51
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
52
|
Wang S, Cai L, Zhang F, Shang X, Xiao R, Zhou H. Inhibition of EZH2 Attenuates Sorafenib Resistance by Targeting NOTCH1 Activation-Dependent Liver Cancer Stem Cells via NOTCH1-Related MicroRNAs in Hepatocellular Carcinoma. Transl Oncol 2020; 13:100741. [PMID: 32092673 PMCID: PMC7036423 DOI: 10.1016/j.tranon.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
Acquired resistance and intrinsic to sorafenib therapy represents a major hurdle in improving the management of advanced hepatocellular carcinoma (HCC), which has been recently shown to be associated with the emergence of liver cancer stem cells (CSCs). However, it remains largely unknown whether and how histone posttranslational modifications, especially H3K27me3, are causally linked to the maintenance of self-renewal ability in sorafenib-resistant HCC. Here, we found that NOTCH1 signaling was activated in sorafenib-resistant HCC cells and NOTCH1 activation conferred hepatoma cells sorafenib resistance through enhanced self-renewal and tumorigenecity. Besides, the overexpression of EZH2 was required for the emergence of cancer stem cells following prolonged sorafenib treatment. As such, modulating EZH2 expression or activity suppressed activation of NOTCH1 pathway by elevating the expression of NOTCH1-related microRNAs, hsa-miR-21-5p and has-miR-26a-1-5p, via H3K27me3, and consequently weakened self-renewal ability and tumorigenecity and restored the anti-tumor effects of sorafenib. Overall, our results highlight the role of EZH2/NICD1 axis, and also suggest that EZH2 and NOTCH1 pathway are rational targets for therapeutic intervention in sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Shanshan Wang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China.
| | - Long Cai
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Fengwei Zhang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Xuechai Shang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Rong Xiao
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Hongjuan Zhou
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
53
|
Kang Q, Gong J, Wang M, Wang Q, Chen F, Cheng KW. 6-C-(E-Phenylethenyl)Naringenin Attenuates the Stemness of Hepatocellular Carcinoma Cells by Suppressing Wnt/β-Catenin Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13939-13947. [PMID: 31769973 DOI: 10.1021/acs.jafc.9b05733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of a novel semi-natural derivative of naringenin, 6-C-(E-phenylethenyl)naringenin (6-CEPN) on hepatocellular carcinoma (HCC) stemness was evaluated both in vitro and in vivo. 6-CEPN reduced HCC cell viability, inhibited sphere formation, cell migration and invasion, and blocked epithelial-mesenchymal transition. It was equally effective against NANOG+ cells sorted from cultured HCC cells that was accompanied by downregulation of stemness-associated transcription factors and attenuated HIF-1 activity. Furthermore, 6-CEPN significantly enhanced the sensitivity of HCC cells to therapeutic drugs, and inhibited HCC tumor growth and lung metastasis of HCC cells. 6-CEPN suppressed Wnt/β-catenin signaling by inducing β-catenin degradation and inhibiting its nuclear translocation. Upregulation of GSK3β appeared to be crucial for 6-CEPN's inhibitory activity in the signaling pathway. These findings indicate that 6-CEPN has a strong effect against liver cancer, which is mediated, at least in part, by suppressing the stemness of HCC cells through an action mechanism involving Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study , Shenzhen University , Nanshan District , Shenzhen 518060 , China
| | - Jun Gong
- Faculty of Health Sciences , University of Macau , Macau 999078 , China
| | - Mingfu Wang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing , Ministry of Agriculture , Beijing 100193 , China
| | - Feng Chen
- Institute for Advanced Study , Shenzhen University , Nanshan District , Shenzhen 518060 , China
- Institute for Food and Bioresource Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Ka-Wing Cheng
- Institute for Advanced Study , Shenzhen University , Nanshan District , Shenzhen 518060 , China
| |
Collapse
|
54
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
55
|
He J, Chen J, Wei X, Leng H, Mu H, Cai P, Luo L. Mammalian Target of Rapamycin Complex 1 Signaling Is Required for the Dedifferentiation From Biliary Cell to Bipotential Progenitor Cell in Zebrafish Liver Regeneration. Hepatology 2019; 70:2092-2106. [PMID: 31136010 DOI: 10.1002/hep.30790] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/18/2019] [Indexed: 12/11/2022]
Abstract
The liver has a high regenerative capacity. Upon two-thirds partial hepatectomy, the hepatocytes proliferate and contribute to liver regeneration. After severe liver injury, when the proliferation of residual hepatocytes is blocked, the biliary epithelial cells (BECs) lose their morphology and express hepatoblast and endoderm markers, dedifferentiate into bipotential progenitor cells (BP-PCs), then proliferate and redifferentiate into mature hepatocytes. Little is known about the mechanisms involved in the formation of BP-PCs after extreme liver injury. Using a zebrafish liver extreme injury model, we found that mammalian target of rapamycin complex 1 (mTORC1) signaling regulated dedifferentiation of BECs and proliferation of BP-PCs. mTORC1 signaling was up-regulated in BECs during extreme hepatocyte ablation and continuously expressed in later liver regeneration. Inhibition of mTORC1 by early chemical treatment before hepatocyte ablation blocked the dedifferentiation from BECs into BP-PCs. Late mTORC1 inhibition after liver injury reduced the proliferation of BP-PC-derived hepatocytes and BECs but did not affect BP-PC redifferentiation. mTOR and raptor mutants exhibited defects in BEC transdifferentiation including dedifferentiation, BP-PC proliferation, and redifferentiation, similar to the chemical inhibition. Conclusion: mTORC1 signaling governs BEC-driven liver regeneration by regulating the dedifferentiation of BECs and the proliferation of BP-PC-derived hepatocytes and BECs.
Collapse
Affiliation(s)
- Jianbo He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Jingying Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangyong Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Leng
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongliang Mu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Pengcheng Cai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
56
|
Roy S, Roy S, Kar M, Chakraborty A, Kumar A, Delogu F, Asthana S, Hande MP, Banerjee B. Combined treatment with cisplatin and the tankyrase inhibitor XAV-939 increases cytotoxicity, abrogates cancer-stem-like cell phenotype and increases chemosensitivity of head-and-neck squamous-cell carcinoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:503084. [DOI: 10.1016/j.mrgentox.2019.503084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
|
57
|
The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11101406. [PMID: 31547062 PMCID: PMC6826653 DOI: 10.3390/cancers11101406] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common form of primary liver malignancy found in pediatric populations. HB is considered to be clonal and arises from hepatoblasts, or embryonic liver progenitor cells. These less differentiated tumor-initiating progenitor cells, or cancer stem cells (CSCs), may contribute to tumor recurrence and resistance to therapies, and have high metastatic abilities. Phenotypic heterogeneity, undesired genetic and epigenetic alterations, and dysregulated signaling pathways provide CSCs with a survival advantage over current therapies. The molecular and cellular basis of HB and the mechanism of CSC induction are not fully understood. The Wnt/beta-catenin pathway is one of the major developmental pathways and is believed to play an important role in the pathogenesis of HB and CSC formation. This review summarizes the cellular and molecular characteristics of HB with a specific emphasis on CSCs and Wnt/beta-catenin signaling.
