isolated Tubular Dysfunction in Patients With Acute Heart Failure. Circ J 2022; 86:709-714. [PMID: 34955476 DOI: 10.1253/circj.cj-21-0759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Renal dysfunction includes glomerular dysfunction (GD) and tubular dysfunction (TD); however, there is limited information regarding the prevalence, coexistence, and prognostic relevance of TD and GD among patients with acute heart failure (AHF). METHODS AND RESULTS This study reviewed 489 patients with AHF who had undergone testing at the time of their admission to identify GD (estimated glomerular filtration rate <60 mL/min/1.73 m2) and TD (urinary β-2-microglobulin ≥300 µg/gCr). Patients were grouped according to the presence/absence of GD and TD as having neither condition (n=116), isolated TD (n=101), isolated GD (n=83), or coexisting GD plus TD (n=189). During a median follow up of 466 days (interquartile range: 170-871 days), 107 deaths were observed. Kaplan-Meier curve analysis revealed that, relative to the absence of a GD and TD group, higher mortality rates were observed in the groups with isolated TD, isolated GD, and coexisting GD plus TD (log-rank P<0.001). Similarly, the adjusted Cox regression analyses revealed that significantly higher risks of mortality were associated with isolated TD, isolated GD, and coexisting GD plus TD. Moreover, isolated GD and isolated TD were both independently associated with increased risks of all-cause mortality. CONCLUSIONS As a significant proportion of patients with AHF had isolated TD and an increased risk of mortality, patients with AHF should be screened for TD even if they do not have GD.
Collapse
Affiliation(s)
- Taishi Dotare
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Sayaki Ishiwata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine
| | - Yutaka Nakamura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tsutomu Sunayama
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Daichi Maeda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
- Department of Cardiology, Osaka Medical and Pharmaceutical University
| | - Shoichiro Yatsu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Shoko Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Takao Kato
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Masaru Hiki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Takatoshi Kasai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
- Sleep and Sleep-Disordered Breathing Center, Juntendo University Hospital
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development
| |
Collapse
|
80
|
Wang MZ, Wang J, Cao DW, Tu Y, Liu BH, Yuan CC, Li H, Fang QJ, Chen JX, Fu Y, Wan BY, Wan ZY, Wan YG, Wu GW. Fucoidan Alleviates Renal Fibrosis in Diabetic Kidney Disease via Inhibition of NLRP3 Inflammasome-Mediated Podocyte Pyroptosis. Front Pharmacol 2022; 13:790937. [PMID: 35370636 PMCID: PMC8972405 DOI: 10.3389/fphar.2022.790937] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Fucoidan (FPS) has been widely used to treat renal fibrosis (RF) in patients with diabetic kidney disease (DKD); however, the precise therapeutic mechanisms remain unclear. Recently, research focusing on inflammation-derived podocyte pyroptosis in DKD has attracted increasing attention. This phenomenon is mediated by the activation of the nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to RF during DKD progression. Therefore, we designed a series of experiments to investigate the ameliorative effects of FPS on RF in DKD and the mechanisms that are responsible for its effect on NLRP3 inflammasome-mediated podocyte pyroptosis in the diabetic kidney.Methods: The modified DKD rat models were subjected to uninephrectomy, intraperitoneal injection of streptozotocin, and a high-fat diet. Following induction of renal injury, the animals received either FPS, rapamycin (RAP), or a vehicle for 4 weeks. For in vitro research, we exposed murine podocytes to high glucose and MCC950, an NLRP3 inflammasome inhibitor, with or without FPS or RAP. Changes in the parameters related to RF and inflammatory podocyte injury were analyzed in vivo. Changes in podocyte pyroptosis, NLRP3 inflammasome activation, and activation of the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/NLRP3 signaling axis involved in these changes were analyzed in vivo and in vitro.Results: FPS and RAP ameliorated RF and inflammatory podocyte injury in the DKD model rats. Moreover, FPS and RAP attenuated podocyte pyroptosis, inhibited NLRP3 inflammasome activation, and regulated the AMPK/mTORC1/NLRP3 signaling axis in vivo and in vitro. Notably, our data showed that the regulative effects of FPS, both in vivo and in vitro, on the key signaling molecules, such as p-AMPK and p-raptor, in the AMPK/mTORC1/NLRP3 signaling axis were superior to those of RAP, but similar to those of metformin, an AMPK agonist, in vitro.Conclusion: We confirmed that FPS, similar to RAP, can alleviate RF in DKD by inhibiting NLRP3 inflammasome-mediated podocyte pyroptosis via regulation of the AMPK/mTORC1/NLRP3 signaling axis in the diabetic kidney. Our findings provide an in-depth understanding of the pathogenesis of RF, which will aid in identifying precise targets that can be used for DKD treatment.
