51
|
Zhu C, Martin HL, Crouch BT, Martinez AF, Li M, Palmer GM, Dewhirst MW, Ramanujam N. Near-simultaneous quantification of glucose uptake, mitochondrial membrane potential, and vascular parameters in murine flank tumors using quantitative diffuse reflectance and fluorescence spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:3399-3412. [PMID: 29984105 PMCID: PMC6033552 DOI: 10.1364/boe.9.003399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 05/24/2023]
Abstract
The shifting metabolic landscape of aggressive tumors, with fluctuating oxygenation conditions and temporal changes in glycolysis and mitochondrial metabolism, is a critical phenomenon to study in order to understand negative treatment outcomes. Recently, we have demonstrated near-simultaneous optical imaging of mitochondrial membrane potential (MMP) and glucose uptake in non-tumor window chambers, using the fluorescent probes tetramethylrhodamine ethyl ester (TMRE) and 2-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). Here, we demonstrate a complementary technique to perform near-simultaneous in vivo optical spectroscopy of tissue vascular parameters, glucose uptake, and MMP in a solid tumor model that is most often used for therapeutic studies. Our study demonstrates the potential of optical spectroscopy as an effective tool to quantify the vascular and metabolic characteristics of a tumor, which is an important step towards understanding the mechanisms underlying cancer progression, metastasis, and resistance to therapies.
Collapse
Affiliation(s)
- Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Hannah L. Martin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Amy F. Martinez
- Currently with Office of Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory M. Palmer
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
52
|
Shakhova M, Loginova D, Meller A, Sapunov D, Orlinskaya N, Shakhov A, Khilov A, Kirillin M. Photodynamic therapy with chlorin-based photosensitizer at 405 nm: numerical, morphological, and clinical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29956507 DOI: 10.1117/1.jbo.23.9.091412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 05/12/2023]
Abstract
Employment of chlorin-based photosensitizers (PSs) provides additional advantages to photodynamic therapy (PDT) due to absorption peak around 405 nm allowing for superficial impact and efficient antimicrobial therapy. We report on the morphological and clinical study of the efficiency of PDT at 405 nm employing chlorin-based PS. Numerical studies demonstrated difference in the distribution of absorbed dose at 405 nm in comparison with traditionally employed wavelength of 660 nm and difference in the in-depth absorbed dose distribution for skin and mucous tissues. Morphological study was performed at the inner surface of rabbit ear with histological examinations at different periods after PDT procedure. Animal study revealed tissue reaction to PDT consisting in edema manifested most in 3 days after the procedure and neoangiogenesis. OCT diagnostics was confirmed by histological examination. Clinical study included antimicrobial PDT of pharynx chronic inflammatory diseases. It revealed no side effects or complications of the PDT procedure. Pharyngoscopy indicated reduction of inflammatory manifestations, and, in particular cases, hypervascularization was observed. Morphological changes were also detected in the course of monitoring, which are in agreement with pharyngoscopy results. Microbiologic study after PDT revealed no pathogenic bacteria; however, in particular cases, saprophytic flora was detected.
