51
|
Arunmanee W, Ecoy GAU, Khine HEE, Duangkaew M, Prompetchara E, Chanvorachote P, Chaotham C. Colicin N Mediates Apoptosis and Suppresses Integrin-Modulated Survival in Human Lung Cancer Cells. Molecules 2020; 25:E816. [PMID: 32069989 PMCID: PMC7070259 DOI: 10.3390/molecules25040816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023] Open
Abstract
The inherent limitations, including serious side-effects and drug resistance, of current chemotherapies necessitate the search for alternative treatments especially for lung cancer. Herein, the anticancer activity of colicin N, bacteria-produced antibiotic peptide, was investigated in various human lung cancer cells. After 24 h of treatment, colicin N at 5-15 µM selectively caused cytotoxicity detected by MTT assay in human lung cancer H460, H292 and H23 cells with no noticeable cell death in human dermal papilla DPCs cells. Flow cytometry analysis of annexin V-FITC/propidium iodide indicated that colicin N primarily induced apoptosis in human lung cancer cells. The activation of extrinsic apoptosis evidenced with the reduction of c-FLIP and caspase-8, as well as the modulation of intrinsic apoptosis signaling proteins including Bax and Mcl-1 were observed via Western blot analysis in lung cancer cells cultured with colicin N (10-15 µM) for 12 h. Moreover, 5-15 µM of colicin N down-regulated the expression of activated Akt (p-Akt) and its upstream survival molecules, integrin β1 and αV in human lung cancer cells. Taken together, colicin N exhibits selective anticancer activity associated with suppression of integrin-modulated survival which potentiate the development of a novel therapy with high safety profile for treatment of human lung cancer.
Collapse
Affiliation(s)
- Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Gea Abigail U. Ecoy
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Department of Pharmacy, School of Health Care Professions, University of San Carlos, Cebu 6000, Philippines
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Eakachai Prompetchara
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (G.A.U.E.); (H.E.E.K.); (M.D.)
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
52
|
Dong M, Xiao Q, Hu J, Cheng F, Zhang P, Zong W, Tang Q, Li X, Mao F, He Y, Yu X, Wan F, Lei T, Guo D, Wang B. Targeting LRIG2 overcomes resistance to EGFR inhibitor in glioblastoma by modulating GAS6/AXL/SRC signaling. Cancer Gene Ther 2020; 27:878-897. [PMID: 31988476 DOI: 10.1038/s41417-020-0163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) gene amplification and mutation occurs most frequently in glioblastoma (GBM). However, EGFR-tyrosine kinase inhibitors (TKIs), including gefitinib, have not yet shown clear clinical benefit and the underlying mechanisms remain largely unexplored. We previously demonstrated that LRIG2 plays a protumorigenic role and functions as a modulator of multiple oncogenic receptor tyrosine kinases (RTKs) in GBM. We therefore hypothesized that LRIG2 might mediate the resistance to EGFR inhibitor through modulating other RTK signaling. In this study, we report that LRIG2 is induced by EGFR inhibitor in gefitinib-treated GBM xenografts or cell lines and promotes resistance to EGFR inhibition by driving cell cycle progression and inhibiting apoptosis in GBM cells. Mechanistically, LRIG2 increases the secretion of growth-arrest specific 6 (GAS6) and stabilizes AXL by preventing its proteasome-mediated degradation, leading to enhancement of the gefitinib-induced activation of AXL and then reactivation of the gefitinib-inhibited SRC. Targeting LRIG2 significantly sensitizes the GBM cells to gefitinib, and inhibition of the downstream GAS6/AXL/SRC signaling abrogates LRIG2-mediated gefitinib resistance in vitro and in vivo. Collectively, our findings uncover a novel mechanism in resistance to EGFR inhibition and provide a potential therapeutic strategy to overcome resistance to EGFR inhibition in GBM.
Collapse
Affiliation(s)
- Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qiaoying Tang
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
53
|
Haeger A, Alexander S, Vullings M, Kaiser FM, Veelken C, Flucke U, Koehl GE, Hirschberg M, Flentje M, Hoffman RM, Geissler EK, Kissler S, Friedl P. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med 2020; 217:e20181184. [PMID: 31658985 PMCID: PMC7037234 DOI: 10.1084/jem.20181184] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted β1 and αVβ3/β5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with β1 or αV integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-β1/αV integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by β1/αVβ3/β5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting.