Collapse
Affiliation(s)
- Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine, Nanjing University, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine, Nanjing University, Nanjing, China
| | - Dong-Wei Cao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bu-Hui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine, Nanjing University, Nanjing, China
| | - Jia-Xin Chen
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Fu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Ying Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Graduate School of Social Sciences, Faculty of Social Sciences, Hitotsubashi University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yi-Gang Wan, ; Guo-Wen Wu,
| | - Guo-Wen Wu
- Jilin Province Huinan Chonglong Bio-Pharmacy Co., Ltd., Huinan, China
- *Correspondence: Yi-Gang Wan, ; Guo-Wen Wu,
| |
Collapse
|
81
|
Fang R, Cao X, Zhu Y, Chen Q. Hsa_circ_0037128 aggravates high glucose-induced podocytes injury in diabetic nephropathy through mediating miR-31-5p/KLF9. Autoimmunity 2022; 55:254-263. [PMID: 35285770 DOI: 10.1080/08916934.2022.2037128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Circular RNA is a key regulator involved in the progression of many human diseases including diabetic nephropathy (DN). However, the role and mechanism of hsa_circ_0037128 in the occurrence and development of DN remains to be explored. METHODS High glucose (HG)-induced podocytes were used to construct in vitro DN models. The expression of hsa_circ_0037128, microRNA (miR)-31-5p, and Kruppel-like factor 9 (KLF9) was determined using quantitative real-time polymerase chain reaction. The viability and apoptosis of podocytes was measured using cell counting kit 8 assay and flow cytometry. Western blot analysis was performed to examine the protein levels of apoptosis markers and KLF9 in podocytes. Inflammation factors were detected by ELISA assay, and oxidative stress markers were assessed by corresponding Assay Kits. In addition, the interaction between miR-31-5p and hsa_circ_0037128 or KLF9 was verified using dual-luciferase reporter assay and RIP assay. RESULTS Our data suggested that hsa_circ_0037128 was highly expressed in DN patients and HG-induced podocytes. In HG-induced podocytes, hsa_circ_0037128 knockdown could alleviate HG-induced podocytes injury. In the term of mechanism, hsa_circ_0037128 could sponge miR-31-5p to upregulate KLF9. MiR-31-5p inhibitor could reverse the negative regulation of hsa_circ_0037128 silencing on HG-induced podocytes injury. Also, miR-31-5p relieved HG-induced podocytes injury, and this effect also could be reversed by KLF9 overexpression. CONCLUSION In summary, our data showed that hsa_circ_0037128 could promote HG-induced podocytes injury via regulating miR-31-5p/KLF9 axis, showing that hsa_circ_0037128 might be a target for DN treatment.
Collapse
Affiliation(s)
- Rong Fang
- Department of Hand Foot Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Xiangchang Cao
- Department of Hand Foot Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Yaping Zhu
- Department of Hand Foot Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Qiming Chen
- Department of Hand Foot Surgery, Huizhou Central People's Hospital, Huizhou, China
| |
Collapse
|
82
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
83
|
Modes of podocyte death in diabetic kidney disease: an update. J Nephrol 2022; 35:1571-1584. [PMID: 35201595 DOI: 10.1007/s40620-022-01269-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) accounts for a large proportion of end-stage renal diseases that require renal replacement therapies including dialysis and transplantation. Therefore, it is critical to understand the occurrence and development of DKD. Podocytes are mainly injured during the development of DKD, ultimately leading to their extensive death and loss. In turn, the injury and death of glomerular podocytes are also the main culprits of DKD. This review introduces the characteristics of podocytes and summarizes the modes of their death in DKD, including apoptosis, autophagy, mitotic catastrophe (MC), anoikis, necroptosis, and pyroptosis. Apoptosis is characterized by nuclear condensation and the formation of apoptotic bodies, and it exerts a different effect from autophagy in mediating DKD-induced podocyte loss. MC mediates a faulty mitotic process while anoikis separates podocytes from the basement membrane. Moreover, pyroptosis activates inflammatory factors to aggravate podocyte injuries whilst necroptosis drives signaling cascades, such as receptor-interacting protein kinases 1 and 3 and mixed lineage kinase domain-like, ultimately promoting the death of podocytes. In conclusion, a thorough knowledge of the modes of podocyte death in DKD can help us understand the development of DKD and lay the foundation for strategies in DKD disease therapy.
