51
|
Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim Biophys Acta Rev Cancer 2011; 1816:25-37. [PMID: 21396984 DOI: 10.1016/j.bbcan.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 12/17/2022]
Abstract
Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27(KIP1), p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse.
Collapse
|
52
|
Mouse models of prostate cancer. Prostate Cancer 2011; 2011:895238. [PMID: 22111002 PMCID: PMC3221286 DOI: 10.1155/2011/895238] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/12/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023] Open
Abstract
The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer.
Collapse
|
53
|
Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24:1967-2000. [PMID: 20844012 DOI: 10.1101/gad.1965810] [Citation(s) in RCA: 712] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Since early studies on the role of the androgen receptor that led to the advent of androgen deprivation therapy in the 1940s, there has long been intensive interest in the basic mechanisms underlying prostate cancer initiation and progression, as well as the potential to target these processes for therapeutic intervention. Here, we present an overview of major themes in prostate cancer research, focusing on current knowledge of principal events in cancer initiation and progression. We discuss recent advances, including new insights into the mechanisms of castration resistance, identification of stem cells and tumor-initiating cells, and development of mouse models for preclinical evaluation of novel therapuetics. Overall, we highlight the tremendous research progress made in recent years, and underscore the challenges that lie ahead.
Collapse
Affiliation(s)
- Michael M Shen
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
54
|
Restuccia DF, Hemmings BA. From man to mouse and back again: advances in defining tumor AKTivities in vivo. Dis Model Mech 2010; 3:705-20. [PMID: 20940316 DOI: 10.1242/dmm.004671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKT hyperactivation is a common event in human cancers, and inhibition of oncogenic AKT activation is a major goal of drug discovery programs. Mouse tumor models that replicate AKT activation typical of human cancers provide a powerful means by which to investigate mechanisms of oncogenic signaling, identify potential therapeutic targets and determine treatment regimes with maximal therapeutic efficacy. This Perspective highlights recent advances using in vivo studies that reveal how AKT signaling supports tumor formation, cooperates with other mutations to promote tumor progression and facilitates tumor-cell dissemination, focusing on well-characterized prostate carcinoma mouse models that are highly sensitive to AKT activation. The implications of these findings on the therapeutic targeting of AKT and potential new drug targets are also explored.
Collapse
Affiliation(s)
- David F Restuccia
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
55
|
Francis JC, McCarthy A, Thomsen MK, Ashworth A, Swain A. Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis. PLoS Genet 2010; 6:e1000995. [PMID: 20585617 PMCID: PMC2891704 DOI: 10.1371/journal.pgen.1000995] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 05/19/2010] [Indexed: 01/07/2023] Open
Abstract
Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches. In Western countries, prostate cancer is the most common male cancer and the second biggest cause of cancer-related deaths in men. Men with a familial history of either breast or ovarian cancer have an elevated predisposition to prostate cancer, suggesting there is a genetic element to this disease. Indeed, the inheritance of a mutated form of the breast cancer susceptibility gene BRCA2 has been linked to the development of prostate cancer, although the precise role that BRCA2 dysfunction plays in the development of prostate cancer is unclear. To address this, we have generated an animal model in which the mouse Brca2 gene is specifically deleted in the adult prostate. These mice develop precancerous prostate lesions, which progress in severity and incidence with the loss-of-function of an additional tumour suppressor, Trp53. Importantly, blocking male steroidal hormone production by castration leads to partial regression of the prostate lesions, however cells continue to proliferate after androgen withdrawal. This suggests human BRCA2 mutant prostate tumours, like the majority of prostate cancers, will respond to hormone therapy, but will relapse, as frequently occurs in this disease. In summary, our model suggests that BRCA2 acts as a tumour suppressor in the prostate and provides a pre-invasive model to test novel therapeutics.