Collapse
|
58
|
KLF4 expression in the surgical cut margin is associated with disease relapse of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:154-165. [DOI: 10.1016/j.oooo.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
59
|
Xu L, Lin W, Wen L, Li G. Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Res Ther 2019; 10:219. [PMID: 31358061 PMCID: PMC6664754 DOI: 10.1186/s13287-019-1288-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer remains one of the leading lethal diseases worldwide. Identifying biomarkers of cancers might provide insights into the strategies for the development of novel targeted anti-cancer therapies. Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) has been recently discovered as a candidate marker of cancer stem cell populations. Aberrant increased expression of Lgr5 may represent one of the most common molecular alterations in some human cancers, leading to long-term potentiation of canonical Wnt/β-catenin signaling. On the other hand, however, Lgr5-mediated suppression in canonical Wnt/β-catenin signaling has also been reported in certain cancers, such as B cell malignancies. Until now, therapeutic approaches targeting Lgr5-associated signaling axis are not yet clinically available. Increasing evidence have indicated that endogenous Lgr5+ cell population is implicated in tumor initiation, progression, and metastasis. This review is to summarize our current knowledge about the importance of Lgr5 in cancer biology and the underlying molecular mechanisms of Lgr5-mediated tumor-promoting/suppressive activities, as well as potentially useful preventive strategies in treating tumor. Therefore, targeted therapeutic modulation of Lgr5+ cancer cell population by targeting Wnt/β-catenin signaling through targeted drug delivery system or targeted genome editing might be promising for potential novel anti-cancer treatments. Simultaneously, combination of therapeutics targeting both Lgr5+ and Lgr5- cancer cells may deserve further consideration considering the plasticity of cancer cells. Also, a more specific targeting of cancer cells using double biomarkers may be much safer and more effective for anti-cancer therapy.
Collapse
Affiliation(s)
- Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Weiping Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Longping Wen
- Nanobio Laboratory, Institute of Life Sciences, South China University of Technology, Guangzhou, Guangdong People’s Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
60
|
Sugiura K, Mishima T, Takano S, Yoshitomi H, Furukawa K, Takayashiki T, Kuboki S, Takada M, Miyazaki M, Ohtsuka M. The Expression of Yes-Associated Protein (YAP) Maintains Putative Cancer Stemness and Is Associated with Poor Prognosis in Intrahepatic Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1863-1877. [PMID: 31220448 DOI: 10.1016/j.ajpath.2019.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is resistant to most chemotherapeutic agents. Yes-associated protein (YAP) is related to tumor progression; however, its role in ICC remains unknown. We investigated the mechanism underlying YAP-mediated cancer progression by focusing on the property of cancer stem cells (CSCs) in ICC. Immunohistochemistry results revealed the positive YAP expression in 37 of 52 resected ICC cases. Those with positive YAP expression showed poor prognosis in Kaplan-Meier analysis (P = 0.023). YAP expression was associated with vimentin and the putative CSC marker, hepatic oval cell marker 6 (OV-6). The knockdown of YAP expression using specific siRNAs in ICC cells decreased octamer-binding transcription factor 4 (OCT4) expression in Western blot analyses and OV-6 and CD133 expression in flow cytometry analysis. Verteporfin, a YAP inhibitor, decreased N-cadherin and OCT4 expression in Western blot analyses. In vitro sphere formation and anoikis resistance assays revealed the impairment in CSC property and anoikis resistance in response to the decrease in YAP expression. Verteporfin treatment activated the protein kinase B/mechanistic target of rapamycin signaling pathway and dramatically impaired IL-6-stimulated STAT3 phosphorylation in ICC cells. The combination of verteporfin and rapamycin, an inhibitor of mechanistic target of rapamycin phosphorylation, inhibited cell proliferation and tumor growth. In conclusion, verteporfin regulates multiple signaling pathways and, in combination with rapamycin, might be a promising therapeutic strategy for ICC treatment.
Collapse
Affiliation(s)
- Kensuke Sugiura
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takashi Mishima
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan.
| | - Hideyuki Yoshitomi
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Mamoru Takada
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
61
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity, that fuel tumor growth and contribute to the heterogeneous nature of tumors. First identified in hematological malignancies, CSC populations have to date been proposed in solid tumors in various organs. In vitro and in vivo assays, mouse genetic models, and more recently single-cell sequencing technologies and other '-omics' methodologies have not only facilitated the identification of novel CSC populations but also revealed and clarified novel properties of CSCs. Increasingly, both cell-autonomous and CSC niche factors are recognized as important contributors of CSC properties. The deepened understanding of CSC properties and characteristics would enable and facilitate the rational design of CSC-specific therapeutics that would, ideally, have high selectivity for cancer cells, eliminate tumor bulk, and prevent tumor recurrence. Addressing these issues would form some of the key challenges of the CSC research field in the coming years.
Collapse
|
62
|
Wong ALA, Bellot GL, Hirpara JL, Pervaiz S. Understanding the cancer stem cell phenotype: A step forward in the therapeutic management of cancer. Biochem Pharmacol 2019; 162:79-88. [PMID: 30689981 DOI: 10.1016/j.bcp.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
The experimental validation of the existence of cancer stem cells (CSC) has had a significant impact on our understanding of the cellular mechanisms and signaling networks involved in the process of carcinogenesis and its progression. These findings provide insights into the critical role that tumor microenvironment and metabolism play in the acquisition of the drug resistance phenotype as well as provide potential targets for therapeutic exploitation. Here we briefly review the literature on the involvement of key signaling pathways such as Wnt/β-catenin, Notch, Hedgehog and STAT3 in the appearance of cancer cells with stem cells-like characteristics. In addition, we also highlight some of the recent therapeutic strategies used to target these pathways as well as approaches aiming to specifically target CSCs through their distinctive metabolic features.
Collapse
Affiliation(s)
- Andrea Li Ann Wong
- Cancer Science Institute, National University of Singapore, Singapore; Department of Hematology-Oncology, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gregory Lucien Bellot
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jayshree L Hirpara
- Cancer Science Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
63
|
Mantovani G, Giardino E, Treppiedi D, Catalano R, Mangili F, Spada A, Arosio M, Peverelli E. Stem Cells in Pituitary Tumors: Experimental Evidence Supporting Their Existence and Their Role in Tumor Clinical Behavior. Front Endocrinol (Lausanne) 2019; 10:745. [PMID: 31708878 PMCID: PMC6823178 DOI: 10.3389/fendo.2019.00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
Although generally benign, pituitary tumors frequently show local invasiveness and resistance to pharmacological therapy. After the demonstration of the existence of pituitary gland stem cells, over the past decade, the presence of a stem cell subpopulation in pituitary tumors has been investigated, analogous to the cancer stem cell model developed for malignant tumors. This review recapitulates the experimental evidence supporting the existence of a population of stem-like cells in pituitary tumors, focusing on their potential role in tumor initiation, progression, recurrence and resistance to pharmacological therapy.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Giovanna Mantovani
| | - Elena Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
64