Collapse
|
84
|
Liu C, Li Y, Wang X. TDAG51-Deficiency Podocytes are Protected from High-Glucose-Induced Damage Through Nrf2 Activation via the AKT-GSK-3β Pathway. Inflammation 2022; 45:1520-1533. [PMID: 35175494 DOI: 10.1007/s10753-022-01638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
T cell death-associated gene 51 (TDAG51) has been implicated in the development of various pathological conditions. However, whether TDAG51 plays a role in diabetic renal disease remains unknown. The current work investigated the possible function of TDAG51 in diabetic renal disease using high-glucose (HG)-stimulated podocytes in vitro. The elevation of TDAG51 was observed in podocytes in response to HG exposure and the glomeruli of diabetic mice. The siRNAs targeting TDAG51 were applied to deplete TDAG51 in HG-stimulated podocytes. Crucially, TDAG51 deficiency was sufficient to decrease the apoptosis, oxidative stress, and inflammation caused by HG. Mechanically, the inhibition of TDAG51 was capable of enhancing the activation of nuclear factor E2-related factor 2 (Nrf2) associated with the upregulation of AKT-glycogen synthase kinase-3β (GSK-3β) pathway. The reduction of AKT abolished the activation of Nrf2 elicited by TDAG51 deficiency. Additionally, the reduction of Nrf2 diminished the anti-HG injury effect elicited by TDAG51 deficiency. Overall, these data demonstrate that TDAG51 deficiency defends against HG-induced podocyte damage through Nrf2 activation by regulating AKT-GSK-3β pathway. This study suggests that TDAG1 may have a potential role in diabetic renal disease by affecting HG-induced podocyte damage.
Collapse
Affiliation(s)
- Chuntian Liu
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Yanling Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Xiaojuan Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| |
Collapse
|
85
|
Wang F, Fan J, Pei T, He Z, Zhang J, Ju L, Han Z, Wang M, Xiao W. Effects of Shenkang Pills on Early-Stage Diabetic Nephropathy in db/db Mice via Inhibiting AURKB/RacGAP1/RhoA Signaling Pathway. Front Pharmacol 2022; 13:781806. [PMID: 35222021 PMCID: PMC8873791 DOI: 10.3389/fphar.2022.781806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, so there is an urgent need to suppress its development at early stage. Shenkang pills (SKP) are a hospital prescription selected and optimized from effective traditional Chinese medicinal formulas for clinical treatment of DN. In the present study, liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS) and total contents qualification were applied to generate a quality control standard of SKP. For verifying the therapeutic effects of SKP, db/db mice were administered intragastrically with SKP at a human-equivalent dose (1.82 g/kg) for 4 weeks. Moreover, the underlying mechanism of SKP were analyzed by the renal RNA sequencing and network pharmacology. LC-Q-TOF-MS identified 46 compounds in SKP. The total polysaccharide and organic acid content in SKP were 4.60 and 0.11 mg/ml, respectively, while the total flavonoid, saponin, and protein content were 0.25, 0.31, and 0.42 mg/ml, respectively. Treatment of SKP significantly reduced fasting blood glucose, improved renal function, and ameliorated glomerulosclerosis and focal foot processes effacement in db/db mice. In addition, SKP protected podocytes from injury by increasing nephrin and podocin expression. Furthermore, transcriptome analyses revealed that 430 and 288 genes were up and down-regulated in mice treated with SKP, relative to untreated controls. Gene ontology enrichment analysis revealed that the differentially expressed genes mainly involved in modulation of cell division and chromosome segregation. Weighted gene co-expression network analysis and network pharmacology analysis indicated that aurora kinase B (AURKB), Rac GTPase activating protein 1 (RacGAP1) and SHC binding, and spindle associated 1 (shcbp1) might be the core targets of SKP. This protein and Ras homolog family member A (RhoA) were found overexpression in db/db mice, but significantly decreased with SKP treatment. We conclude that SKP can effectively treat early-stage DN and improve renal podocyte dysfunction. The mechanism may involve down-regulation of the AURKB/RacGAP1/RhoA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Xiao
- *Correspondence: Mingqing Wang, ; Wei Xiao,
| |
Collapse
|
86
|