Collapse
Affiliation(s)
- Anna Haeger
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Stephanie Alexander
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| | - Manon Vullings
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Fabian M.P. Kaiser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | - Uta Flucke
- Department of Pathology, Radboudumc, Nijmegen, Netherlands
| | - Gudrun E. Koehl
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Markus Hirschberg
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Edward K. Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Stephan Kissler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
54
|
Zhu Y, Yu F, Tan Y, Yuan H, Hu F. Strategies of targeting pathological stroma for enhanced antitumor therapies. Pharmacol Res 2019; 148:104401. [DOI: 10.1016/j.phrs.2019.104401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
|
55
|
Wang C, Wang T, Lv D, Li L, Yue J, Chen HZ, Xu L. Acquired Resistance to EGFR TKIs Mediated by TGFβ1/Integrin β3 Signaling in EGFR-Mutant Lung Cancer. Mol Cancer Ther 2019; 18:2357-2367. [PMID: 31501278 DOI: 10.1158/1535-7163.mct-19-0181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
Abstract
Investigation of novel molecular mechanisms is essential to develop strategies to overcome acquired resistance to EGFR tyrosine kinase inhibitors (TKI). Integrin has been demonstrated as a regulator of cancer progression. The aim of this study was to identify which specific integrins are involved and regulated in acquired resistance to EGFR TKIs in EGFR-mutant lung cancer. The expression levels of integrin subunits were examined in EGFR-mutant lung cancer cells and xenograft tumors with acquired resistance to EGFR TKIs. Manipulation of integrin β3 was performed to explore whether integrin β3 overexpression was associated with TKI resistance, anoikis resistance, EMT, and cancer stemness in resistant lung cancer. To explore the mechanism, TGFβ1 level was examined, and TGFβ1 inhibitor was then used. Integrin β3 was dramatically and consistently overexpressed in acquired gefitinib- or osimertinib-resistant lung cancer in vitro and in vivo Integrin β3 was also involved in the progression of lung adenocarcinoma. Antagonizing integrin β3 increased the TKI sensitivity and delayed the occurrence of TKI resistance in vitro and in vivo, as well as suppressed proliferation, anoikis resistance, and EMT phenotype in lung cancer cells. Overexpression of integrin β3 was also associated with the enhanced cancer stemness that was acquired in the development of resistance and suppressed by antagonizing integrin β3. Mechanistically, integrin β3 was induced by increased TGFβ1 levels in acquired TKI-resistant lung cancer. Our study identified the TGFβ1/integrin β3 axis as a promising target for combination therapy to delay or overcome acquired resistance to EGFR TKIs in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Caiyun Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dacheng Lv
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinnan Yue
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
56
|
Are Integrins Still Practicable Targets for Anti-Cancer Therapy? Cancers (Basel) 2019; 11:cancers11070978. [PMID: 31336983 PMCID: PMC6678560 DOI: 10.3390/cancers11070978] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Correlative clinical evidence and experimental observations indicate that integrin adhesion receptors, in particular those of the αV family, are relevant to cancer cell features, including proliferation, survival, migration, invasion, and metastasis. In addition, integrins promote events in the tumor microenvironment that are critical for tumor progression and metastasis, including tumor angiogenesis, matrix remodeling, and the recruitment of immune and inflammatory cells. In spite of compelling preclinical results demonstrating that the inhibition of integrin αVβ3/αVβ5 and α5β1 has therapeutic potential, clinical trials with integrin inhibitors targeting those integrins have repeatedly failed to demonstrate therapeutic benefits in cancer patients. Here, we review emerging integrin functions and their proposed contribution to tumor progression, discuss preclinical evidence of therapeutic significance, revisit clinical trial results, and consider alternative approaches for their therapeutic targeting in oncology, including targeting integrins in the other cells of the tumor microenvironment, e.g., cancer-associated fibroblasts and immune/inflammatory cells. We conclude that integrins remain a valid target for cancer therapy; however, agents with better pharmacological properties, alternative models for their preclinical evaluation, and innovative combination strategies for clinical testing (e.g., together with immuno-oncology agents) are needed.
Collapse
|
57
|
Xiao W, Ma W, Wei S, Li Q, Liu R, Carney RP, Yang K, Lee J, Nyugen A, Yoneda KY, Lam KS, Li T. High-affinity peptide ligand LXY30 for targeting α3β1 integrin in non-small cell lung cancer. J Hematol Oncol 2019; 12:56. [PMID: 31182116 PMCID: PMC6558829 DOI: 10.1186/s13045-019-0740-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND α3β1 integrin is a promising cancer biomarker and drug target. We previously identified a 9-amino-acid cyclic peptide LXY30 for detecting α3β1 integrin on the surface of live tumor cells. This study was undertaken to characterize LXY30 in the detection, cellular function, imaging, and targeted delivery of in vitro and in vivo non-small cell lung cancer (NSCLC) models. METHODS The whole-cell binding assay was performed by incubating NSCLC cells, extracellular vesicles (EVs), and peripheral blood mononuclear cells (PBMCs) with TentaGel resin beads coated with LXY30. In this study, we defined the nanosize EVs as exosomes, which were characterized by flow cytometry, transmission electron microscopy, dynamic light scattering, and Western blots. The function of LXY30 was determined by modulating the epidermal growth factor receptor (EGFR) signaling pathway by growth inhibition and Western blots. For in vivo biodistribution, mice bearing subcutaneous and intracranial NSCLC xenograft tumors were administrated intraveneously with LXY30-biotin/streptavidin-Cy5.5 complex and then analyzed for in vivo and ex vivo optical imaging and histopathology. RESULTS We showed that LXY30 specifically and sensitively detected α3β1 integrin-expressing NSCLC cells and tumor-derived exosomes. Tumor DNA isolated from LXY30-enriched plasma exosomes might be used to detect driver oncogenic mutations in patients with metastatic NSCLC. LXY30 only enriches tumor cells but not neutrophils, macrophages, or monocytes in the malignant pleural effusion of NSCLC patients for detecting genomic alterations by next-generation sequencing. LXY30 detected increased α3β1 integrin expression on the EGFR-mutant NSCLC cells with acquired resistance to erlotinib compared to parental erlotinib-sensitive EGFR-mutant NSCLC cells. We further showed that LXY30 modulated the EGFR signaling pathway independently from another peptide ligand LXW64 targeting αvβ3 integrin in erlotinib-resistant, EGFR-mutant H1975 cells. Analysis of The Cancer Genome Atlas (TCGA) revealed high α3 integrin expression was associated with poor prognosis in lung squamous cell carcinoma. LXY30-biotin/streptavidin-Cy5.5 complex had higher uptakes in the subcutaneous and intracranial xenografts of various α3β1 integrin-expressing lung adenocarcinoma and patient-derived lung squamous cell carcinoma xenografts while sparing the surrounding normal tissues. CONCLUSION LXY30 is a promising peptide for the cancer diagnosis and in vivo targeted delivery of imaging agents and cancer drugs in NSCLC, independent of histology and tumor genotype.