Collapse
Affiliation(s)
- Maria Shakhova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Daria Loginova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- N.I. Lobachevsky State University of Nizhny Novgorod, Advanced School of General and Applied Physics, Russia
| | - Alina Meller
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Dmitry Sapunov
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Andrey Shakhov
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | | | | |
Collapse
|
53
|
Eugenia EM, Ángel PM, Anabella G, Solange B, Carlos P, Horacio P, Mario G. Photodynamic therapy in fibrosarcoma BALB/c animal model: Observation of the rebound effect. Photodiagnosis Photodyn Ther 2018; 21:98-107. [DOI: 10.1016/j.pdpdt.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023]
|
54
|
Yu W, Ye M, Zhu J, Wang Y, Liang C, Tang J, Tao H, Shen Y. Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1099-1110. [PMID: 29462663 DOI: 10.1016/j.nano.2018.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/17/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Zinc phthalocyanine (ZnPc) is a highly potent second-generation photosensitizer for cancer photodynamic therapy (PDT) with attractive photo-physical and photo-chemical properties. However, poor solubility and strong trend of crystallization prevent it from loading in most of drug delivery systems and hamper its further application. Herein, to overcome this problem, an amphiphilic block copolymer poly(ethylene glycol)-poly[2-(methylacryloyl)ethylnicotinate] (PEG-PMAN) with aromatic nicotinate is used to load ZnPc for their π-π interactions. The formed PEG-PMAN/ZnPc nanoparticle (PPZ) dramatically increases reactive oxygen species production in osteosarcoma cells after light irradiation, causes mitochondrial injury and promotes cell cycle arrest at G2/M, leading to a 100-fold cytotoxicity improvement comparing with free ZnPc. The excellent therapeutic effectiveness and safety of PPZ are also proved by in vivo experiments operating on osteosarcoma model. The finding above indicates that PPZ has promising clinical applications as a next-generation photosensitizer in PDT of osteosarcoma.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mingzhou Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian Zhu
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yitian Wang
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chengzhen Liang
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Huimin Tao
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Yuzhakova DV, Lermontova SA, Grigoryev IS, Muravieva MS, Gavrina AI, Shirmanova MV, Balalaeva IV, Klapshina LG, Zagaynova EV. In vivo multimodal tumor imaging and photodynamic therapy with novel theranostic agents based on the porphyrazine framework-chelated gadolinium (III) cation. Biochim Biophys Acta Gen Subj 2017; 1861:3120-3130. [PMID: 28916141 DOI: 10.1016/j.bbagen.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND A promising strategy for cancer diagnosis and therapy is the development of an agent for multimodal imaging and treatment. In the present paper we report on two novel multifunctional agents prepared on the porphyrazine pigment platform using a gadolinium (III) cation chelated by red-fluorescent tetrapyrrole macrocycles (GdPz1 and GdPz2). METHODS Spectral and magnetic properties of the compounds were analyzed. Monitoring of GdPz1 and GdPz2 accumulation in the murine colon carcinoma CT26 was performed in vivo using fluorescence imaging and MRI. The photobleaching of GdPz1 or GdPz2 and tumor growth rate after photodynamic therapy (PDT) were assessed. RESULTS GdPz1 and GdPz2 demonstrated the selective accumulation in tumor that was indicated by higher fluorescence intensity in the tumor area in comparison with the normal tissues. The results of MRI in vivo showed that GdPz1 or GdPz2 provided significant contrast enhancement of the tumor in T1 MR images. PDT with GdPz2 resulted in ~20% decrease in fluorescence intensity of the compound and the inhibition of tumor growth. CONCLUSIONS We assessed the efficiency of two innovative Gd(III) cation-porphyrazine chelates as bimodal MR and fluorescent probes and photosensitizers for PDT and showed their potentials for tumor diagnostics and treatment. GENERAL SIGNIFICANCE Water-soluble structures simple in preparation and administration into the body represent special interest for theranostics of tumors. Novel porphyrazine macrocycles chelating a central gadolinium cation demonstrated a good prospect as effective multimodal agents, representing a new approach to MRI and fluorescence imaging guided PDT.
Collapse
Affiliation(s)
- Diana V Yuzhakova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia.