Dai Y, Guo M, Jiang L, Gao J. Network pharmacology-based identification of miRNA expression of Astragalus membranaceus in the treatment of diabetic nephropathy. Medicine (Baltimore) 2022; 101:e28747. [PMID: 35119030 PMCID: PMC8812605 DOI: 10.1097/md.0000000000028747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetic patients, along with hypertension, hyperlipemia, proteinuria, edema, and other clinical manifestations. Astragalus membranaceus (AM) is a traditional Chinese medicine and has shown significant clinical efficacy against DN. However, the overall molecular mechanism of this therapeutic effect has not been entirely elucidated. Using network pharmacology, we aimed to identify the key active ingredients and potential pharmacological mechanisms of AM in treating DN and provide scientific evidence of its clinical efficacy.The active ingredients of AM were obtained from the traditional Chinese medicine systems pharmacology database, and the potential targets of AM were identified using the therapeutic target database. DN-related target genes were acquired from the Gene Expression Omnibus microarray dataset GSE1009 and 3 widely used databases-DisGeNET, GeneCards, and Comparative Toxicogenomics Database. The DN-AM common target protein interaction network was established by using the STRING database. Active ingredients candidate targets proteins networks were constructed using Cytoscape software for visualization. Additionally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery database. Target-regulating microRNAs (miRNAs) of these hub genes were obtained from the therapeutic target database, which could then be used for further identification of AM-regulated key miRNAs.A total of 17 active ingredients and 214 target proteins were screened from AM. 61 candidate co-expressed genes with therapeutic effects against DN were obtained and considered as potential therapeutic targets. GO and Kyoto encyclopedia of genes and genomes enrichment analysis showed that these genes were mainly involved in inflammatory response, angiogenesis, oxidative stress reaction, HIF signaling pathway, tumor necrosis factor signaling pathway, and VEGF signaling pathway. In all, 636 differentially expressed genes were identified between the DN patients and control group by using microarray data, GSE1009. Lastly, VEGFA, epidermal growth factor receptor, STAT1, and GJA1 were screened as hub genes. The relationships between miRNAs and hub genes were constructed, which showed that miR-302-3p, miR-372-3p, miR-373-3p, and miR-520-3p were regulated by VEGFA and epidermal growth factor receptor. Meanwhile, VEGFA also influenced miR-15-5p, miR-16-5p, miR-17-5p, miR-20-5p, miR-93-5p, miR-106-5p, miR-195-5p, miR-424-5p, miR-497-5p, and miR-519-3p. In addition, miR-1-3p and miR-206 were regulated by VEGFA and GJA1, and miR-23-3p was regulated by STAT1 and GJA1.To our knowledge, this study revealed for the first time the characteristic multiple components, multiple targets, and multiple pathways of AM that seem to be the underlying mechanisms of action of AM in the treatment of DN with respect to miRNAs.Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences.
Collapse
Affiliation(s)
- Yaji Dai
- Department of Pharmacy, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, China
| | - Mingfei Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Jiang
- Department of Pharmacy, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
87
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
88
|
Ma Z, Liu Y, Li C, Zhang Y, Lin N. Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin Med 2022; 17:2. [PMID: 34980163 PMCID: PMC8725443 DOI: 10.1186/s13020-021-00563-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Growing clinical evidences show the potentials of Colquhounia root tablet (CRT) in alleviating diabetic kidney disease (DKD). However, its pharmacological properties and underlying mechanisms remain unclear. Methods ‘Drug target-Disease gene’ interaction network was constructed and the candidate network targets were screened through evaluating node genes' topological importance. Then, a DKD rat model induced by high-fat diet/streptozotocin was established and used to determine pharmacological effects and network regulatory mechanisms of CRT against DKD, which were also verified using HK2 cell model induced by high glucose. Results The candidate network targets of CRT against DKD were involved into various type II diabetes-related and nephropathy-related pathways. Due to the topological importance of the candidate network targets and the important role of the imbalance between immunity and inflammation in the pathogenesis of DKD, PI3K/AKT/NF-кB signaling-mediated immune-modulatory and anti-inflammatory actions of CRT were selected to be experimentally verified. On the basis of high-fat diet (HFD) / streptozotocin (STZ)-induced DKD rat model, CRT effectively reduced the elevated level of blood glucose, decreased the accumulation of renal lipid, suppressed inflammation and the generation of ECM proteins, and ameliorated kidney function and the renal histopathology through inhibiting the activation of PI3K, AKT and NF-кB proteins, reducing the nuclear accumulation of NF-кB protein and the serum levels of downstream cytokines, which were in line with the in vitro findings. Conclusions Our data suggest that CRT may be the promising candidate drug for treating DKD via reversing the imbalance of immune-inflammation system mediated by the PI3K/AKT/NF-кB/IL-1β/TNF-α signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00563-7.