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918816287. [PMID: 30622654 PMCID: PMC6304707 DOI: 10.1177/1758835918816287] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The poor clinical outcome of hepatocellular carcinoma (HCC) patients is ascribed to the resistance of HCC cells to traditional treatments and tumor recurrence after curative therapies. Cancer stem cells (CSCs) have been identified as a small subset of cancer cells which have high capacity for self-renewal, differentiation and tumorigenesis. Recent advances in the field of liver CSCs (LCSCs) have enabled the identification of CSC surface markers and the isolation of CSC subpopulations from HCC cells. Given their central role in cancer initiation, metastasis, recurrence and therapeutic resistance, LCSCs constitute a therapeutic opportunity to achieve cure and prevent relapse of HCC. Thus, it is necessary to develop therapeutic strategies to selectively and efficiently target LCSCs. Small molecular inhibitors targeting the core stemness signaling pathways have been actively pursued and evaluated in preclinical and clinical studies. Other alternative therapeutic strategies include targeting LCSC surface markers, interrupting the CSC microenvironment, and altering the epigenetic state. In this review, we summarize the properties of CSCs in HCC and discuss novel therapeutic strategies that can be used to target LCSCs.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck
Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of
Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,
China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-guang Hu
- Department of Gastrointestinal Surgery, The
Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong,
China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas
Surgery, The Second Clinical Medical College of Jinan University (Shenzhen
People’s Hospital), Shenzhen, Guangdong Province, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan
District People’s Hospital of Shenzhen, Shenzhen, Guangdong Province,
China
| | - Zhongqin Gong
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
| | - George G. Chen
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
65
|
Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine 2018; 39:239-254. [PMID: 30555042 PMCID: PMC6355660 DOI: 10.1016/j.ebiom.2018.11.063] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignant disease with poor prognosis. Recent advances suggest the existence of cancer stem cells (CSCs) within liver cancer, which are considered to be responsible for tumor relapse, metastasis, and chemoresistance. However, novel therapeutic approaches for eradicating CSCs are yet to be established. Here, we aimed to identify the role of glutaminase 1 (GLS1) in stemness, and the feasibility that GLS1 serves as a therapeutic target for elimination CSCs as well as the possible mechanism. Methods Publicly-available data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) was mined to unearth the association between GLS1 and stemness phenotype. Using big data, human tissues and multiple cell lines, we gained a general picture of GLS1 expression in HCC progression. We generated stable cell lines by lentiviral-mediated overexpression or CRISPR/Cas9-based knockout. Sphere formation assays and colony formation assays were employed to analyze the relationship between GLS1 and stemness. A series of bioinformatics analyses and molecular experiments including qRT-PCR, immunoblotting, flow cytometry, and immunofluorescence were employed to investigate the role of GLS1 in regulating stemness in vitro and in vivo. Findings We observed GLS1 (both KGA and GAC isoform) is highly expressed in HCC, and that high expression of GAC predicts a poor prognosis. GLS1 is exclusively expressed in the mitochondrial matrix. Upregulation of GLS1 is positively associated with advanced clinicopathological features and stemness phenotype. Targeting GLS1 reduced the expression of stemness-related genes and suppressed CSC properties in vitro. We further found GLS1 regulates stemness properties via ROS/Wnt/β-catenin signaling and that GLS1 knockout inhibits tumorigenicity in vivo. Interpretation Targeting GLS1 attenuates stemness properties in HCC by increasing ROS accumulation and suppressing Wnt/β-catenin pathway, which implied that GLS1 could serve as a therapeutic target for elimination of CSCs.
Collapse
|
66
|
Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol 2018; 103:115-124. [DOI: 10.1016/j.biocel.2018.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
|
67
|
Yin Z, Xu W, Xu H, Zheng J, Gu Y. Overexpression of HDAC6 suppresses tumor cell proliferation and metastasis by inhibition of the canonical Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncol Lett 2018; 16:7082-7090. [PMID: 30546442 PMCID: PMC6256338 DOI: 10.3892/ol.2018.9504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6), a specific histone deacetylase family member, serves an essential role in the regulation of gene expression, cell cycle progression, autophagy and apoptosis. There are numerous reports on the function of HDAC6 in cancer. However, the specific function of HDAC6 in hepatocellular carcinoma (HCC) has yet to be revealed. In the present study, the expression of HDAC6 was revealed to be downregulated in human HCC cell lines and tissues. The aberrant activation of the canonical Wnt/β-catenin signaling pathway was revealed to be involved in hepatocarcinogenesis and metastasis. It was additionally revealed that the overexpression of HDAC6 decreased the expression of β-catenin protein levels which attenuated the canonical Wnt/β-catenin signaling pathway and suppressed the proliferation of HCC cells. In addition, the upregulation of HDAC6 inhibited the epithelial-to-mesenchymal transition in HCC by increasing the E-cadherin protein levels and decreasing the N-cadherin, vimentin and matrix metalloproteinase-9 protein levels. Furthermore, HDAC6 also exerted an effect on the cell cycle arrest and the induction of apoptosis. These results demonstrated that HDAC6 functioned as a tumor suppressor in HCC by attenuating the activity of the canonical Wnt/β-catenin signaling pathway. Therefore, HDAC6 may serve as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zhusheng Yin
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Hao Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuming Gu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
68
|
Abstract
Cancer is one of the most serious diseases all over the world, and the cancer stem cell (CSC) model accounts for tumor initiation, metastasis, drug resistance, and relapse. The CSCs within tumor bulk have the capacity to self-renew, differentiate, and give rise to a new tumor. The self-renewal of CSCs is precisely regulated by various modulators, including Wnt/β-catenin signaling, Notch signaling, Hedgehog signaling, transcription factors, chromatin remodeling complexes, and non-coding RNAs. CSCs reside in their niches that are also involved in the self-renewal maintenance of CSCs and protection of CSCs from chemotherapy, radiotherapy, and even endogenous damages. Moreover, CSCs can also remodel their niches to initiate tumorigenesis. The mutual interactions between CSCs and their niches play a critical role in the regulation of CSC self-renewal and tumorigenesis as well. Many surface markers of CSCs have been identified, and these markers become first choices for CSC targeting. Due to heterogeneity and plasticity, targeting CSCs is still a big challenge for tumor elimination. In this review, we summarize recent progresses on the biological features of CSCs and targeting strategies against CSCs.
Collapse
Affiliation(s)
- Pingping Zhu
- 1CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zusen Fan
- 1CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
69
|
Toshiyama R, Konno M, Eguchi H, Takemoto H, Noda T, Asai A, Koseki J, Haraguchi N, Ueda Y, Matsushita K, Asukai K, Ohashi T, Iwagami Y, Yamada D, Sakai D, Asaoka T, Kudo T, Kawamoto K, Gotoh K, Kobayashi S, Satoh T, Doki Y, Nishiyama N, Mori M, Ishii H. Poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate targets aminopeptidase N and exerts an antitumor effect in hepatocellular carcinoma stem cells. Oncogene 2018; 38:244-260. [PMID: 30089817 DOI: 10.1038/s41388-018-0406-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/13/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022]
Abstract
Previous studies highlighted that aminopeptidase N (APN)/CD13 acts as a scavenger in the survival of hepatocellular carcinoma (HCC) stem cells by reducing reactive oxygen species (ROS) levels. Hence, it has been proposed that APN/CD13 inhibition can increase cellular ROS levels and sensitize cells to chemotherapeutic agents. Although ubenimex, also known as bestatin, competitively inhibits proteases such as APN/CD13 on the cellular membrane and it is clinically used for patients with acute myeloid leukemia and lymphedema, research has demonstrated that higher concentrations of the agent induce the death of APN/CD13+ HCC stem cells. In this study, we developed a poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate (PEG-b-PLys(Ube)) to increase the efficacy of reagents in APN/CD13+ cancer stem cells. Exposure to PEG-b-PLys(Ube) increased the intracellular ROS concentration by inhibiting APN enzyme activity, permitting the induction of apoptosis and attenuation of HCC cell proliferation. In addition, PEG-b-PLys(Ube) exhibited a relatively stronger antitumor effect in mice than PEG-b-PLys alone or phosphate-buffered saline. Moreover, an isobologram analysis revealed that combinations of fluorouracil, cisplatin, or doxorubicin with PEG-b-PLys(Ube) exhibited synergistic effects. This study demonstrated that PEG-b-PLys(Ube) does not impair the properties of ubenimex and exerts a potent antitumor effect.