Collapse
Affiliation(s)
- Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
- Present Address: Department of Biochemistry, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianping Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
- Present Address: Department of Cardiothoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yi-Shan Road, Shanghai, 200233, China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Kevin Yang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
- Present Address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joyce Lee
- Department of Pharmacy, University of California Davis Health System, Sacramento, CA, 95817, USA
| | - Alan Nyugen
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Ken Y Yoneda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Internal Medicine, Veterans Affairs Northern California Health Care System, Mather, CA, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
- Department of Internal Medicine, Veterans Affairs Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
58
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
59
|
Park SH, Jo MJ, Kim BR, Jeong YA, Na YJ, Kim JL, Jeong S, Yun HK, Kim DY, Kim BG, Kang SH, Oh SC, Lee DH. Sonic hedgehog pathway activation is associated with cetuximab resistance and EPHB3 receptor induction in colorectal cancer. Am J Cancer Res 2019; 9:2235-2251. [PMID: 31149041 PMCID: PMC6531304 DOI: 10.7150/thno.30678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/17/2019] [Indexed: 02/06/2023] Open
Abstract
A major problem of colorectal cancer (CRC) targeted therapies is relapse caused by drug resistance. In most cases of CRC, patients develop resistance to anticancer drugs. Cetuximab does not show many of the side effects of other anticancer drugs and improves the survival of patients with metastatic CRC. However, the molecular mechanism of cetuximab resistance is not fully understood. Methods: EPHB3-mediated cetuximab resistance was confirmed by in vitro western blotting, colony-forming assays, WST-1 colorimetric assay, and in vivo xenograft models (n = 7 per group). RNA-seq analysis and receptor tyrosine kinase assays were performed to identify the cetuximab resistance mechanism of EPHB3. All statistical tests were two-sided. Results: The expression of EFNB3, which upregulates the EPHB3 receptor, was shown to be increased via microarray analysis. When resistance to cetuximab was acquired, EPHB3 protein levels increased. Hedgehog signaling, cancer stemness, and epithelial-mesenchymal transition signaling proteins were also increased in the cetuximab-resistant human colon cancer cell line SW48R. Despite cells acquiring resistance to cetuximab, STAT3 was still responsive to EGF and cetuximab treatment. Moreover, inhibition of EPHB3 was associated with decreased STAT3 activity. Co-immunoprecipitation confirmed that EGFR and EPHB3 bind to each other and this binding increases upon resistance acquisition, suggesting that STAT3 is activated by the binding between EGFR and EPHB3. Protein levels of GLI-1, SOX2, and Vimentin, which are affected by STAT3, also increased. Similar results were obtained in samples from patients with CRC. Conclusion: EPHB3 expression is associated with anticancer drug resistance.
Collapse
|
60
|
Creelan BC, Gray JE, Tanvetyanon T, Chiappori AA, Yoshida T, Schell MJ, Antonia SJ, Haura EB. Phase 1 trial of dasatinib combined with afatinib for epidermal growth factor receptor- (EGFR-) mutated lung cancer with acquired tyrosine kinase inhibitor (TKI) resistance. Br J Cancer 2019; 120:791-796. [PMID: 30880334 PMCID: PMC6474279 DOI: 10.1038/s41416-019-0428-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bypass activation of Src family kinases can confer resistance to EGFR tyrosine kinase inhibitors (TKIs) based on preclinical models. We prospectively assessed the safety and clinical activity of dasatinib and afatinib in combination for patients with resistant EGFR-mutant lung cancer. METHODS An open-label, dose-escalation phase 1/2 trial (NCT01999985) with 2-stage expansion was conducted with 25 lung cancer patients. Dose expansion required activating EGFR mutations and progression following prior EGFR TKI. RESULTS Patients were 72% Caucasian and received median of 2 prior lines of therapy. Maximum-tolerated dose was 30 mg afatinib with 100 mg dasatinib. New or increased pleural effusions were observed in 56% of patients. No radiologic responses were observed, although several EGFR-mutant TKI-resistant patients (26%) had prolonged stable disease over 6 months. The combination reduced the EGFR mutation and T790M variant allele frequency in cell-free DNA (p < .05). Nonetheless, the threshold for futility was met, based on 6-month progression-free survival. For EGFR TKI-resistant patients, median progression-free survival was 3.7 months (95% confidence interval (CI), 2.3-5.0) and overall survival was 14.7 months (95% CI, 8.5-20.9). CONCLUSIONS The combination had a manageable toxicity profile and in vivo T790M modulation, but no objective clinical responses were observed.
Collapse
Affiliation(s)
- Ben C Creelan
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA.
| | - Jhanelle E Gray
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Tawee Tanvetyanon
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Alberto A Chiappori
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Takeshi Yoshida
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2, Ono-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Scott J Antonia
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Eric B Haura
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| |
Collapse
|
61
|
PKM2 Involved in Neuronal Apoptosis on Hypoxic-ischemic Encephalopathy in Neonatal Rats. Neurochem Res 2019; 44:1602-1612. [PMID: 30911983 DOI: 10.1007/s11064-019-02784-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Pyruvate Kinase isozymes M2 (PKM2) is a glycolytic enzyme involved in glycolysis that decarboxylates phosphoenolpyruvate to pyruvate and generates ATP. PKM2 also plays a significant role in tumor growth, in cell division, angiogenesis, apoptosis and metastasis. In this study, we have investigated the role of PKM2 in cortical neurons which suffered hypoxic-ischemic encephalopathy (HIE) in newborn rats. Immunohistochemistry and Western blot analysis revealed the protein expression of PKM2 peaking at 24 h after HIE. Double immunofluorescence labeling showed that PKM2 was mainly located in the neurons of the ipsilateral cerebral cortex, not in astrocytes or microglia. The increased level of active caspase-3 and the decreased level of phosphorylated AKT (p-AKT) were consistent with the PKM2 expression. TUNEL staining assay showed that PKM2 may participate in neuronal apoptosis in the rat ipsilateral cerebral cortex. Silencing of PKM2 in primary cultures of cortical neurons using a specific siRNA reduced the expression of active caspase-3 and upregulated p-AKT expression. Taken together, the results indicate that PKM2 may be involved in neuronal apoptosis after HIE by a mechanism dependent on the inactivation of p-AKT.