| | - Svetlana A Lermontova
- Razuvaev Institute of Organometallic, Chemistry of the Russian, Academy of Sciences, 49 Tropinina St., 603950 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Ilya S Grigoryev
- Razuvaev Institute of Organometallic, Chemistry of the Russian, Academy of Sciences, 49 Tropinina St., 603950 Nizhny Novgorod, Russia
| | - Maria S Muravieva
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alena I Gavrina
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Larisa G Klapshina
- Razuvaev Institute of Organometallic, Chemistry of the Russian, Academy of Sciences, 49 Tropinina St., 603950 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| |
Collapse
|
56
|
Xia LY, Zhang X, Cao M, Chen Z, Wu FG. Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy. Biomacromolecules 2017; 18:3073-3081. [PMID: 28820580 DOI: 10.1021/acs.biomac.7b00725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Benefiting from their inherent localized and controlled release properties, hydrogels are ideal delivery systems for therapeutic drugs or nanoparticles. In particular, applications of hydrogels for the delivery and release of photoresponsive drugs or nanoparticles are receiving increasing attention. However, the effect of the hydrogel matrix on the fluorescence emission and singlet oxygen generation efficiency of the embedded photosensitizers (PSs) has not been clarified. Herein, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) as a water-soluble PS was encapsulated into an injectable hydrogel formed by glycol chitosan and dibenzaldehyde-terminated telechelic poly(ethylene glycol). Compared to free TMPyP solution, the TMPyP encapsulated in the hydrogel exhibits three distinct advantages: (1) more singlet oxygen was generated under the same laser irradiation condition; (2) much longer tumor retention was observed due to the low fluidity of the hydrogel; and (3) the fluorescence intensity of TMPyP was significantly enhanced in the hydrogel due to its decreased self-quenching effect. These excellent characteristics lead to remarkable anticancer efficacy and superior fluorescence emission property of the TMPyP-hydrogel system, promoting the development of imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Liu-Yuan Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Meng Cao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
57
|
Thong PSP, Lee K, Toh HJ, Dong J, Tee CS, Low KP, Chang PH, Bhuvaneswari R, Tan NC, Soo KC. Early assessment of tumor response to photodynamic therapy using combined diffuse optical and diffuse correlation spectroscopy to predict treatment outcome. Oncotarget 2017; 8:19902-19913. [PMID: 28423634 PMCID: PMC5386732 DOI: 10.18632/oncotarget.15720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer involves the use of a photosensitizer that can be light-activated to eradicate tumors via direct cytotoxicity, damage to tumor vasculature and stimulating the body's immune system. Treatment outcome may vary between individuals even under the same regime; therefore a non-invasive tumor response monitoring system will be useful for personalization of the treatment protocol. We present the combined use of diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to provide early assessment of tumor response. The relative tissue oxygen saturation (rStO2) and relative blood flow (rBF) in tumors were measured using DOS and DCS respectively before and after PDT with reference to baseline values in a mouse model. In complete responders, PDT-induced decreases in both rStO2 and rBF levels were observed at 3 h post-PDT and the rBF remained low until 48 h post-PDT. Recovery of these parameters to baseline values was observed around 2 weeks after PDT. In partial responders, the rStO2 and rBF levels also decreased at 3 h post PDT, however the rBF values returned toward baseline values earlier at 24 h post-PDT. In contrast, the rStO2 and rBF readings in control tumors showed fluctuations above the baseline values within the first 48 h. Therefore tumor response can be predicted at 3 to 48 h post-PDT. Recovery or sustained decreases in the rBF at 48 h post-PDT corresponded to long-term tumor control. Diffuse optical measurements can thus facilitate early assessment of tumor response. This approach can enable physicians to personalize PDT treatment regimens for best outcomes.
Collapse
Affiliation(s)
| | - Kijoon Lee
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Daegu Gyeongbuk Institute of Science and Technology, Korea
| | - Hui-Jin Toh
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Jing Dong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | - Chuan-Sia Tee
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Kar-Perng Low
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Pui-Haan Chang
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | - Ngian-Chye Tan
- Division of Surgical Oncology, National Cancer Centre, Singapore
| | - Khee-Chee Soo
- Division of Medical Sciences, National Cancer Centre, Singapore
| |
Collapse
|
58
|
Liu JN, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem Rev 2017; 117:6160-6224. [DOI: 10.1021/acs.chemrev.6b00525] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jia-nan Liu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Wenbo Bu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jianlin Shi
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|
59
|