Collapse
Affiliation(s)
- Reishi Toshiyama
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Noda
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ayumu Asai
- Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jun Koseki
- Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naotsugu Haraguchi
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Ueda
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Katsunori Matsushita
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kei Asukai
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomofumi Ohashi
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Sakai
- Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Kudo
- Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koichi Kawamoto
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Taroh Satoh
- Departments of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masaki Mori
- Departments of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hideshi Ishii
- Departments of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
70
|
Chen Z, Yao L, Liu Y, Zhu P. LncTIC1 interacts with β-catenin to drive liver TIC self-renewal and liver tumorigenesis. Cancer Lett 2018; 430:88-96. [DOI: 10.1016/j.canlet.2018.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 01/15/2023]
|
71
|
Zhou L, Zhu Y. The EpCAM overexpression is associated with clinicopathological significance and prognosis in hepatocellular carcinoma patients: A systematic review and meta-analysis. Int J Surg 2018; 56:274-280. [DOI: 10.1016/j.ijsu.2018.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023]
|
72
|
Ng L, Chow AKM, Man JHW, Yau TCC, Wan TMH, Iyer DN, Kwan VHT, Poon RTP, Pang RWC, Law WL. Suppression of Slit3 induces tumor proliferation and chemoresistance in hepatocellular carcinoma through activation of GSK3β/β-catenin pathway. BMC Cancer 2018; 18:621. [PMID: 29859044 PMCID: PMC5984734 DOI: 10.1186/s12885-018-4326-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background It is essential to understand the mechanisms responsible for hepatocellular carcinoma (HCC) progression and chemoresistance in order to identify prognostic biomarkers as well as potential therapeutic avenues. Recent findings have shown that SLIT3 appears to function as a novel tumor suppressor gene in various types of cancers, yet its clinical correlation and role in HCC has not been understood clearly. Methods We determined the transcript levels of Slit3 in tumor and adjacent normal tissues within two cohorts (N = 40 and 25) of HCC patients, and correlated the gene expression with the clinicopathological data. Subsequently, the functional effects and underlying molecular mechanisms of Slit3 overexpression and/or repression were studied using cell-line and mouse models. Results Our results demonstrated a repression in Slit3 expression in nearly 50% of the HCC patients, while the overall expression of Slit3 inversely correlated with the size of the tumor in both cohorts of patients. Stable down-regulation of Slit3 in HCC cell-lines induced cell proliferation in vitro and tumor growth in vivo, while stable Slit3 overexpression repressed these effects. Molecular investigations showed that the stable Slit3 repression-induced cell proliferation was associated with a higher expression of β-catenin and a repressed GSK3β activity. Moreover, Slit3-repression induced chemoresistance to sorafenib, oxaliplatin and 5-FU through impairment of β-catenin degradation and induction of cyclin D3 and survivin levels. The effects induced by stable Slit3-repression were diminished by transient repression of β-catenin by siRNA approach. Conclusion This study suggests that Slit3 acts as a tumor suppressor in HCC by repressing the tumor growth and thus tumor progression. Low Slit3 level indicates a poor response of HCC cells to chemotherapy. Restoration or overexpression of Slit3 is a potential therapeutic approach to repress the tumor growth and enhance the efficacy of chemotherapeutic agents. Electronic supplementary material The online version of this article (10.1186/s12885-018-4326-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ariel K M Chow
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Johnny H W Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Thomas C C Yau
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Timothy M H Wan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Deepak N Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Virginia H T Kwan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ronnie T P Poon
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Roberta W C Pang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Wai-Lun Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
73
|
Zhao J, Fu Y, Wu J, Li J, Huang G, Qin L. The Diverse Mechanisms of miRNAs and lncRNAs in the Maintenance of Liver Cancer Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8686027. [PMID: 29888282 PMCID: PMC5977062 DOI: 10.1155/2018/8686027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. The high frequency of recurrence and metastasis is the main reason for poor prognosis. Liver cancer stem cells (CSCs) have unlimited self-renewal, differentiation, and tumor-regenerating capacities. The maintenance of CSCs may account for the refractory features of liver cancer. Despite extensive investigations, the underlying regulatory mechanisms of liver CSCs remain elusive. miRNA and lncRNA, two major classes of the ncRNA family, can exert important roles in various biological processes, and their diverse regulatory mechanisms in CSC maintenance have acquired increasing attention. However, to the best of our knowledge, there is a lack of reviews summarizing these findings. Therefore, we systematically recapitulated the latest studies on miRNAs and lncRNAs in sustaining liver CSCs. Moreover, we highlighted the potential clinical application of these dysregulated ncRNAs as novel diagnostic and prognostic biomarkers and therapeutic targets. This review not only sheds new light to fully understand liver CSCs but also provides valuable clues on targeting ncRNAs to block or eradicate CSCs in cancer treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
74
|
Chen Y, Meng L, Shang H, Dou Q, Lu Z, Liu L, Wang Z, He X, Song Y. β2 spectrin-mediated differentiation repressed the properties of liver cancer stem cells through β-catenin. Cell Death Dis 2018; 9:424. [PMID: 29555987 PMCID: PMC5859291 DOI: 10.1038/s41419-018-0456-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/01/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
βII-Spectrin (β2SP), a Smad3/4 adaptor protein during transforming growth factor (TGF) β/Smad signal pathway, plays a critical role in suppressing hepatocarcinogenesis. Dedifferentiation is a distinctive feature of cancer progression. Therefore, we investigated whether the disruption of β2SP contributed to tumorigenesis of hepatocellular carcinoma (HCC) through the dedifferentiation. Down-regulation of β2SP in hepatocytes was observed in cirrhotic liver and HCC. The level of β2SP expression was closely associated with the differentiation status of hepatocytes in rat model of hepatocarcinogenesis and clinical specimens. Transgenic expression of β2SP in HCC cells promoted the differentiation of HCC cells and suppressed the growth of HCC cells in vitro. Efficient transduction of β2SP into liver CSCs resulted in a reduction in colony formation ability, spheroid formation capacity, invasive activity, chemo-resistance properties, tumorigenicity in vivo. In addition, β2 spectrin exerted its effect through β catenin in liver CSCs. In conclusion, β2 spectrin repressed the properties of liver CSCs through inducing differentiation; thus, strategies to restore its levels and activities would be a novel strategy for HCC prevention and differentiation therapy.