Collapse
|
62
|
Sökeland G, Schumacher U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer 2019; 18:12. [PMID: 30657059 PMCID: PMC6337777 DOI: 10.1186/s12943-018-0937-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Formation of distant metastases is by far the most common cause of cancer-related deaths. The process of metastasis formation is complex, and within this complex process the formation of migratory cells, the so called epithelial mesenchymal transition (EMT), which enables cancer cells to break loose from the primary tumor mass and to enter the bloodstream, is of particular importance. To break loose from the primary cancer, cancer cells have to down-regulate the cell-to-cell adhesion molecuIes (CAMs) which keep them attached to neighboring cancer cells. In contrast to this downregulation of CAMS in the primary tumor, cancer cells up-regulate other types of CAMs, that enable them to attach to the endothelium in the organ of the future metastasis. During EMT, the expression of cell-to-cell and cell-to-matrix adhesion molecules and their down- and upregulation is therefore critical for metastasis formation. Tumor cells mimic leukocytes to enable transmigration of the endothelial barrier at the metastatic site. The attachment of leukocytes/cancer cells to the endothelium are mediated by several CAMs different from those at the site of the primary tumor. These CAMs and their ligands are organized in a sequential row, the leukocyte adhesion cascade. In this adhesion process, integrins and their ligands are centrally involved in the molecular interactions governing the transmigration. This review discusses the integrin expression patterns found on primary tumor cells and studies whether their expression correlates with tumor progression, metastatic capacity and prognosis. Simultaneously, further possible, but so far unclearly characterized, alternative adhesion molecules and/or ligands, will be considered and emerging therapeutic possibilities reviewed.
Collapse
Affiliation(s)
- Greta Sökeland
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
63
|
Sukrithan V, Deng L, Barbaro A, Cheng H. Emerging drugs for EGFR-mutated non-small cell lung cancer. Expert Opin Emerg Drugs 2018; 24:5-16. [PMID: 30570396 DOI: 10.1080/14728214.2018.1558203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with metastatic non-small-cell lung cancer (NSCLC) harboring sensitizing EGFR mutations. However, these agents are associated with inevitable treatment resistance. Newer generations of TKIs are under development that may prevent or overcome resistance and enhance intracranial activity. Areas covered: In this review, we will discuss newer generations of EGFR TKIs for EGFR-mutated NSCLC. We will also address resistance mutations and escape pathways associated with these agents such as secondary mutations, downstream signaling, bypass pathways, phenotypic transformation, anti-apoptotic signaling, immune evasion, and angiogenesis. Furthermore, this article encompasses emerging data from combination trials with next-generation TKIs that are being pursued to delay or prevent the occurrence of resistance. Expert opinion: The promise and challenge of precision oncology is encapsulated in the treatment of EGFR-mutated NSCLC with TKIs. Third generation TKIs have shown superior efficacy in the front-line setting and have become standard of care. A better understanding of mechanisms of treatment failure and disease relapse will be required to develop novel therapeutic strategies to further improve patient outcomes in the future.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Lei Deng
- b Department of Medicine , Jacobi Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Alexander Barbaro
- c Department of Medicine , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
64
|
Chen S, Yang SY, Chen Z, Tan Y, Jiang YY, Chen YZ. Drug sales confirm clinical advantage of multi‐target inhibition of drug escapes by anticancer kinase inhibitors. Drug Dev Res 2018; 80:246-252. [PMID: 30422335 DOI: 10.1002/ddr.21486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Shangying Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and TherapeuticsShenzhen Kivita Innovative Drug Discovery Institute Guangdong P. R. China
| | - Sheng Yong Yang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, West China School of MedicineSichuan University Chengdu China
| | - Zhe Chen
- Zhejiang Key Laboratory of Gastro‐intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese MedicineZhejiang Chinese Medical University Hangzhou China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and TherapeuticsShenzhen Kivita Innovative Drug Discovery Institute Guangdong P. R. China
| | - Yu Yang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and TherapeuticsShenzhen Kivita Innovative Drug Discovery Institute Guangdong P. R. China
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of PharmacyNational University of Singapore Singapore Singapore
| |
Collapse
|
65
|
Mashimo K, Tsubaki M, Takeda T, Asano R, Jinushi M, Imano M, Satou T, Sakaguchi K, Nishida S. RANKL-induced c-Src activation contributes to conventional anti-cancer drug resistance and dasatinib overcomes this resistance in RANK-expressing multiple myeloma cells. Clin Exp Med 2018; 19:133-141. [DOI: 10.1007/s10238-018-0531-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
|
66
|
Abstract
While cancer cell proliferation depends on access to extracellular nutrients, inadequate tumour perfusion means that glucose, amino acids and lipids are often in short supply. To overcome this obstacle to growth, cancer cells utilize multiple scavenging strategies, obtaining macromolecules from the microenvironment and breaking them down in the lysosome to produce substrates for ATP generation and anabolism. Recent studies have revealed four scavenging pathways that support cancer cell proliferation in low-nutrient environments: scavenging of extracellular matrix proteins via integrins, receptor-mediated albumin uptake and catabolism, macropinocytic consumption of multiple components of the tumour microenvironment and the engulfment and degradation of entire live cells via entosis. New evidence suggests that blocking these pathways alone or in combination could provide substantial benefits to patients with incurable solid tumours. Both US Food and Drug Administration (FDA)-approved drugs and several agents in preclinical or clinical development shut down individual or multiple scavenging pathways. These therapies may increase the extent and durability of tumour growth inhibition and/or prevent the development of resistance when used in combination with existing treatments. This Review summarizes the evidence suggesting that scavenging pathways drive tumour growth, highlights recent advances that define the oncogenic signal transduction pathways that regulate scavenging and considers the benefits and detriments of therapeutic strategies targeting scavenging that are currently under development.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Vaishali Jayashankar
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
67
|
Abstract
Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
Collapse
Affiliation(s)
- Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
68
|
Yamazaki S, Higuchi Y, Ishibashi M, Hashimoto H, Yasunaga M, Matsumura Y, Tsuchihara K, Tsuboi M, Goto K, Ochiai A, Ishii G. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway. Cancer Sci 2018; 109:2063-2073. [PMID: 29701925 PMCID: PMC5989854 DOI: 10.1111/cas.13624] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P < .05). Collagen type I induces mTOR activation through an Akt-independent pathway, which results in EGFR-TKI resistance. Combination therapy using EGFR-TKI and mTOR inhibitor could be a possible strategy to combat this resistance.