Collapse
Affiliation(s)
- Zhaochen Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Congchong Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
89
|
Wang Y, Feng F, He W, Sun L, He Q, Jin J. miR-188-3p abolishes germacrone-mediated podocyte protection in a mouse model of diabetic nephropathy in type I diabetes through triggering mitochondrial injury. Bioengineered 2022; 13:774-788. [PMID: 34847832 PMCID: PMC8805940 DOI: 10.1080/21655979.2021.2012919] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial injury-triggered podocyte apoptosis is a major risk factor for diabetic nephropathy (DN). However, the detailed relationship between mitochondrial homeostasis and podocyte apoptosis remains unclear. The present study aimed to explore the role and functional mechanism of germacrone in DN in type I diabetes (type I DN). A mouse model of type I DN was established by injecting streptozocin, and a podocyte injury model was constructed using high glucose (HG) induction. Histopathology was detected by hematoxylin and eosin and periodic acid-Schiff staining. Transmission electron microscopy and flow cytometry were used to evaluate the mitochondrial function. Germacrone simultaneously reduced blood glucose, 24 h proteinuria, and other nephrotic symptoms in a type 1 DN mouse model. Moreover, germacrone protected against mitochondrial damage, limited reactive oxygen species (ROS) accumulation, and restored glutathione peroxidase (GPX) activity and GPX4 protein expression, subsequently preventing podocyte apoptosis. Mechanistically, the increased miR-188-3p expression in type I DN mice was reversed in germacrone-challenged DN mice. HG induced miR-188-3p expression and the miR-188-3p antagonist abolished the HG-mediated increase in ROS. Notably, miR-188-3p was found to have a therapeutic effect against DN by aggravating mitochondrial damage and podocyte apoptosis. Germacrone alleviates DN progression in type I diabetes by limiting podocyte apoptosis, which was partly counteracted by miR-188-3p upregulation. The combination of germacrone and miR-188-3p antagonists is expected to be an effective therapeutic strategy for DN.Abbreviations DN: diabetic nephropathy; Type I DN: DN in Type I diabetes; STZ: streptozocin; ROS: reactive oxygen species; NcRNAs: non-coding RNAs; UTR: untranslated regions; NC: negative control; BUN: blood urea nitrogen; BUA: blood uric acid; Ucr: urine creatinine; Scr: serum creatinine; PAS: Periodic Acid-Schiff; IF: Immunofluorescence; FISH: Fluorescence in situ hybridization; TUG1: taurine upregulated gene 1; GPX: Glutathione Peroxidase; GPX4: glutathione peroxidase 4; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Fangfang Feng
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Wenfang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| | - Lifang Sun
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, P.R China
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, P.R China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| |
Collapse
|
90
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
91
|
Tu C, Wang L, Wei L, Jiang Z. The role of circular RNA in Diabetic Nephropathy. Int J Med Sci 2022; 19:916-923. [PMID: 35693742 PMCID: PMC9149631 DOI: 10.7150/ijms.71648] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DKD) is the most common chronic microvascular complication of diabetes. About 20%-40% of diabetics develop DKD, which eventually leads to chronic kidney failure. Although progress has been made in diagnosis and treatment tools, diabetic nephropathy is still a major clinical problem. In recent years, circular RNA (CircRNA) has become a research hotspot. CircRNA is a non-coding RNA formed by covalently closing the 5 'and 3' ends of the precursor RNA. CircRNA has powerful biological functions. CircRNA can regulate the expression of target genes through competitive binding with microRNA, thus playing the biological role of endogenous RNA (CeRNA). Many studies have shown that circRNAs plays an important role in malignant tumors, autoimmune system diseases, coronary heart disease and other diseases. More and more studies have shown that it can also be used as a biomarker of diabetes and diabetic nephropathy. This review summarizes the origin, classification, biogenesis and regulatory mechanisms of circRNAs. In addition, the pathogenesis and clinical significance of circRNAs as competing endogenous RNAs involved in diabetic nephropathy were also introduced. This will help us fully understand the pathological mechanism of diabetic nephropathy and develop new therapeutic targets or treatment options to improve the prognosis of patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Zhuyan Jiang
- Department of Dermatology, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| |
Collapse
|
92
|
Na H, Wang R, Zheng HL, Chen XP, Zheng LY. Correlation between Insulin Resistance and Microalbuminuria Creatinine Ratio in Postmenopausal Women. Int J Endocrinol 2022; 2022:9583611. [PMID: 36072812 PMCID: PMC9444479 DOI: 10.1155/2022/9583611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To study the relationship between insulin resistance and urinary microalbumin creatinine ratio in postmenopausal women. METHODS The selected research group comprised 104 postmenopausal women with type 2 diabetes who were admitted to the Department of Endocrinology in the green card center at the First Affiliated Hospital of Hainan Medical University between 2017 and 2019 inclusive. Ninety-eight postmenopausal women with the normal blood glucose metabolism hospitalized in the same period were used as the control group. The age, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, fasting blood glucose, fasting insulin (FINS), glycosylated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), and urinary albumin-creatinine ratio (UACR) were analyzed. The insulin resistance index (HOMR-IR) was calculated, and the correlation between IR and UACR was analyzed. RESULTS Levels of HOMA-IR, SBP, HbA1c, HDL-C, LDL-C, TC, TG, FPG, FINS, and UACR in the study group were higher than those in the control group, and a significant difference was found between the groups (P < 0.05). The level of DBP in the study group was lower than that in the control group, and the difference was statistically significant (P < 0.05). Pearson correlation analysis showed that UACR was positively correlated with HOMA-IR and HbA1c (r = 0.254, r = 0.565, P < 0.01). Multiple linear stepwise regression analysis further showed that HOMA-IR and age were positively correlated with UACR (P < 0.05). CONCLUSION There is a correlation between IR and UACR in postmenopausal women. IR is an independent risk factor for UACR.