Collapse
Affiliation(s)
- Yuhua Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingling Meng
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haitao Shang
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Dou
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Lu
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liping Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingxing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
75
|
Noncoding RNAs in liver cancer stem cells: The big impact of little things. Cancer Lett 2018; 418:51-63. [DOI: 10.1016/j.canlet.2018.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
|
76
|
Li YH, Yang SL, Zhang GF, Wu JC, Gong LL, Lin RX. Mefloquine targets β-catenin pathway and thus can play a role in the treatment of liver cancer. Microb Pathog 2018; 118:357-360. [PMID: 29578061 DOI: 10.1016/j.micpath.2018.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
The current study was designed and performed to investigate the effect of mefloquine on the proliferation and tumor formation potential of liver cancer stem cells. CD133 + HepG2 cells were identified using MACS and showed markedly higher tumor formation potential compared to the parental cells. The secondary tumors formed by CD133 + cells were markedly large in size and more in number compared to the parental cells. Mefloquine treatment of CD133 + HepG2 cells inhibited the proliferation selectively in concentration based manner. The rate of proliferation was inhibited to 82 and 12% in parental and CD133 + sphere forming cells, respectively on treatment with 10 μM concentration of mefloquine. The number of secondary tumors formed by primary tumors was decreased significantly on treatment with 10 μM mefloquine concentration. Treatment of the liver cancer stem cells with mefloquine markedly decreased the potential to undergo self-renewal at 10 μM concentration after 48 h. The results from western blot analysis showed significantly higher expression of cancer stem cell molecules β-catenin and cyclin D1 in LCSCs. Treatment of the LCSCs with various concentrations of mefloquine reduced the expression levels of β-catenin and cyclin D1. Administration of the CD133 + cell tumor xenografts in the mice led to the formation of large sized tumors in the control group. However, the tumor growth was inhibited significantly in the mice on treatment with 10 mg/kg doses of mefloquine after day 21. The tumor weight was significantly lower in the animals of mefloquine treatment group compared to the control group. Thus, mefloquine treatment inhibits self-renewal and proliferation potential of cells through targeting β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Hui Li
- Department of General Surgery, China-Japan Union Hospital Affiliated to Jilin University, Changchun 130061, China
| | - Shu-Li Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Guo-Feng Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jia-Cheng Wu
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lu-Lu Gong
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rui-Xin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
77
|
Chen Z, Gao Y, Yao L, Liu Y, Huang L, Yan Z, Zhao W, Zhu P, Weng H. LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene 2018. [PMID: 29535420 PMCID: PMC5992127 DOI: 10.1038/s41388-018-0203-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liver tumor-initiating cells (TICs), the drivers for liver tumorigenesis, accounts for liver tumor initiation, metastasis, drug resistance and relapse. Wnt/β-catenin signaling pathway emerges as a critical modulator in liver TIC self-renewal. However, the molecular mechanism of Wnt/β-catenin initiation in liver tumorigenesis and liver TICs is still elusive. Here, we examined the expression pattern of 10 Wnt receptors (FZD1–FZD10), and found only FZD6 is overexpressed along with liver tumorigenesis. What’s more, a divergent lncRNA of FZD6, termed lncFZD6, is also highly expressed in liver cancer and liver TICs. LncFZD6 drives liver TIC self-renewal and tumor initiation capacity through FZD6-dependent manner. LncFZD6 interacts with BRG1-embedded SWI/SNF complex and recruits it to FZD6 promoter, and thus drives the transcriptional initiation of FZD6 by chromatin remodeling. WNT5A, a ligand of FZD6, is highly expressed in liver non-TICs and drives the self-renewal of liver TICs through lncFZD6-BRG1-FZD6-dependent manner. Through FZD6 transcriptional regulation in cis, lncFZD6 activates Wnt/β-catenin signaling in liver TICs. LncFZD6-BRG1-Wnt5A/β-catenin pathway can serve as a target for liver TIC elimination. Altogether, lncFZD6 promotes Wnt/β-catenin activation and liver TIC self-renewal through BRG1-dependent FZD6 expression.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, 450001, Henan Province, China
| | - Lintong Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yating Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lan Huang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongyi Yan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
78
|
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol 2018; 233:5598-5612. [DOI: 10.1002/jcp.26265] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Javad Aghazadeh
- Department of NeurosurgeryUrmia University of Medical SciencesUrmiaIran
| | - Rana Jahanban‐Esfahlani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research GroupFaculty of MedicineTabriz University ofMedical SciencesTabrizIran
| |
Collapse
|
79
|
Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs 2018; 29:208-215. [DOI: 10.1097/cad.0000000000000584] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
80
|
Fu X, Lin J, Qin F, Yang Z, Ding Y, Zhang Y, Han L, Zhu X, Zhang Q. LncAPC drives Wnt/β-catenin activation and liver TIC self-renewal through EZH2 mediated APC transcriptional inhibition. Mol Carcinog 2018; 57:408-418. [PMID: 29144570 DOI: 10.1002/mc.22764] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Liver tumor initiating cells (TICs), a small subset cells in tumor bulk, are responsible for liver tumor initiation, metastasis, and relapse. However, the regulatory mechanism of liver TICs remains largely unknown. Here we found a long noncoding RNA lncAPC, locating near from APC locus, was highly expressed in liver cancer and liver TICs. LncAPC was required for liver TIC self-renewal. Silencing and overexpressing lncAPC showed impaired and enhanced sphere formation capacity of liver TICs, respectively. By recruiting EZH2 to APC promoter, LncAPC inhibits APC transcription and thus drives the activation of Wnt/β-catenin signaling. Attenuate binding between EZH2 and APC promoter was observed upon lncAPC knockdown. What is more, lncAPC-EZH2-APC axis can be targeted to eliminate liver TICs. Altogether, LncAPC promotes liver TIC self-renewal through EZH2-dependent APC transcriptional inhibition.
Collapse
Affiliation(s)
- Xiaomin Fu
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Henan, China
- Department of Cancer Biology Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou University, Henan, China
| | - Jizhen Lin
- Department of Otolaryngology, Medical School, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Virginia
| | - Zihe Yang
- Department of Nuclear Medicine, The Affiliated Beijing Anzhen Hospital of Capital Medical University, Capital Medical University, Beijing, China
| | - Yuechao Ding
- Department of Hepatopancreatobiliary Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou University, Henan, China
| | - Yong Zhang
- Department of Cancer Biology Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou University, Henan, China
| | - Lu Han
- Department of Cancer Biology Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou University, Henan, China
| | - Xiaoyan Zhu
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Henan, China
| | - Qinxian Zhang
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Henan, China
| |
Collapse
|
81
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018:5416923. [PMID: 29681949 PMCID: PMC5850899 DOI: 10.1155/2018/5416923] [Citation(s) in RCA: 599] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Sang-Hyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
82
|
Ni CX, Qi Y, Zhang J, Liu Y, Xu WH, Xu J, Hu HG, Wu QY, Wang Y, Zhang JP. WM130 preferentially inhibits hepatic cancer stem-like cells by suppressing AKT/GSK3β/β-catenin signaling pathway. Oncotarget 2018; 7:79544-79556. [PMID: 27783993 PMCID: PMC5346734 DOI: 10.18632/oncotarget.12822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023] Open
Abstract
The eradication of cancer stem cells (CSCs) is significant for cancer therapy and prevention. In this study, we evaluated WM130, a novel derivative of matrine, for its effect on CSCs using human hepatocellular carcinoma (HCC) cell lines, their sphere cells, and sorted EpCAM+ cells. We revealed that WM130 could not only inhibit proliferation and colony formation of HCC cells, but also suppress the expression of some stemness-related genes and up-regulate some mature hepatocyte marker genes, indicating a promotion of differentiation from CSCs to hepatocytes. WM130 also suppressed the proliferation of doxorubicin-resistant hepatoma cells, and markedly reduced the cells with CSC biomarker EpCAM. Moreover, WM130 suppressed HCC spheres, not only primary spheres but also subsequent spheres, indicating an inhibitory effect on self-renewal capability of CSCs. Interestingly, WM130 exhibited a remarkable inhibitory preference on HCC spheres and EpCAM+ cells rather than their parental HCC cells and EpCAM- cells respectively. In vivo, WM130 inhibited HCC xenograft growth, decreased the number of sphere-forming cells, and remarkably decreased the levels of EpCAM mRNA and protein in tumor xenografts. Better inhibitory effect was achieved by WM130 in combination with doxorubicin. Further mechanism study revealed that WM130 inhibited AKT/GSK3β/β-catenin signaling pathway. Collectively, our results suggest that WM130 remarkably inhibits hepatic CSCs, and this effect may via the down-regulation of the AKT/GSK3β/β-catenin pathway. These findings provide a strong rationale for the use of WM130 as a novel drug candidate in HCC therapy.