Collapse
Affiliation(s)
- Shota Yamazaki
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Youichi Higuchi
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masayuki Ishibashi
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hiroko Hashimoto
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masahiro Yasunaga
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Yasuhiro Matsumura
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Katsuya Tsuchihara
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Genome Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Atsushi Ochiai
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| |
Collapse
|
69
|
Das TK, Esernio J, Cagan RL. Restraining Network Response to Targeted Cancer Therapies Improves Efficacy and Reduces Cellular Resistance. Cancer Res 2018; 78:4344-4359. [DOI: 10.1158/0008-5472.can-17-2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/04/2017] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
|
70
|
Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene 2018; 37:4300-4312. [PMID: 29717264 PMCID: PMC6072709 DOI: 10.1038/s41388-018-0276-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
All lung cancers patients with epidermal growth factor receptor (EGFR) mutation inevitably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). In up to 30% of cases, the mechanism underlying acquired resistance remains unknown. MicroRNAs (miRNAs) is a group of small non-coding RNAs commonly dysregulated in human cancers and have been implicated in therapy resistance. The aim of this study was to understand the roles of novel miRNAs in acquired EGFR TKI resistance in EGFR-mutant non-small cell lung cancer (NSCLC). Here, we reported the evidence of miR-483-3p silencing and epithelial-to-mesenchymal transition (EMT) phenotype in both in vitro and in vivo EGFR-mutant NSCLC models with acquired resistance to gefitinib. In those tumor models, forced expression of miR-483-3p efficiently increased sensitivity of gefitinib-resistant lung cancer cells to gefitinib by inhibiting proliferation and promoting apoptosis. Moreover, miR-483-3p reversed EMT and inhibited migration, invasion, and metastasis of gefitinib-resistant lung cancer cells. Mechanistically, miR-483-3p directly targeted integrin β3, and thus repressed downstream FAK/Erk signaling pathway. Furthermore, the silencing of miR-483-3p in gefitinib-resistant lung cancer cells was due to hypermethylation of its own promoter. Taken together, our data identify miR-483-3p as a promising target for combination therapy to overcome acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
|
71
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
72
|
β1-Integrin Impacts Rad51 Stability and DNA Double-Strand Break Repair by Homologous Recombination. Mol Cell Biol 2018; 38:MCB.00672-17. [PMID: 29463647 DOI: 10.1128/mcb.00672-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying resistance to radiotherapy in breast cancer cells remain elusive. Previously, we reported that elevated β1-integrin is associated with enhanced breast cancer cell survival postirradiation, but how β1-integrin conferred radioresistance was unclear. Ionizing radiation (IR) induced cell killing correlates with the efficiency of DNA double-strand break (DSB) repair, and we found that nonmalignant breast epithelial (S1) cells with low β1-integrin expression have a higher frequency of S-phase-specific IR-induced chromosomal aberrations than the derivative malignant breast (T4-2) cells with high β1-integrin expression. In addition, there was an increased frequency of IR-induced homologous recombination (HR) repairosome focus formation in T4-2 cells compared with that of S1 cells. Cellular levels of Rad51 in T4-2 cells, a critical factor in HR-mediated DSB repair, were significantly higher. Blocking or depleting β1-integrin activity in T4-2 cells reduced Rad51 levels, while ectopic expression of β1-integrin in S1 cells correspondingly increased Rad51 levels, suggesting that Rad51 is regulated by β1-integrin. The low level of Rad51 protein in S1 cells was found to be due to rapid degradation by the ubiquitin proteasome pathway (UPP). Furthermore, the E3 ubiquitin ligase RING1 was highly upregulated in S1 cells compared to T4-2 cells. Ectopic β1-integrin expression in S1 cells reduced RING1 levels and increased Rad51 accumulation. In contrast, β1-integrin depletion in T4-2 cells significantly increased RING1 protein levels and potentiated Rad51 ubiquitination. These data suggest for the first time that elevated levels of the extracellular matrix receptor β1-integrin can increase tumor cell radioresistance by decreasing Rad51 degradation through a RING1-mediated proteasomal pathway.