Anand S, Rollakanti KR, Brankov N, Brash DE, Hasan T, Maytin EV. Fluorouracil Enhances Photodynamic Therapy of Squamous Cell Carcinoma via a p53-Independent Mechanism that Increases Protoporphyrin IX levels and Tumor Cell Death. Mol Cancer Ther 2017; 16:1092-1101. [PMID: 28336806 DOI: 10.1158/1535-7163.mct-16-0608] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT), using 5-aminolevulinic acid (ALA) to drive synthesis of protoporphryin IX (PpIX) is a promising, scar-free alternative to surgery for skin cancers, including squamous cell carcinoma (SCC) and SCC precursors called actinic keratoses. In the United States, PDT is only FDA approved for treatment of actinic keratoses; this narrow range of indications could be broadened if PDT efficacy were improved. Toward that goal, we developed a mechanism-based combination approach using 5-fluorouracil (5-FU) as a neoadjuvant for ALA-based PDT. In mouse models of SCC (orthotopic UV-induced lesions, and subcutaneous A431 and 4T1 tumors), pretreatment with 5-FU for 3 days followed by ALA for 4 hours led to large, tumor-selective increases in PpIX levels, and enhanced cell death upon illumination. Several mechanisms were identified that might explain the relatively improved therapeutic response. First, the expression of key enzymes in the heme synthesis pathway was altered, including upregulated coproporphyrinogen oxidase and downregulated ferrochelatase. Second, a 3- to 6-fold induction of p53 in 5-FU-pretreated tumors was noted. The fact that A431 contains a mutant form p53 did not prevent the development of a neoadjuvantal 5-FU effect. Furthermore, 5-FU pretreatment of 4T1 tumors (cells that completely lack p53), still led to significant beneficial inductions, that is, 2.5-fold for both PpIX and PDT-induced cell death. Thus, neoadjuvantal 5-FU combined with PDT represents a new therapeutic approach that appears useful even for p53-mutant and p53-null tumors. Mol Cancer Ther; 16(6); 1092-101. ©2017 AACR.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio. .,Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | | | - Nikoleta Brankov
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Douglas E Brash
- Departments of Therapeutic Radiology and Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio. .,Department of Dermatology, Cleveland Clinic, Cleveland, Ohio.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
60
|
Chen B. 14 Vascular imaging in photodynamic therapy. IMAGING IN PHOTODYNAMIC THERAPY 2017:275-292. [DOI: 10.1201/9781315278179-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
61
|
Abstract
Physiological characteristics of diseases bring about both challenges and opportunities for targeted drug delivery. Various drug delivery platforms have been devised ranging from macro- to micro- and further into the nanoscopic scale in the past decades. Recently, the favorable physicochemical properties of nanomaterials, including long circulation, robust tissue and cell penetration attract broad interest, leading to extensive studies for therapeutic benefits. Accumulated knowledge about the physiological barriers that affect the in vivo fate of nanomedicine has led to more rational guidelines for tailoring the nanocarriers, such as size, shape, charge, and surface ligands. Meanwhile, progresses in material chemistry and molecular pharmaceutics generate a panel of physiological stimuli-responsive modules that are equipped into the formulations to prepare “smart” drug delivery systems. The capability of harnessing physiological traits of diseased tissues to control the accumulation of or drug release from nanomedicine has further improved the controlled drug release profiles with a precise manner. Successful clinical translation of a few nano-formulations has excited the collaborative efforts from the research community, pharmaceutical industry, and the public towards a promising future of smart drug delivery.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Wenyan Ji
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace Wright
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
62
|
Tong X, Srivatsan A, Jacobson O, Wang Y, Wang Z, Yang X, Niu G, Kiesewetter DO, Zheng H, Chen X. Monitoring Tumor Hypoxia Using (18)F-FMISO PET and Pharmacokinetics Modeling after Photodynamic Therapy. Sci Rep 2016; 6:31551. [PMID: 27546160 PMCID: PMC4992876 DOI: 10.1038/srep31551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Photodynamic therapy (PDT) is an efficacious treatment for some types of cancers. However, PDT-induced tumor hypoxia as a result of oxygen consumption and vascular damage can reduce the efficacy of this therapy. Measuring and monitoring intrinsic and PDT-induced tumor hypoxia in vivo during PDT is of high interest for prognostic and treatment evaluation. In the present study, static and dynamic (18)F-FMISO PET were performed with mice bearing either U87MG or MDA-MB-435 tumor xenografts immediately before and after PDT at different time points. Significant difference in tumor hypoxia in response to PDT over time was found between the U87MG and MDA-MB-435 tumors in both static and dynamic PET. Dynamic PET with pharmacokinetics modeling further monitored the kinetics of (18)F-FMISO retention to hypoxic sites after treatment. The Ki and k3 parametric analysis provided information on tumor hypoxia by distinction of the specific tracer retention in hypoxic sites from its non-specific distribution in tumor. Dynamic (18)F-FMISO PET with pharmacokinetics modeling, complementary to static PET analysis, provides a potential imaging tool for more detailed and more accurate quantification of tumor hypoxia during PDT.