Collapse
Affiliation(s)
- Chen-Xu Ni
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yang Qi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Ying Liu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jing Xu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Hong-Gang Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qiu-Ye Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jun-Ping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
83
|
Correnti M, Raggi C. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer. Oncotarget 2018; 8:7094-7115. [PMID: 27738343 PMCID: PMC5351693 DOI: 10.18632/oncotarget.12569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
84
|
Ye Y, Long X, Zhang L, Chen J, Liu P, Li H, Wei F, Yu W, Ren X, Yu J. NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncotarget 2018; 7:70303-70322. [PMID: 27611941 PMCID: PMC5342554 DOI: 10.18632/oncotarget.11854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co-expression (NTS+NTR1+) is a poor prognostic factor correlated with aggressive biological behaviors and poor clinical prognosis. Enhanced epithelial-to-mesenchymal transition (EMT) features, including decreased E-cadherin, increased β-catenin translocation and N-cadherin expression, were identified in NTS+NTR1+ HCC tissues. Varied NTS-responsible HCC cell lines were established using NTR1 genetically modified Hep3B and HepG2 cells which were used to elucidate the molecular mechanisms regulating NTS-induced EMT and tumor invasion in vitro. Results revealed that inducing exogenous NTS stimulation and enhancing NTR1 expression promoted tumor invasion rather than proliferation by accelerating EMT in HCC cells. The NTS-induced EMT was correlated with the remarkable increase in Wnt1, Wnt3, Wnt5, Axin, and p-GSK3β expression and was significantly reversed by blocking the NTS signaling via the NTR1 antagonist SR48692 or by inhibiting the activation of the Wnt/β-catenin pathway via specific inhibitors, such as TSW119 and DKK-1. SR48692 also inhibited the metastases of NTR1-overexpressing HCC xenografts in the lungs in vivo. This finding implied that NTS may be an important stimulus to promote HCC invasion and metastasis both in vitro and in vivo, and NTS signaling enhanced the tumor EMT and invasion potentials by activating the canonical Wnt/β-catenin signaling pathway. Therefore, NTS may be a valuable therapeutic target to prevent tumor progression in HCC.
Collapse
Affiliation(s)
- Yingnan Ye
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Xinxin Long
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Lijie Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jieying Chen
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Hui Li
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China.,Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| |
Collapse
|
85
|
Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ 2018; 25:1426-1441. [PMID: 29445127 PMCID: PMC6113239 DOI: 10.1038/s41418-018-0059-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Identification and characterization of functional molecular targets conferring stemness properties in hepatocellular carcinoma (HCC) offers crucial insights to overcome the major hurdles of tumor recurrence, metastasis and chemoresistance in clinical management. In the current study, we investigated the significance of Cripto-1 in contributing to HCC stemness. Cripto-1 was upregulated in the sorafenib-resistant clones derived from HCC cell lines and patient-derived xenograft that we previously developed, suggesting an association between Cripto-1 and stemness. By in vitro experiments, Cripto-1 fostered cell proliferation, migration, and invasion. It also enhanced self-renewal ability and conferred chemoresistance of HCC cells. Consistently, silencing of Cripto-1 suppressed in vivo tumorigenicity on serial transplantation. On the downstream signaling mechanism, expression of major components of Wnt/β-catenin pathway β-catenin, AXIN2, and C-MYC, accompanied by β-catenin activity was reduced upon Cripto-1 knockdown. The suppressive effects on stemness properties with Cripto-1 knockdown in vitro and in vivo were partially rescued by forced expression of constitutively active β-catenin. Further elucidation revealed the binding of Cripto-1 to Frizzled-7 (FZD7), low-density lipoprotein receptor-related protein 6 (LRP6) and Dishevelled-3 (DVL3) of the Wnt/β-catenin pathway and stabilized DVL3 protein. Analyses with clinical samples validated Cripto-1 overexpression in HCC tissues, as well as a positive correlation between Cripto-1 and AXIN2 expressions. High Cripto-1 level in tumor was associated with poorer disease-free survival of HCC patients. Taken together, Cripto-1 binds to FZD7/LRP6 and DVL3, stabilizes DVL3 expression and activates the Wnt/β-catenin signaling cascade to confer stemness in HCC. Our study findings substantiated the role of Cripto-1 in determining stemness phenotypes of HCC and mechanistically in modulating the Wnt/β-catenin signaling cascade, one of the most frequently deregulated pathways in liver cancer.
Collapse
|
86
|
Zhu J, Yu H, Chen S, Yang P, Dong Z, Ling Y, Tang H, Bai S, Yang W, Tang L, Shen F, Wang H, Wen W. Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2018; 61:912-923. [PMID: 29441453 DOI: 10.1007/s11427-017-9188-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
The inflammatory environment and existence of cancer stem cells are critical for progression and intrahepatic recurrence of hepatocellular carcinoma (HCC) after curative resections. Here, we investigated the prognostic significance of combining high mobility group box 1 (HMGB1) expression and hepatic progenitor marker OV6 in hepatocellular carcinoma. Expression of HMGB1 and OV6 was evaluated using immunohistochemistry profiling in tissue microarrays containing samples from 208 HCC patients. Invasive clinical or pathological factors were found in patients with high expression of HMGB1 or OV6. Higher HMGB1 was associated with poorer clinical outcomes, and independently related to elevated 5-year recurrence incidence (85.5% vs. 62.4%, P<0.001). We also found that more OV6 positive staining was correlated with poor prognosis of HCC patients (P<0.001). Notably, expression of HMGB1 was positively correlated with OV6 in density (R2=0.032, P<0.001) and reversely related to HCC outcomes. Abnormal expression of HMGB1 in combination with positive staining of OV6 displayed poorer prognostic performance than single biomarker alone (area under curve (AUC) survival=0.696). Therefore, HMGB1 and OV6 positive staining are promising prognostic parameters for HCC, and we propose that HMGB1 and OV6 may cooperate with each other and predict poor prognosis of HCC.
Collapse
Affiliation(s)
- Jihui Zhu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Han Yu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zihui Dong
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Ling
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hao Tang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shilei Bai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wen Yang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liang Tang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hongyang Wang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China. .,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China. .,Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| | - Wen Wen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China. .,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China. .,Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| |
Collapse
|
87
|
Qiu L, Li H, Fu S, Chen X, Lu L. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol Lett 2018; 15:2039-2048. [PMID: 29434903 PMCID: PMC5776936 DOI: 10.3892/ol.2017.7568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer stem cells (LCSCs) have important roles in the occurrence, development, recurrence, therapy resistance and metastasis of hepatocellular carcinoma (HCC). Therefore, intensive studies are undergoing to identify the mechanisms by which LCSCs contribute to HCC invasion and metastasis, and to design more efficient treatments for this disease. With continuous efforts in LCSC research over the years, therapies targeting LCSCs are thought to have great potential for the clinical treatment and prognosis of liver cancer. Novel LCSC surface markers are continuously discovered and several have been used in targeted therapies to reduce HCC recurrence, metastasis, and drug resistance following tumor resection. The present review describes the surface markers characterizing LCSCs and the recent progress in therapies targeting these markers, including antibodies and polypeptides.
Collapse
Affiliation(s)
- Lige Qiu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Hailiang Li
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Sirui Fu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaofang Chen
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
- Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
88
|
Sherif RN, Abdellatif H, Hazem N, Ebrahim NA, Saleh D, Shiha G, Eltahry H, Botros KG, Gabr OM. Effect of human umbilical cord blood derived CD34 + hematopoietic stem cell on the expression of Wnt4 and P53 genes in a rat model of hepatocellular carcinoma. Tissue Cell 2018; 50:125-132. [DOI: 10.1016/j.tice.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/15/2022]
|
89
|
Zhang Y, Chen S, Wei C, Rankin GO, Ye X, Chen YC. Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/β-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct 2018; 9:525-533. [PMID: 29256569 PMCID: PMC5962270 DOI: 10.1039/c7fo01453h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) represent a small population of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. Ovarian cancer is one of the leading causes of death related to the female reproductive system in Western countries and has been evaluated as a type of CSC-related cancer in recent years. Natural products have attracted great attention in cancer treatment in recent years due to drug resistance and a high relapse rate of ovarian cancer. Chinese bayberry leaf proanthocyanidins (BLPs) contain epigallocatechin-3-O-gallate as their terminal and major extension units, which is quite unusual in the plant kingdom. BLPs showed strong antioxidant and antiproliferative abilities in previous studies. In the present study, chemotherapy-resistant OVCAR-3 spheroid (SP) cells were obtained by sphere culturing and exhibited CSC-like properties by showing a higher ALDH+ population and higher expression of stemness-related proteins. BLPs exhibited inhibitory effects on the growth and CSC characteristics of OVCAR-3 SP cells by showing decreased cell viability, sphere and colony formation ability, ALDH+ population and expression of stemness-related proteins. BLPs also targeted the Wnt/β-catenin pathway by reducing the expression of β-catenin, cyclin D1 and c-Myc and thus inhibited the self-renewal ability of OVCAR-3 SP cells. Furthermore, BLPs also induced G1 cell cycle arrest in OVCAR-3 SP cells. Taken together, these findings suggested that BLPs may be an important agent in the development of therapeutics for ovarian cancer patients.