Collapse
|
73
|
Watari K, Nishitani A, Shibata T, Noda M, Kawahara A, Akiba J, Murakami Y, Yano H, Kuwano M, Ono M. Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma. Oncotarget 2018; 7:47403-47417. [PMID: 27329724 PMCID: PMC5216950 DOI: 10.18632/oncotarget.10161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Although recent studies facilitate the identification of crucial genes and relevant regulatory pathways, therapeutic approaches against advanced HCC are insufficiently effective. Therefore, we aimed here to develop potent therapeutics to provide a reliable biomarker for the therapeutic efficacy in patients with HCC. To this end, we first compared the cytotoxic effects of various anti-cancer drugs between well differentiated (HAK-1A) and poorly differentiated (HAK-1B) cell lines established from a single HCC tumor. Of various drug screened, HAK-1B cells were more sensitive by a factor of 2,000 to the mTORC1 inhibitors (rapalogs), rapamycin and everolimus, than HAK-1A cells. Although rapalogs inhibited phosphorylation of mTOR Ser2448 in HAK-1A and HAK-1B cells, phosphorylation of mTOR Ser2481 was specifically inhibited only in HAK-1B cells. Silencing of Raptor induced apoptosis and inhibited the growth of only HAK-1B cells. Further, three other cell lines established independently from the tumors of three patients with HCC were also approximately 2,000-fold times more sensitive to rapamycin, which correlated closely with the inhibition of mTOR Ser2481 phosphorylation by rapamycin. Treatment with everolimus markedly inhibited the growth of tumors induced by poorly differentiated HAK-1B and KYN-2 cells and phosphorylation of mTOR Ser2481 in vivo. To our knowledge, this is the first study showing that the phosphorylation of mTOR Ser2481 is selectively inhibited by rapalogs in mTORC1-addicted HCC cells and may be a potential reliable biomarker for the therapeutic efficacy of rapalogs for treating HCC patients.
Collapse
Affiliation(s)
- Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Nishitani
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Noda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
74
|
Nakanishi T, Menju T, Nishikawa S, Takahashi K, Miyata R, Shikuma K, Sowa T, Imamura N, Hamaji M, Motoyama H, Hijiya K, Aoyama A, Sato T, Chen‐Yoshikawa TF, Sonobe M, Date H. The synergistic role of ATP-dependent drug efflux pump and focal adhesion signaling pathways in vinorelbine resistance in lung cancer. Cancer Med 2018; 7:408-419. [PMID: 29318780 PMCID: PMC5806107 DOI: 10.1002/cam4.1282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
The vinorelbine (VRB) plus cisplatin regimen is widely used to treat non-small cell lung cancer (NSCLC), but its cure rate is poor. Drug resistance is the primary driver of chemotherapeutic failure, and the causes of resistance remain unclear. By focusing on the focal adhesion (FA) pathway, we have highlighted a signaling pathway that promotes VRB resistance in lung cancer cells. First, we established VRB-resistant (VR) lung cancer cells (NCI-H1299 and A549) and examined its transcriptional changes, protein expressions, and activations. We treated VR cells by Src Family Kinase (SFK) inhibitors or gene silencing and examined cell viabilities. ATP-binding Cassette Sub-family B Member 1 (ABCB1) was highly expressed in VR cells. A pathway analysis and western blot analysis revealed the high expression of integrins β1 and β3 and the activation of FA pathway components, including Src family kinase (SFK) and AKT, in VR cells. SFK involvement in VRB resistance was confirmed by the recovery of VRB sensitivity in FYN knockdown A549 VR cells. Saracatinib, a dual inhibitor of SFK and ABCB1, had a synergistic effect with VRB in VR cells. In conclusion, ABCB1 is the primary cause of VRB resistance. Additionally, the FA pathway, particularly integrin, and SFK, are promising targets for VRB-resistant lung cancer. Further studies are needed to identify clinically applicable target drugs and biomarkers that will improve disease prognoses and predict therapeutic efficacies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenosine Triphosphate/pharmacology
- Adult
- Aged
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/metabolism
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- Female
- Focal Adhesions/drug effects
- Focal Adhesions/metabolism
- Focal Adhesions/pathology
- Follow-Up Studies
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- Signal Transduction/drug effects
- Survival Rate
- Tumor Cells, Cultured
- Vinorelbine/pharmacology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Takao Nakanishi
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of Thoracic SurgeryKobe‐City Nishi‐Kobe Medical CenterKobeJapan
| | - Toshi Menju
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Koji Takahashi
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryo Miyata
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kei Shikuma
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Terumasa Sowa
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naoto Imamura
- Department of Thoracic SurgeryJapanese Red Cross Wakayama Medical CenterWakayamaJapan
| | - Masatsugu Hamaji
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideki Motoyama
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kyoko Hijiya
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Akihiro Aoyama
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshihiko Sato
- Institute for Advancement of Clinical and Translational ScienceKyoto University HospitalKyotoJapan
| | | | - Makoto Sonobe
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroshi Date
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
75
|
Phan ANH, Hua TNM, Kim MK, Vo VTA, Choi JW, Kim HW, Rho JK, Kim KW, Jeong Y. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 2018; 7:54702-54713. [PMID: 27419630 PMCID: PMC5342374 DOI: 10.18632/oncotarget.10581] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/30/2016] [Indexed: 01/15/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have clinically benefited to lung cancer patients harboring a subset of activating EGFR mutations. However, even with the remarkable therapeutic response at the initial TKI treatment, most lung cancer patients eventually have relapsed aggressive tumors due to acquired resistance to the TKIs. Here, we report that 3, 4, 5-trihydroxybenzoic acid or gallic acid (GA), a natural polyphenolic compound, shows anti-tumorigenic effects in TKI-resistant non-small cell lung cancer (NSCLC). Using both in vitro growth assay and in vivo xenograft animal model, we demonstrated tumor suppressive effect of GA was more selective for the TKI-resistant cancer compared to the TKI-sensitive one. Mechanistically, GA treatment inhibited Src-Stat3-mediated signaling and decreased the expression of Stat3-regulated tumor promoting genes, subsequently inducing apoptosis and cell cycle arrest in the TKI-resistant lung cancer but not in the TKI-sensitive one. Consistent with the in vitro results, in vivo xenograft experiments showed the TKI-resistant tumor-selective growth inhibition and suppression of Src-Stat3-dependent signaling in the GA-treated tumors isolated from the xenograft model. This finding identified an importance of Src-Stat3 signaling cascade in GA-mediated tumor-suppression activity and, more importantly, provides a novel therapeutic insight of GA for advanced TKI-resistant lung cancer.