Collapse
Affiliation(s)
- Xiao Tong
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States.,Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yu Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiangyu Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
63
|
Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy. PHOTONICS 2016. [DOI: 10.3390/photonics3030048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
64
|
Lv W, Zhang Z, Zhang KY, Yang H, Liu S, Xu A, Guo S, Zhao Q, Huang W. A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604130] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Lv
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Zhang Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Aqiang Xu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Song Guo
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 P.R. China
| |
Collapse
|
65
|
Lv W, Zhang Z, Zhang KY, Yang H, Liu S, Xu A, Guo S, Zhao Q, Huang W. A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angew Chem Int Ed Engl 2016; 55:9947-51. [DOI: 10.1002/anie.201604130] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/08/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Lv
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Zhang Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Aqiang Xu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Song Guo
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P.R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 P.R. China
| |
Collapse
|
66
|
Effects of photodynamic therapy mediated by nanoemulsion containing chloro-aluminum phthalocyanine: a histologic and immunohistochemical study in human gingiva. Photodiagnosis Photodyn Ther 2015; 12:592-7. [DOI: 10.1016/j.pdpdt.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 01/25/2023]
|
67
|
Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun 2015; 6:8785. [PMID: 26525216 PMCID: PMC4659941 DOI: 10.1038/ncomms9785] [Citation(s) in RCA: 690] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen (1O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer 1O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of 1O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design. Photodynamic therapy is used in cancer treatment and generates reactive oxygen species to kill tumour cells but is limited by the availability of oxygen. Here, the authors modify a photodynamic sensitiser so that it produces excess oxygen species and show enhanced tumour cell killing in vitro and in vivo.
Collapse
|
68
|
Abstract
Photodynamic therapy (PDT) combines visible light and photosensitizing dyes. Different animal models have been used to test PDT for cancer, infectious disease and cardiovascular disease. Mouse models of tumours include subcutaneous, orthotopic, syngeneic, xenograft, autochthonous and genetically modified. Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals.
Collapse
|
69
|
Bacellar IOL, Tsubone TM, Pavani C, Baptista MS. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 2015; 16:20523-59. [PMID: 26334268 PMCID: PMC4613217 DOI: 10.3390/ijms160920523] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.
Collapse
Affiliation(s)
- Isabel O L Bacellar
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Tayana M Tsubone
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Christiane Pavani
- Programa de Pós Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo 01504-001, Brazil.
| | - Mauricio S Baptista
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
70
|
Gallagher-Colombo SM, Miller J, Cengel KA, Putt ME, Vinogradov SA, Busch TM. Erlotinib Pretreatment Improves Photodynamic Therapy of Non-Small Cell Lung Carcinoma Xenografts via Multiple Mechanisms. Cancer Res 2015; 75:3118-26. [PMID: 26054596 DOI: 10.1158/0008-5472.can-14-3304] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/11/2015] [Indexed: 01/08/2023]
Abstract
Aberrant expression of the epidermal growth factor receptor (EGFR) is a common characteristic of many cancers, including non-small cell lung carcinoma (NSCLC), head and neck squamous cell carcinoma, and ovarian cancer. Although EGFR is currently a favorite molecular target for the treatment of these cancers, inhibition of the receptor with small-molecule inhibitors (i.e., erlotinib) or monoclonal antibodies (i.e., cetuximab) does not provide long-term therapeutic benefit as standalone treatment. Interestingly, we have found that addition of erlotinib to photodynamic therapy (PDT) can improve treatment response in typically erlotinib-resistant NSCLC tumor xenografts. Ninety-day complete response rates of 63% are achieved when erlotinib is administered in three doses before PDT of H460 human tumor xenografts, compared with 16% after PDT-alone. Similar benefit is found when erlotinib is added to PDT of A549 NCSLC xenografts. Improved response is accompanied by increased vascular shutdown, and erlotinib increases the in vitro cytotoxicity of PDT to endothelial cells. Tumor uptake of the photosensitizer (benzoporphyrin derivative monoacid ring A; BPD) is increased by the in vivo administration of erlotinib; nevertheless, this elevation of BPD levels only partially accounts for the benefit of erlotinib to PDT. Thus, pretreatment with erlotinib augments multiple mechanisms of PDT effect that collectively lead to large improvements in therapeutic efficacy. These data demonstrate that short-duration administration of erlotinib before PDT can greatly improve the responsiveness of even erlotinib-resistant tumors to treatment. Results will inform clinical investigation of EGFR-targeting therapeutics in conjunction with PDT.