Collapse
Affiliation(s)
- Yu Zhang
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
90
|
Kim JY, Lee HY, Park KK, Choi YK, Nam JS, Hong IS. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget 2018; 7:20395-409. [PMID: 26967248 PMCID: PMC4991463 DOI: 10.18632/oncotarget.7954] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/16/2016] [Indexed: 02/07/2023] Open
Abstract
Liver cancer stem cells (CSCs) are resistant to conventional chemotherapy and radiation, which may destroy tumor masses, but not all liver CSCs contribute to tumor initiation, metastasis, and relapse. In the present study, we showed that liver CSCs with elevated Wnt/β-catenin signaling possess much greater self-renewal and clonogenic potential. We further documented that the increased clonogenic potential of liver CSCs is highly associated with changes in Wnt/β-catenin signaling and that Wnt/β-catenin signaling activity is positively correlated with CD133 expression and aldehyde dehydrogenase (ALDH) enzymatic activity. Notably, the small molecule inhibitor CWP232228, which antagonizes the binding of β-catenin to TCF in the nucleus, inhibits Wnt/β-catenin signaling and depletes CD133+/ALDH+ liver CSCs, thus ultimately diminishing the self-renewal capacity of CSCs and decreasing tumorigenicity in vitro and in vivo. Taken together, our findings suggest that CWP232228 acts as a candidate therapeutic agent for liver cancer by preferentially targeting liver CSCs.
Collapse
Affiliation(s)
- Ji-Young Kim
- Center of Animal Care and Use, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
91
|
Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis Oncol 2018; 2:1. [PMID: 29872720 PMCID: PMC5871898 DOI: 10.1038/s41698-017-0044-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022] Open
Abstract
Vitamin C (L-ascorbic acid, ascorbate, VC) is a potential chemotherapeutic agent for cancer patients. However, the anti-tumor effects of pharmacologic VC on hepatocellular carcinoma (HCC) and liver cancer stem cells (CSCs) remain to be fully elucidated. Panels of human HCC cell lines as well as HCC patient-derived xenograft (PDX) models were employed to investigate the anti-tumor effects of pharmacologic VC. The use of VC and the risk of HCC recurrence were examined retrospectively in 613 HCC patients who received curative liver resection as their initial treatment. In vitro and in vivo experiments further demonstrated that clinically achievable concentrations of VC induced cell death in liver cancer cells and the response to VC was correlated with sodium-dependent vitamin C transporter 2 (SVCT-2) expressions. Mechanistically, VC uptake via SVCT-2 increased intracellular ROS, and subsequently caused DNA damage and ATP depletion, leading to cell cycle arrest and apoptosis. Most importantly, SVCT-2 was highly expressed in liver CSCs, which promoted their self-renewal and rendered them more sensitive to VC. In HCC cell lines xenograft models, as well as in PDX models, VC dramatically impaired tumor growth and eradicated liver CSCs. Finally, retrospective cohort study showed that intravenous VC use was linked to improved disease-free survival (DFS) in HCC patients (adjusted HR = 0.622, 95% CI 0.487 to 0.795, p < 0.001). Our data highlight that pharmacologic VC can effectively kill liver cancer cells and preferentially eradicate liver CSCs, which provide further evidence supporting VC as a novel therapeutic strategy for HCC treatment. Pharmacologic doses of vitamin C preferentially eradicate liver cancer stem cells and are associated with improved outcomes in patients. A team led by Hong-Yang Wang and Wen Yang from the Second Military Medical University in Shanghai, China, showed that clinically achievable concentrations of vitamin C effectively killed liver cancer cells and preferentially eradicated cancer stem cells in culture and in mouse transplant models. Cells with higher expression levels of a vitamin C transporter protein were more susceptible to the treatment, which explains why cancer stem cells, which highly express this transportor and use it for their own self-renewal, were especially sensitive to take in vitamin C, which led to a cascade that resulted in DNA damage, energy depletion, and ultimately cell death. A retrospective analysis of 613 patients with liver cancer showed that those who received intravenous vitamin C lived longer without disease relapse.
Collapse
|
92
|
Tomita H, Kanayama T, Niwa A, Noguchi K, Tanaka T, Hara A. The Stem Cells in Liver Cancers and the Controversies. STEM CELLS AND CANCER IN HEPATOLOGY 2018:273-287. [DOI: 10.1016/b978-0-12-812301-0.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
93
|
Tan SH, Barker N. Wnt Signaling in Adult Epithelial Stem Cells and Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:21-79. [PMID: 29389518 DOI: 10.1016/bs.pmbts.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Si Hui Tan
- A*STAR Institute of Medical Biology, Singapore
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore; Kanazawa University, Kanazawa, Japan; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
94
|
Nishii K, Brodin E, Renshaw T, Weesner R, Moran E, Soker S, Sparks JL. Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments. J Cell Physiol 2017; 233:4272-4281. [PMID: 29052842 DOI: 10.1002/jcp.26246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
The role of fluid stresses in activating the hepatic stem/progenitor cell regenerative response is not well understood. This study hypothesized that immediate early genes (IEGs) with known links to liver regeneration will be upregulated in liver progenitor cells (LPCs) exposed to in vitro shear stresses on the order of those produced from elevated interstitial flow after partial hepatectomy. The objectives were: (1) to develop a shear flow chamber for application of fluid stress to LPCs in 3D culture; and (2) to determine the effects of fluid stress on IEG expression in LPCs. Two hours of shear stress exposure at ∼4 dyn/cm2 was applied to LPCs embedded individually or as 3D spheroids within a hyaluronic acid/collagen I hydrogel. Results were compared against static controls. Quantitative reverse transcriptase polymerase chain reaction was used to evaluate the effect of experimental treatments on gene expression. Twenty-nine genes were analyzed, including IEGs and other genes linked to liver regeneration. Four IEGs (CFOS, IP10, MKP1, ALB) and three other regeneration-related genes (WNT, VEGF, EpCAM) were significantly upregulated in LPCs in response to fluid mechanical stress. LPCs maintained an early to intermediate stage of differentiation in spheroid culture in the absence of the hydrogel, and addition of the gel initiated cholangiocyte differentiation programs which were abrogated by the onset of flow. Collectively the flow-upregulated genes fit the pattern of an LPC-mediated proliferative/regenerative response. These results suggest that fluid stresses are potentially important regulators of the LPC-mediated regeneration response in liver.