Collapse
Affiliation(s)
- Han Na
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Rong Wang
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Hai-Long Zheng
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Xiao-Pan Chen
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| | - Lin-Yang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 571000, China
| |
Collapse
|
93
|
Yu Q, Lin J, Ma Q, Li Y, Wang Q, Chen H, Liu Y, Liu B. Long Noncoding RNA ENSG00000254693 Promotes Diabetic Kidney Disease via Interacting with HuR. J Diabetes Res 2022; 2022:8679548. [PMID: 35493610 PMCID: PMC9042635 DOI: 10.1155/2022/8679548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes mellitus (DM), without suitable therapies, causing end-stage renal diseases (ESRDs) ultimately. Moreover, there is increasing evidence demonstrating that long noncoding RNAs (lncRNAs) play crucial roles in the development of DKD. Our RNA sequencing data revealed a large group of differentially expressed lncRNAs in renal tissues of DKD, of which lncRNA ENSG00000254693 (lncRNA 254693 for short) changed drastically. In this study, we found that the expression of lncRNA 254693 was increased in both DKD patients and high-glucose-induced human podocytes. 5'/3'RACE and Northern blot assays were used to find the full length of lncRNA ENSG00000254693 which is 558 nucleotides and nonisoform that existed in human podocyte. Downregulation of lncRNA 254693 remarkably reversed the elevation of inflammation, apoptosis, and podocyte injury caused by high glucose. Then, we did bioinformatics analysis via RBPDB and found that lncRNA 254693 can combine with HuR, a RNA binding protein. Meanwhile, immunofluorescence and in situ hybridization double staining was used to prove the existence of colocalization between them. Intriguingly, lncRNA 254693 knockdown decreased HuR levels, while HuR knockdown also decreased the level of lncRNA 254693 and its stability. After this, RNA immunoprecipitation assay results confirmed the binding association between them again. In addition, we found that HuR was increased in high glucose-induced podocytes, and the silence of HuR could alleviate podocyte injury, inflammation, and apoptosis. These results together suggested a novel feedback regulation between lncRNA 254693 and HuR which could involve in podocyte injury and may serve as a predicted target for DKD therapies.
Collapse
Affiliation(s)
- Qun Yu
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021 Shandong, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021 Shandong, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| | - Yanmei Li
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021 Shandong, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| | - Huimin Chen
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| | - Yue Liu
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021 Shandong, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021 Shandong, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| |
Collapse
|
94
|
Zhang X, Zhou Y, Ma R. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease. J Diabetes Complications 2022; 36:108056. [PMID: 34893426 DOI: 10.1016/j.jdiacomp.2021.108056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Diabetic kidney disease (DKD) is one of the main causes of end-stage renal disease (ESRD) and all-cause mortality in diabetic patients, despite the extensive use of angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB). Angiotensin receptor-neprilysin inhibitor (ARNI), combining ARB and neutral endopeptidase inhibitor (NEPI), is likely to have potential favorable effects in DKD. This review summarizes existing preclinical and clinical studies on mechanism of ARNI and its potential effects on DKD. In preclinical studies, ARNI manifested its renoprotective effects by improving natriuresis, ameliorating inflammation, oxidative stress and renal dysfunction, and slowing down glomerulosclerosis and tubulointerstitial injury of kidney, but its effect on proteinuria is still controversial. Beneficial effects of ARNI on blood glucose regulation and glycometabolism have also been reported. There are no clinical studies of ARNI that specifically focus on DKD patients so far. ARNI has application potential in DKD, but there still need clinical studies that focus on DKD patients to determine its effectiveness, safety and underlying mechanism.