Collapse
Affiliation(s)
- Ai N H Phan
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Institute of Lifestyle Medicine, Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Institute of Lifestyle Medicine, Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Min-Kyu Kim
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Institute of Lifestyle Medicine, Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Institute of Lifestyle Medicine, Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jong-Whan Choi
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Hyun-Won Kim
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jin Kyung Rho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Ki Woo Kim
- Department of Global Medical Science, Institute of Lifestyle Medicine, Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Institute of Lifestyle Medicine, Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
76
|
Kim N, Cho A, Watanabe H, Choi YL, Aziz M, Kassner M, Joung JG, Park AKJ, Francis JM, Bae JS, Ahn SM, Kim KM, Park JO, Park WY, Ahn MJ, Park K, Koo J, Yin HH, Cho J. Integrated genomic approaches identify upregulation of SCRN1 as a novel mechanism associated with acquired resistance to erlotinib in PC9 cells harboring oncogenic EGFR mutation. Oncotarget 2017; 7:13797-809. [PMID: 26883194 PMCID: PMC4924679 DOI: 10.18632/oncotarget.7318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/27/2016] [Indexed: 12/24/2022] Open
Abstract
Therapies targeting the tyrosine kinase activity of Epidermal Growth Factor Receptor (EGFR) have been proven to be effective in treating a subset of non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations. Inevitably these patients develop resistance to the EGFR-targeted tyrosine kinase inhibitors (TKIs). Here, we performed integrated genomic analyses using an in vitro system to uncover alternative genomic mechanisms responsible for acquired resistance to EGFR-TKIs. Specifically, we identified 80 genes whose expression is significantly increased in the erlotinib-resistant clones. RNAi-based systematic synthetic lethal screening of these candidate genes revealed that suppression of one upregulated transcript, SCRN1, a secernin family member, restores sensitivity to erlotinib by enhancing inhibition of PI3K/AKT signaling pathway. Furthermore, immunohistochemical analysis revealed increased levels of SCRN1 in 5 of 11 lung tumor specimens from EGFR-TKIs resistant patients. Taken together, we propose that upregulation of SCRN1 is an additional mechanism associated with acquired resistance to EGFR-TKIs and that its suppression serves as a novel therapeutic strategy to overcome drug resistance in these patients.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of NanoBio Medical Science, Dankook University, Cheonan 31116, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-967, Republic of Korea
| | - Ahye Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-967, Republic of Korea
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-967, Republic of Korea.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-967, Republic of Korea
| | - Meraj Aziz
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | - Michelle Kassner
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-967, Republic of Korea
| | - Angela Kyung-Joo Park
- Department of NanoBio Medical Science, Dankook University, Cheonan 31116, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-967, Republic of Korea
| | - Joshua M Francis
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-967, Republic of Korea
| | - Soo-Min Ahn
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-967, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-967, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-967, Republic of Korea
| | - Woong-Yang Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-967, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul 135-967, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-967, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-967, Republic of Korea
| | - Jaehyung Koo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Hongwei Holly Yin
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | - Jeonghee Cho
- Department of NanoBio Medical Science, Dankook University, Cheonan 31116, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 135-967, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul 135-967, Republic of Korea
| |
Collapse
|
77
|
Yamaoka T, Ohba M, Ohmori T. Molecular-Targeted Therapies for Epidermal Growth Factor Receptor and Its Resistance Mechanisms. Int J Mol Sci 2017; 18:ijms18112420. [PMID: 29140271 PMCID: PMC5713388 DOI: 10.3390/ijms18112420] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer therapies targeting epidermal growth factor receptor (EGFR), such as small-molecule kinase inhibitors and monoclonal antibodies, have been developed as standard therapies for several cancers, such as non-small cell lung cancer, colorectal cancer, pancreatic cancer, breast cancer, and squamous cell carcinoma of the head and neck. Although these therapies can significantly prolong progression-free survival, curative effects are not often achieved because of intrinsic and/or acquired resistance. The resistance mechanisms to EGFR-targeted therapies can be categorized as resistant gene mutations, activation of alternative pathways, phenotypic transformation, and resistance to apoptotic cell death. Analysis of the processes that modulate EGFR signal transduction by EGFR-targeted inhibitors, such as tyrosine kinase inhibitors and monoclonal antibodies, has revealed new therapeutic opportunities and has elucidated novel mechanisms contributing to the discovery of more effective anticancer treatments. In this review, we discuss the roles of EGFR in cancer development, therapeutic strategies for targeting EGFR, and resistance mechanisms to EGFR-targeted therapies, with a focus on cancer therapies for individual patients.