Collapse
Affiliation(s)
- Kenichiro Nishii
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio
| | - Erik Brodin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio
| | - Taylor Renshaw
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio
| | - Rachael Weesner
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio
| | - Emma Moran
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio
| |
Collapse
|
95
|
Tajul Arifin K, Sulaiman S, Md Saad S, Ahmad Damanhuri H, Wan Ngah WZ, Mohd Yusof YA. Elevation of tumour markers TGF-β, M 2-PK, OV-6 and AFP in hepatocellular carcinoma (HCC)-induced rats and their suppression by microalgae Chlorella vulgaris. BMC Cancer 2017; 17:879. [PMID: 29268718 PMCID: PMC5740965 DOI: 10.1186/s12885-017-3883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background Chlorella vulgaris (ChV), a unicellular green algae has been reported to have anticancer and antioxidant effects. The aim of this study was to determine the chemopreventive effect of ChV on liver cancer induced rats by determining the level and expression of several liver tumour markers. Methods Male Wistar rats (200–250 g) were divided into 4 groups according to the diet given: control group (normal diet), ChV group with three different doses (50, 150 and 300 mg/kg body weight), liver cancer- induced group (choline deficient diet + 0.1% ethionine in drinking water or CDE group), and the treatment group (CDE group treated with three different doses of ChV). Rats were killed at 0, 4, 8 and 12 weeks of experiment and blood and tissue samples were taken from all groups for the determination of tumour markers expression alpha-fetoprotein (AFP), transforming growth factor-β (TGF-β), M2-pyruvate kinase (M2-PK) and specific antigen for oval cells (OV-6). Results Serum level of TGF-β increased significantly (p < 0.05) in CDE rats. However, ChV at all doses managed to decrease (p < 0.05) its levels to control values. Expressions of liver tumour markers AFP, TGF-β, M2-PK and OV-6 were significantly higher (p < 0.05) in tissues of CDE rats when compared to control showing an increased number of cancer cells during hepatocarcinogenesis. ChV at all doses reduced their expressions significantly (p < 0.05). Conclusions Chlorella vulgaris has chemopreventive effect by downregulating the expression of tumour markers M2-PK, OV-6, AFP and TGF-β, in HCC-induced rats.
Collapse
Affiliation(s)
- Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Suhaniza Sulaiman
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Suhana Md Saad
- Department of Diagnostic & Allied Health Sciences, Faculty of Health & Life Sciences, Management & Science University (MSU), University Drive, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Yasmin Anum Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| |
Collapse
|
96
|
Oguma J, Ozawa S, Kazuno A, Nitta M, Ninomiya Y, Kajiwara H. Wnt3a expression is associated with poor prognosis of esophageal squamous cell carcinoma. Oncol Lett 2017; 15:3100-3108. [PMID: 29435043 DOI: 10.3892/ol.2017.7666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway is widely implicated in various types of cancer. Canonical Wnt signaling, including Wnt3a, may be a key component of cancer progression or chemoresistance. Consequently, it was hypothesized that Wnt3a expression may be a prognostic factor of esophageal squamous cell carcinoma (ESCC) due to its roles in chemoresistance and tumor progression. The aim of the present study was to investigate the association between Wnt3a expression and prognosis in patients with ESCC. Wnt3a expression was evaluated in resected specimens from 139 patients with thoracic ESCC who were subjected to curative surgery without neoadjuvant therapy in Tokai University Hospital between 2007 and 2009. Samples were assessed using immnohistochemistry. Patients with ESCC were divided into two groups according to the expression of Wnt3a in tumor tissue. The influence of Wnt3a expression on clinicopathological findings and prognosis of ESCC were subsequently investigated. Immnohistologically, 68 cases were Wnt3a-positive in the cytoplasm of cancer cells, whereas 71 cases were negative. Multivariate analysis by Cox proportional hazard model showed the association between pN (HR=3.539, P=0.001), venous invasion (HR=2.798, P=0.012), Wnt3a expression (HR=1.691, P=0.046) and overall survival (OS). OS rate and disease-free survival rate were poorer in Wnt3a-positive group compared with those in the Wnt3a-negative group as indicated by the log-rank test (P=0.012 and P=0.023, respectively). In pathological stages I and II, there was no significant difference in the OS rate between Wnt3a-positive and Wnt3a-negative groups; however, the OS rate of the Wnt3a-positive group was significantly worse than that of Wnt3a-negative group in pathological stage III (log rank test; P=0.017). Wnt3a-positive patients with recurrence had a significantly poorer prognosis compared with Wnt3a-negative patients (log-rank test; P=0.023). The present findings suggested that Wnt3a may be a prognostic factor of ESCC.
Collapse
Affiliation(s)
- Junya Oguma
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akihito Kazuno
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Miho Nitta
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Yamato Ninomiya
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiroshi Kajiwara
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
97
|
Cheung PFY, Cheung TT, Yip CW, Ng LWC, Fung SW, Lo CM, Fan ST, Cheung ST. Hepatic cancer stem cell marker granulin-epithelin precursor and β-catenin expression associate with recurrence in hepatocellular carcinoma. Oncotarget 2017; 7:21644-57. [PMID: 26942873 PMCID: PMC5008312 DOI: 10.18632/oncotarget.7803] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/20/2016] [Indexed: 12/14/2022] Open
Abstract
Granulin-epithelin precursor (GEP) has been demonstrated to confer enhanced cancer stem-like cell properties in hepatocellular carcinoma (HCC) cell line models in our previous studies. Here, we aimed to examine the GEP-expressing cells in relation to the stem cell related molecules and stem-like cell properties in the prospective HCC clinical cohort. GEP protein levels were significantly higher in HCCs than the paralleled non-tumor liver tissues, and associated with venous infiltration. GEPhigh cells isolated from clinical HCC samples exhibited higher levels of stem cell marker CD133, pluripotency-associated signaling molecules β-catenin, Oct4, SOX2, Nanog, and chemodrug transporter ABCB5. In addition, GEPhigh cells possessed preferential ability to form colonies and spheroids, and enhanced in vivo tumor-initiating ability while their xenografts were able to be serially subpassaged into secondary mouse recipients. Expression levels of GEP and pluripotency-associated genes were further examined in the retrospective HCC cohort and demonstrated significant correlation of GEP with β-catenin. Notably, HCC patients with high GEP and β-catenin levels demonstrated poor recurrence-free survival. In summary, GEP-positive HCC cells directly isolated from clinical specimens showed β-catenin elevation and cancer stem-like cell properties.
Collapse
Affiliation(s)
- Phyllis F Y Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Chi Wai Yip
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Linda W C Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Sze Wai Fung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Sheung Tat Fan
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
98
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
99
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
100
|
SAMMSON drives the self-renewal of liver tumor initiating cells through EZH2-dependent Wnt/β-catenin activation. Oncotarget 2017; 8:103785-103796. [PMID: 29262600 PMCID: PMC5732766 DOI: 10.18632/oncotarget.21792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023] Open
Abstract
Liver cancer is one of the most serious cancers all over the world. Liver tumor initiating cells (TICs) account for tumor initiation and metastasis. However, the regulatory mechanism of liver TICs remains unclear. Here we found long noncoding RNA SAMMSON is highly expressed in liver cancer and liver TICs. SAMMSON silenced cells show impaired self-renewal capacity, while, its overexpression induces enhanced self-renewal. SAMMSON drives the activation of Wnt/β-catenin signaling, and thus promotes liver TIC self-renewal. SAMMSON interacts with EZH2, a core component of PRC2 complex, and inhibits the expression of CTNNBIP1 through EZH2 dependent manner. SAMMSON binds to CTNNBIP1 promoter and recruits EZH2 to CTNNBIP1 promoter. What’s more, targeting liver TICs through SAMMSON, EZH2 and Wnt/β-catenin signaling impaired liver TIC self-renewal, decreased tumor propagation and severity. Taken together, SAMMSON drives liver TIC self-renewal through EZH2-dependent Wnt/β-catenin activation.
Collapse
|