Collapse
Affiliation(s)
- Xingjian Zhang
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Zhou
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ruixia Ma
- Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
95
|
Huang Y, Cheng J, Zhou Y, Zhang Y, Zhou S, Li Q, Peng L, Wang M, Song W, Wu G. Sulfuretted hydrogen ameliorates high dose glucose-induced podocyte apoptosis via orchestrating AMPK/mTOR cascade-mediated anti-apoptotic effects. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1586. [PMID: 34790792 PMCID: PMC8576736 DOI: 10.21037/atm-21-5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
Background Podocytes play a pivotal role in the glomerular filtration barrier and contribute to proteinuria and glomerulosclerosis through abnormal apoptosis. Longitudinal studies have indicated the protective properties of hydrogen sulfide (H2S) against neuronal cell apoptosis, whereas the biological function and the underlying molecular mechanism on glucose-induced podocyte apoptosis are largely unknown. Methods Herein, we conducted multifaceted biological analyses to verify the potential function of H2S in glucose-induced podocyte apoptosis by examining apoptotic proteins and markers (e.g., caspase 3, Hoechst) and antioxidative effects [e.g., reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase (SOD), catalase (CAT)]. Then, we took advantage of transcriptome sequencing and biological analyses to further determine the potential influence of H2S as well as the accompanying molecular mechanism. Results In this study, we found that glucose-induced podocyte apoptosis could be largely rescued by H2S via antioxidative responses, which was further confirmed by transcriptome sequencing and bioinformatics analyses. According to apoptotic signaling analysis, the over-activated AMPK/mTOR signaling cascade in glucose-treated podocytes was effectively restrained. Conclusions For the first time, we indicated the protective effect and mechanism of H2S in podocytes by restricting glucose-induced apoptosis and suppressing the abnormally activated AMPK/mTOR signaling cascade. Our findings provide new references for podocyte apoptosis-associated diseases and also indicate the potential of H2S administration in clinical trials.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jie Cheng
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yehua Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yanhui Zhang
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shuhui Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qingzhen Li
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Peng
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Maohong Wang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Weiguo Song
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guoqing Wu
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
96
|
Yang X, Han X, Wen Q, Qiu X, Deng H, Chen Q. Protective Effect of Keluoxin against Diabetic Nephropathy in Type 2 Diabetic Mellitus Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8455709. [PMID: 34712350 PMCID: PMC8548109 DOI: 10.1155/2021/8455709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a chronic kidney disease that develops in patients with diabetes mellitus (DM). Renal dysfunction and persistent proteinuria are the main clinical features of DN. Podocyte injury is an important cause of persistent proteinuria and diabetic kidney disease (DKD) progression. Traditional Chinese patent medicines can improve renal function by enhancing autophagy and promoting apoptosis. Keluoxin is a Chinese patent medicine that has the effect of invigorating qi and nourishing yin, activating blood, and eliminating blood stasis. Therefore, we hypothesized that Keluoxin may have a protective effect against diabetic nephropathy in rats with type 2 DM. Rats induced with diabetes through streptozocin (STZ) injection and a high-fat and high-sugar diet were treated with Keluoxin (0.63 g/kg/day) for 8 weeks, and renal function, biochemical indicators, and histopathological changes in renal tissues were observed. Immunofluorescence staining and western blot analysis were used to detect the expression of autophagy-related proteins. The results showed that Keluoxin reduced blood glucose and lipid levels, improved renal function, and alleviated renal histopathological changes in rats with DN. The therapeutic effect was similar to that of Irbesartan (15.6 mg/kg/day). It is inferred that the mechanism works through reducing the obstruction of downstream pathways of autophagy by improving the lysosomal degradation function and alleviating podocyte injury. This study demonstrates that Keluoxin could regulate autophagy in podocytes, alleviate kidney injury in rats with DN, and have a protective effect on renal function; its mechanism can thus be a potential therapy for DN.
Collapse
Affiliation(s)
- Xiaomei Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xuke Han
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qing Wen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xianliang Qiu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Huan Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
97
|
Bai Y, Mu Q, Bao X, Zuo J, Fang X, Hua J, Zhang D, Jiang G, Li P, Gao S, Zhao D. Targeting NLRP3 Inflammasome in the Treatment Of Diabetes and Diabetic Complications: Role of Natural Compounds from Herbal Medicine. Aging Dis 2021; 12:1587-1604. [PMID: 34631209 PMCID: PMC8460305 DOI: 10.14336/ad.2021.0318] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes, a common metabolic disease with various complications, is becoming a serious global health pandemic. So far there are many approaches in the management of diabetes; however, it still remains irreversible due to its complicated pathogenesis. Recent studies have revealed that nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a vital role in the progression of diabetes and many of its complications, making it a promising therapeutic target in pharmaceutical design. Natural derived herbal medicine, known for its utilization of natural products such as herbs or its bioactive ingredients, is shown to be able to ameliorate hyperglycemia-associated symptoms and to postpone the progression of diabetic complications due to its anti-inflammatory and anti-oxidative properties. In this review, we summarized the role of NLRP3 inflammasome in diabetes and several diabetic complications, as well as 31 active compounds that exert therapeutic effect on diabetic complications via inhibiting NLRP3 inflammasome. Improving our understanding of these promising candidates from natural compounds in herbal medicine targeting NLRP3 inflammasome inspires us the relationship between inflammation and metabolic disorders, and also sheds light on searching potential agents or therapies in the treatment of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Ying Bai