Collapse
Affiliation(s)
- Shannon M Gallagher-Colombo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary E Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
71
|
Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Am J Cancer Res 2015; 5:289-301. [PMID: 25553116 PMCID: PMC4279192 DOI: 10.7150/thno.10155] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022] Open
Abstract
Selection and design of individualized treatments remains a key goal in cancer therapeutics; prediction of response and tumor recurrence following a given therapy provides a basis for subsequent personalized treatment design. We demonstrate an approach towards this goal with the example of photodynamic therapy (PDT) as the treatment modality and photoacoustic imaging (PAI) as a non-invasive, response and disease recurrence monitor in a murine model of glioblastoma (GBM). PDT is a photochemistry-based, clinically-used technique that consumes oxygen to generate cytotoxic species, thus causing changes in blood oxygen saturation (StO2). We hypothesize that this change in StO2 can be a surrogate marker for predicting treatment efficacy and tumor recurrence. PAI is a technique that can provide a 3D atlas of tumor StO2 by measuring oxygenated and deoxygenated hemoglobin. We demonstrate that tumors responding to PDT undergo approximately 85% change in StO2 by 24-hrs post-therapy while there is no significant change in StO2 values in the non-responding group. Furthermore, the 3D tumor StO2 maps predicted whether a tumor was likely to regrow at a later time point post-therapy. Information on the likelihood of tumor regrowth that normally would have been available only upon actual regrowth (10-30 days post treatment) in a xenograft tumor model, was available within 24-hrs of treatment using PAI, thus making early intervention a possibility. Given the advances and push towards availability of PAI in the clinical settings, the results of this study encourage applicability of PAI as an important step to guide and monitor therapies (e.g. PDT, radiation, anti-angiogenic) involving a change in StO2.
Collapse
|
72
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Hovhannisyan V, Guo HW, Hovhannisyan A, Ghukasyan V, Buryakina T, Chen YF, Dong CY. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:1355-1362. [PMID: 24877000 PMCID: PMC4026910 DOI: 10.1364/boe.5.001355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.
Collapse
Affiliation(s)
- V. Hovhannisyan
- Department of Physics, National Taiwan University, Taipei106, Taiwan
| | - H. W. Guo
- Department of Physics, National Taiwan University, Taipei106, Taiwan
| | - A. Hovhannisyan
- Multimedia &Programming, European Regional Education Academy, Yerevan, Armenia
| | - V. Ghukasyan
- Neuroscience Center, University of North Carolina at Chapel Hill, NC USA
| | - T. Buryakina
- Department of Physics, National Taiwan University, Taipei106, Taiwan
| | - Y. F. Chen
- Department of Physics, National Taiwan University, Taipei106, Taiwan
| | - C. Y. Dong
- Department of Physics, National Taiwan University, Taipei106, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
74
|
Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis Photodyn Ther 2013; 10:331-41. [PMID: 24284082 DOI: 10.1016/j.pdpdt.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is an elegant minimally invasive oncologic therapy. The clinical simplicity of photosensitizer (PS) drug application followed by appropriate illumination of target leading to the oxygen dependent tumor ablative Photodynamic Reaction (PDR) has gained this treatment worldwide acceptance. Yet the true potential of clinical PDT has not yet been achieved. This paper will review current mechanisms of action and treatment paradigms with critical commentary on means to potentially improve outcome using readily available clinical tools.