Collapse
Affiliation(s)
- Jeffrey C. Francis
- Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom
| | - Afshan McCarthy
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Martin K. Thomsen
- Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Amanda Swain
- Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avancès C, Allory Y, de la Taille A, Culine S, Blancou H, Cristol JP, Michel F, Sardet C, Fajas L. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther 2010; 9:1740-54. [PMID: 20530718 DOI: 10.1158/1535-7163.mct-09-1064] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increased de novo fatty acid (FA) synthesis is one hallmark of tumor cells, including prostate cancer. We present here our most recent results showing that lipid composition in human prostate cancer is characterized by an increased ratio of monounsaturated FA to saturated FA, compared with normal prostate, and evidence the overexpression of the lipogenic enzyme stearoyl-CoA desaturase 1 (SCD1) in human prostate cancer. As a new therapeutic strategy, we show that pharmacologic inhibition of SCD1 activity impairs lipid synthesis and results in decreased proliferation of both androgen-sensitive and androgen-resistant prostate cancer cells, abrogates the growth of prostate tumor xenografts in nude mice, and confers therapeutic benefit on animal survival. We show that these changes in lipid synthesis are translated into the inhibition of the AKT pathway and that the decrease in concentration of phosphatidylinositol-3,4,5-trisphosphate might at least partially mediate this effect. Inhibition of SCD1 also promotes the activation of AMP-activated kinase and glycogen synthase kinase 3alpha/beta, the latter on being consistent with a decrease in beta-catenin activity and mRNA levels of various beta-catenin growth-promoting transcriptional targets. Furthermore, we show that SCD1 activity is required for cell transformation by Ras oncogene. Together, our data support for the first time the concept of targeting the lipogenic enzyme SCD1 as a new promising therapeutic approach to block oncogenesis and prostate cancer progression.
Collapse
Affiliation(s)
- Vanessa Fritz
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
RASSF2 is a novel proapoptotic effector of K-Ras. Inhibition of RASSF2 expression enhances the transforming effects of K-Ras, and epigenetic inactivation of RASSF2 is frequently detected in mutant Ras-containing primary tumors. Thus, RASSF2 is implicated as a tumor suppressor whose inactivation facilitates transformation by disconnecting apoptotic responses from Ras. The mechanism of action of RASSF2 is not known. Here we show that RASSF2 forms a direct and endogenous complex with the prostate apoptosis response protein 4 (PAR-4) tumor suppressor. This interaction is regulated by K-Ras and is essential for the full apoptotic effects of PAR-4. RASSF2 is primarily a nuclear protein, and shuttling of PAR-4 from the cytoplasm to the nucleus is essential for its function. We show that RASSF2 modulates the nuclear translocation of PAR-4 in prostate tumor cells, providing a mechanism for its biological effects. Thus, we identify the first tumor suppressor signaling pathway emanating from RASSF2, we identify a novel mode of action of a RASSF protein, and we provide an explanation for the extraordinarily high frequency of RASSF2 inactivation we have observed in primary prostate tumors.
Collapse
|
58
|
Gluschnaider U, Hidas G, Cojocaru G, Yutkin V, Ben-Neriah Y, Pikarsky E. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor. PLoS One 2010; 5:e9060. [PMID: 20140206 PMCID: PMC2816705 DOI: 10.1371/journal.pone.0009060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/16/2010] [Indexed: 01/19/2023] Open
Abstract
Background Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR) signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. β-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis. Methodology/Principal Findings Here we show that β-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against β-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that β-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR) mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium. Conclusions/Significance Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining β-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.