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Mu
- 2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiacheng Zuo
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Fang
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Hua
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sihua Gao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
98
|
Carnosine alleviates podocyte injury in diabetic nephropathy by targeting caspase-1-mediated pyroptosis. Int Immunopharmacol 2021; 101:108236. [PMID: 34653727 DOI: 10.1016/j.intimp.2021.108236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Diabetic nephropathy (DN) is a main complication of diabetes and often develops into end-stage nephropathy. Histologically, DN progresses as the gradual loss of podocytes with the loss of glomerular podocytes being the earliest sign of DN. Pyroptosis is a new type of programmed cell death and has been mechanistically correlated with podocyte injury in DN. The current study aimed to evaluate the protective effects of carnosine on glomerular podocytes in DN, both in vivo and in vitro. Using high glucose-treated cultured MPC5 cells and a streptozotocin (STZ)-induced diabetic mouse model, we evaluated the effects of carnosine on alleviating podocyte injury in DN. We found that carnosine significantly reversed albuminuria and histopathological lesions and alleviated renal inflammatory and pyroptosis responses in STZ-induced diabetic mice for 12 weeks. The results also showed that carnosine strongly inhibited podocyte inflammation and podocyte pyroptosis in vitro. Cellular Thermal Shift Assay (CETSA) and molecular docking results revealed that mechnaistically caspase-1 was the target of carnosine. We then found that silencing caspase-1 eliminated the protective effect of carnosine. Interestingly, we also found that caspase-1 and gasdermin D expression were increased in renal biopsy tissue of patients with DN. Our study is the first to demonstrate the novel role of carnosine in alleviating podocyte injury by inhibiting pyroptosis via the targeting of caspase-1. Carnosine may have potential as a therapeutic agent in treating DN by targeting caspase-1.
Collapse
|
99
|
Yang Y, Lei W, Jiang S, Ding B, Wang C, Chen Y, Shi W, Wu Z, Tian Y. CircRNAs: Decrypting the novel targets of fibrosis and aging. Ageing Res Rev 2021; 70:101390. [PMID: 34118443 DOI: 10.1016/j.arr.2021.101390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs. It is usually initiated by organic injury and leads to the gradual decline of organ function or even loss. Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts without a 5' cap or 3' tail which draw increasing attention. In particular, circRNAs have been identified to be involved in the multifaceted processes of fibrosis in various organs, including the heart, liver, lung, and kidney. As more and more circRNAs are functionally characterized, they have become novel therapies for fibrosis. In this review, we systematically summarized current studies regarding the roles of circRNAs in fibrosis and shed light on the basis of circRNAs as a potential treatment for fibrosis.
Collapse
|
100
|
Li L, Qian K, Sun Y, Zhao Y, Zhou Y, Xue Y, Hong X. Omarigliptin ameliorated high glucose-induced nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation through activating adenosine monophosphate-activated protein kinase α (AMPKα) in renal glomerular endothelial cells. Bioengineered 2021; 12:4805-4815. [PMID: 34338149 PMCID: PMC8806494 DOI: 10.1080/21655979.2021.1957748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes that induces the development of end-stage renal disease (ESRD). The pathogenesis of DN is reported to be closely related to the activation of the NOD-like receptor 3 (NLRP3) inflammasome in renal glomerular endothelial cells. Omarigliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor developed for the management of type II diabetes, it has been recently reported to possess a significant anti-inflammatory property. This study aims to explore the potential therapeutic effects of Omarigliptin on DN. We established an in vitro injury model in human renal glomerular endothelial cells (HrGECs) using high glucose (HG). The severe cytotoxicity and increased oxidative stress in HrGECs induced by HG were pronouncedly reversed by the introduction of Omarigliptin. Furthermore, the activated NLRP3 inflammasome and the excessive production of interleukin 18 (IL-18) and interleukin 1β (IL-1β) in HrGECs induced by incubation with HG were pronouncedly reversed by the introduction of Omarigliptin, accompanied by the activation of the AMPK/mTOR signaling pathway. After the co-administration of the adenosine monophosphate-activated protein kinase α (AMPKα) inhibitor, compound C, the protective effects of Omarigliptin against HG-induced NLRP3 inflammasome activation and production of pro-inflammatory factors were dramatically abolished. Taken together, our data revealed that Omarigliptin ameliorated HG-induced inflammation in renal glomerular endothelial cells through suppressing NLRP3 inflammasome activation mediated by AMPKα.
Collapse
Affiliation(s)
- Ling Li
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Kelei Qian
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuli Sun
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yong Zhao
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yun Zhou
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Ying Xue
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Xinyu Hong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|