Collapse
Affiliation(s)
- Ron R Allison
- Medical Director 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| | | |
Collapse
|
75
|
Immunocytochemical studies on the nuclear ubiquitous casein and cyclin-dependent kinases substrate following 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 cells. Photodiagnosis Photodyn Ther 2013; 10:518-25. [PMID: 24284105 DOI: 10.1016/j.pdpdt.2013.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent data indicates that nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) may play role in tumor growth. In present study authors examined whether photodynamic therapy with 5-aminolevulinic acid (5-ALA) induces NUCKS expression in breast cancer cell line, MCF-7. METHODS In the experiment concentration of 5-ALA was 6.5mM. Excitation wavelength was 630 ± 20 nm, total light dose of light 5 or 10 J/cm(2) and irradiance 60 mW/cm(2) was used. Cells were collected at established time points and Western blot and immunocytochemical studies were performed using antibody against NUCKS. RESULTS Studies proved strong cytotoxic effects in cells following PDT with 6.5mM of precursor and 10 J/cm(2). Western blot analysis revealed the strongest expression of NUCKS at 7h after PDT. At next time points, 18 and 24h, expression of NUCKS decreased and became similar to that of control group. Further immunocytochemical studies showed very strong expression of NUCKS following PDT with 5-ALA and light irradiation of 5 J/cm(2). Early, at 0 h, that expression was predominantly seen in nuclei, while at 7h expression of NUCKS was observed in disseminated manner within entire cells in both nuclei and cytoplasm, with prevalence of cytoplasmic staining. CONCLUSIONS Authors suggest that NUCKS is involved in cellular responses following PDT, and since parallel induction of NUCKS and proapoptotic marker Bax and inhibition of anti-apoptotic Bcl-2 was observed, this protein might also be involved in induction of apoptosis following PDT.
Collapse
|
76
|
Ruiz-González R, Acedo P, Sánchez-García D, Nonell S, Cañete M, Stockert JC, Villanueva A. Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer. Eur J Med Chem 2013; 63:401-14. [PMID: 23517729 DOI: 10.1016/j.ejmech.2013.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
In the present study we analyze the photobiological properties of 2,7,12-tris(α-pyridinio-p-tolyl)-17-(p-(methoxymethyl)phenyl) porphycene (Py3MeO-TBPo) in Hela cells, in order to assess its potential as a new photosensitizer for photodynamic therapy of cultured tumor cells. Using 0.5 μM Py3MeO-TBPo, flow cytometry studies demonstrated an increase of intracellular drug levels related to the incubation time, reaching a maximum at 18 h. LysoTracker(®) Green (LTG) and MitoTracker(®) Green (MTG) probes were used to identify the subcellular localization. Upon exposure to ultraviolet excitation, red porphycene fluorescence was detected as red granules in the cytoplasm that colocalized with LTG. No significant toxic effects were detected for Py3MeO-TBPo in the dark at concentrations below 1 μM. In contrast, Py3MeO-TBPo combined with red-light irradiation induced concentration- and fluence-dependent HeLa cells inactivation. Besides, all photodynamic protocols assayed induced a clear effect of cell detachment inhibition after trypsin treatment. Both apoptotic and necrotic cell death mechanisms can occur in HeLa cells depending on the experimental protocol. After 18 h incubation with 0.5 μM Py3MeO-TBPo and subsequent red light irradiation (3.6 J/cm(2)), a high number of cells die by apoptosis, as evaluated by morphological alterations, immunofluorescent relocalization of Bax from cytosol to mitochondria, and TUNEL assay. Likewise, immunofluorescence techniques showed that cytochrome c is released from mitochondria into cytosol in cells undergoing apoptosis, which occurs immediately after relocation of Bax in mitochondria. The highest amount of apoptosis appeared 24 h after treatment (70%) and this cell death occurred without cell detachment to the substrate. In contrast, with 0.75 μM Py3MeO-TBPo and 3.6 J/cm(2) irradiation, morphological changes showed a preferential necrotic cell death. Singlet oxygen was identified as the cytotoxic agent involved in cell photoinactivation. Moreover, cell cultures pre-exposed to the singlet oxygen scavenger sodium azide showed pronounced protection against the loss of viability induced by Py3MeO-TBPo and light. Different changes in distribution and organization of cytoskeletal elements (microtubules and actin microfilaments) as well as the protein vinculin, after apoptotic and necrotic photodynamic treatments have been analyzed. Neither of these two cell death mechanisms (apoptosis or necrosis) induced cell detachment. In summary, Py3MeO-TBPo appears to meet the requirements for further scrutiny as a very good photosensitizer for photodynamic therapy: it is water soluble, has a high absorption in the red spectral region (where light penetration in tissue is higher), and is able to induce effective high apoptotic rate (70%) related to the more widely studied photosensitizers.