Collapse
Affiliation(s)
- Udi Gluschnaider
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Guy Hidas
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
- Department of Urology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gady Cojocaru
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Vladimir Yutkin
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
- Department of Urology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yinon Ben-Neriah
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
59
|
Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 2010; 120:508-20. [PMID: 20071774 DOI: 10.1172/jci40045] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 11/18/2009] [Indexed: 12/11/2022] Open
Abstract
Cellular plasticity in adult organs is involved in both regeneration and carcinogenesis. WT mouse acinar cells rapidly regenerate following injury that mimics acute pancreatitis, a process characterized by transient reactivation of pathways involved in embryonic pancreatic development. In contrast, such injury promotes the development of pancreatic ductal adenocarcinoma (PDA) precursor lesions in mice expressing a constitutively active form of the GTPase, Kras, in the exocrine pancreas. The molecular environment that mediates acinar regeneration versus the development of PDA precursor lesions is poorly understood. Here, we used genetically engineered mice to demonstrate that mutant Kras promotes acinar-to-ductal metaplasia (ADM) and pancreatic cancer precursor lesion formation by blocking acinar regeneration following acute pancreatitis. Our results indicate that beta-catenin is required for efficient acinar regeneration. In addition, canonical beta-catenin signaling, a pathway known to regulate embryonic acinar development, is activated following acute pancreatitis. This regeneration-associated activation of beta-catenin signaling was not observed during the initiation of Kras-induced acinar-to-ductal reprogramming. Furthermore, stabilized beta-catenin signaling antagonized the ability of Kras to reprogram acini into PDA preneoplastic precursors. Therefore, these results suggest that beta-catenin signaling is a critical determinant of acinar plasticity and that it is inhibited during Kras-induced fate decisions that specify PDA precursors, highlighting the importance of temporal regulation of embryonic signaling pathways in the development of neoplastic cell fates.
Collapse
Affiliation(s)
- John P Morris
- Diabetes Center, Department of Medicine, UCSF, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
60
|
Subhawong AP, Subhawong TK, Li QK. Fine needle aspiration of metastatic prostate carcinoma simulating a primary adrenal cortical neoplasm: a case report and review of the literature. Diagn Cytopathol 2009; 38:147-53. [PMID: 19693937 DOI: 10.1002/dc.21165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adrenal metastases usually occur in prostate cancer patients with widespread bone and visceral disease. Autopsy studies have shown that adrenal metastases may be found in up to 23% of these patients. However, the finding of an isolated adrenal metastasis without the involvement of other organs in a patient with prostate cancer is exceedingly rare. Thus, it may cause a diagnostic dilemma on FNA cytology. We report a patient with a history of prostate cancer, status post radiation, and hormonal therapy 4 years before, who presented with a new, single adrenal mass on abdominal imaging studies. The ultrasound-guided FNA cytology of the adrenal mass revealed cytomorphological features that were suggestive of a primary adrenal cortical neoplasm, but overlapped with those of a prostate metastasis. To our knowledge, FNA findings of metastatic prostate cancer simulating an adrenal cortical neoplasm have not been previously reported in the English literature. The purpose of our study is to discuss the differential diagnosis of these entities. The accurate diagnosis is important because of different prognosis and treatment implications for the various diseases.
Collapse
Affiliation(s)
- Andrea P Subhawong
- Division of Cytopathology, Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
61
|
Ras activation contributes to the maintenance and expansion of Sca-1pos cells in a mouse model of breast cancer. Cancer Lett 2009; 287:172-81. [PMID: 19586713 DOI: 10.1016/j.canlet.2009.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/29/2009] [Accepted: 06/08/2009] [Indexed: 12/23/2022]
Abstract
The cancer stem cell (CSC) hypothesis proposes that CSCs are the root of cancer and cause cancer metastasis and recurrence. In this study, we examined whether Ras signaling is associated with stemness of the CSCs population characterized by the stem cell antigen (Sca-1) phenotype in a 4T1 syngeneic mouse model of breast cancer. The Sca-1(pos) putative CSCs had high levels of activated Ras and phosphorylated MEK (p-MEK), compared with counterparts. The Ras farnesylation inhibitor (FTI-277) suppressed the maintenance and expansion of CSCs. Therefore, selective inhibition of Ras activation may be useful for stem-specific cancer therapy.
Collapse
|