Collapse
Affiliation(s)
- Rubén Ruiz-González
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | | | | | | | | | | | | |
Collapse
|
77
|
Rumie Vittar NB, Lamberti MJ, Pansa MF, Vera RE, Rodriguez ME, Cogno IS, Milla Sanabria LN, Rivarola VA. Ecological photodynamic therapy: new trend to disrupt the intricate networks within tumor ecosystem. Biochim Biophys Acta Rev Cancer 2012; 1835:86-99. [PMID: 23127970 DOI: 10.1016/j.bbcan.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
Abstract
As with natural ecosystems, species within the tumor microenvironment are connected by pairwise interactions (e.g. mutualism, predation) leading to a strong interdependence of different populations on each other. In this review we have identified the ecological roles played by each non-neoplastic population (macrophages, endothelial cells, fibroblasts) and other abiotic components (oxygen, extracellular matrix) directly involved with neoplastic development. A way to alter an ecosystem is to affect other species within the environment that are supporting the growth and survival of the species of interest, here the tumor cells; thus, some features of ecological systems could be exploited for cancer therapy. We propose a well-known antitumor therapy called photodynamic therapy (PDT) as a novel modulator of ecological interactions. We refer to this as "ecological photodynamic therapy." The main goal of this new strategy is the improvement of therapeutic efficiency through the disruption of ecological networks with the aim of destroying the tumor ecosystem. It is therefore necessary to identify those interactions from which tumor cells get benefit and those by which it is impaired, and then design multitargeted combined photodynamic regimes in order to orchestrate non-neoplastic populations against their neoplastic counterpart. Thus, conceiving the tumor as an ecological system opens avenues for novel approaches on treatment strategies.
Collapse
Affiliation(s)
- N Belén Rumie Vittar
- Universidad Nacional de Río Cuarto, Biología Molecular, Ruta 36 Km 601, Río Cuarto (5800), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Milla Sanabria L, Rodríguez ME, Cogno IS, Rumie Vittar NB, Pansa MF, Lamberti MJ, Rivarola VA. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2012; 1835:36-45. [PMID: 23046998 DOI: 10.1016/j.bbcan.2012.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment. It involves the activation of a photosensitizer (PS) with light of specific wavelength, which interacts with molecular oxygen to generate singlet oxygen and other reactive oxygen species (ROS) that lead to tumor cell death. When a tumor is treated with PDT, in addition to affect cancer cells, the extracellular matrix and the other cellular components of the microenvironment are altered and finally this had effects on the tumor cells survival. Furthermore, the heterogeneity in the availability of nutrients and oxygen in the different regions of a tridimensional tumor has a strong impact on the sensitivity of cells to PDT. In this review, we summarize how PDT affects indirectly to the tumor cells, by the alterations on the extracellular matrix, the cell adhesion and the effects over the immune response. Also, we describe direct PDT effects on cancer cells, considering the intratumoral role that autophagy mediated by hypoxia-inducible factor 1 (HIF-1) has on the efficiency of the treatment.
Collapse
Affiliation(s)
- Laura Milla Sanabria
- Department of Molecular Biology, National University of Río Cuarto, Río Cuarto (5800), Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|