Collapse
Affiliation(s)
- Toshimitsu Yamaoka
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Motoi Ohba
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Tohru Ohmori
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
78
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
79
|
Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol 2017; 11:1430-1447. [PMID: 28675785 PMCID: PMC5623821 DOI: 10.1002/1878-0261.12109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
AXL receptor tyrosine kinase (RTK) inhibition presents a promising therapeutic strategy for aggressive tumor subtypes, as AXL signaling is upregulated in many cancers resistant to first-line treatments. Furthermore, the AXL ligand growth arrest-specific gene 6 (GAS6) has recently been linked to cancer drug resistance. Here, we established that challenging conditions, such as serum deprivation, divide AXL-overexpressing tumor cell lines into non-self-sustaining and self-sustaining subtypes in 3D spheroid culture. Self-sustaining cells are characterized by excessive GAS6 secretion and TAM-PDK-RSK-mTOR pathway activation. In 3D spheroid culture, the activation of the TAM-PDK-RSK-mTOR pathway proves crucial following treatment with AXL/MET inhibitor BMS777607, when the self-sustaining tumor cells react with TAM-RSK hyperactivation and enhanced SRC-AKT-mTOR signaling. Thus, bidirectional activated mTOR leads to enhanced proliferation and counteracts the drug effect. mTOR activation is accompanied by an enhanced AXL expression and hyperphosphorylation following 24 h of treatment with BMS777607. Therefore, we elucidate a double role of AXL that can be assigned to RSK-mTOR as well as SRC-AKT-mTOR pathway activation, specifically through AXL Y779 phosphorylation. This phosphosite fuels the resistance mechanism in 3D spheroids, alongside further SRC-dependent EGFR Y1173 and/or MET Y1349 phosphorylation which is defined by the cell-specific addiction. In conclusion, self-sustenance in cancer cells is based on a signaling synergy, individually balanced between GAS6 TAM-dependent PDK-RSK-mTOR survival pathway and the AXLY779/EGFR/MET-driven SRC-mTOR pathway.
Collapse
Affiliation(s)
- Christine Baumann
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Axel Ullrich
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Robert Torka
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany,Institute of Physiological ChemistryUniversity Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
80
|
Theret L, Jeanne A, Langlois B, Hachet C, David M, Khrestchatisky M, Devy J, Hervé E, Almagro S, Dedieu S. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 2017; 8:78614-78632. [PMID: 29108253 PMCID: PMC5667986 DOI: 10.18632/oncotarget.20201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
LRP-1 is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. LRP-1 was reported to control focal adhesion turnover to optimize the adhesion-deadhesion balance to support invasion. To better understand how LRP-1 coordinates cell-extracellular matrix interface, we explored its ability to regulate cell surface integrins in thyroid carcinomas. Using an antibody approach, we demonstrated that β1-integrin levels were increased at the plasma membrane under LRP1 silencing or upon RAP treatment, used as LRP-1 antagonist. Our data revealed that LRP-1 binds with both inactive and active β1-integrin conformations and identified the extracellular ligand-binding domains II or IV of LRP-1 as sufficient to bind β1-integrin. Using a recombinant β1-integrin, we demonstrated that LRP-1 acts as a regulator of β1-integrin intracellular traffic. Moreover, RAP or LRP-1 blocking antibodies decreased up to 36% the number of β1-integrin-containing endosomes. LRP-1 blockade did not significantly affect the levels of β1-integrin-containing lysosomes while decreasing localization of β1-integrin within Rab-11 positive vesicles. Overall, we identified an original molecular process in which LRP-1 acts as a main regulator of β1-integrin internalization and recycling in thyroid cancer cells.
Collapse
Affiliation(s)
- Louis Theret
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Albin Jeanne
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France.,SATT Nord, Lille, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Cathy Hachet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Marion David
- VECT-HORUS SAS, Faculté de Médecine Secteur Nord, Marseille, France
| | | | - Jérôme Devy
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Emonard Hervé
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Sébastien Almagro
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
81
|
Murakami Y, Sonoda K, Abe H, Watari K, Kusakabe D, Azuma K, Kawahara A, Akiba J, Oneyama C, Pachter JA, Sakai K, Nishio K, Kuwano M, Ono M. The activation of SRC family kinases and focal adhesion kinase with the loss of the amplified, mutated EGFR gene contributes to the resistance to afatinib, erlotinib and osimertinib in human lung cancer cells. Oncotarget 2017; 8:70736-70751. [PMID: 29050315 PMCID: PMC5642590 DOI: 10.18632/oncotarget.19982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/18/2017] [Indexed: 11/28/2022] Open
Abstract
Second- and third-generation inhibitors of epidermal growth factor receptor (EGFR) tyrosine kinase activity (EGFR-TKIs) are improving the treatment of patients with non-small cell lung cancer. Here we established two sublines (BR1-8 and BR2-3) resistant to a second-generation inhibitor, afatinib, from the human lung cancer cell line HCC827 that harbors a mutation that activates the tyrosine kinase activity of EGFR. These afatinib-resistant sublines were resistant to first-generation EGFR-TKIs, gefitinib and erlotinib, and a third-generation EGFR-TKI, osimertinib. These resistant sublines showed markedly reduced levels of multiple EGFR family proteins, including the activated mutant EGFR, and complete loss of EGFR amplification as compared with their parental HCC827 cells harboring amplification of EGFR gene. Treatment with the multikinase inhibitor dasatinib or transfection with a SRC small interfering RNA inhibited cell survival and AKT phosphorylation in drug-resistant sublines to a greater extent compared with HCC827 cells. Further, the migration of drug-resistant cells was greater compared with that of HCC827 cells and was inhibited by dasatinib or an FAK inhibitor. These findings indicate that compensatory activation of SRC family kinases (SFKs) and FAK supports the survival and migration of afatinib-resistant cells when the expression of multiple EGFR family proteins was mostly abrogated. Combinations of potent drugs that target SFKs and FAK may overcome the resistance of lung cancer cells to second-generation TKIs.
Collapse
Affiliation(s)
- Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Fukuoka, Japan
| | - Kahori Sonoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Kusakabe
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Chitose Oneyama
- Division of Microbiology and Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Kazuko Sakai
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
82
|
Lu C, Cui C, Liu B, Zou S, Song H, Tian H, Zhao J, Li Y. FERMT3 contributes to glioblastoma cell proliferation and chemoresistance to temozolomide through integrin mediated Wnt signaling. Neurosci Lett 2017; 657:77-83. [PMID: 28778805 DOI: 10.1016/j.neulet.2017.07.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
Abstract
FERMT3, also known as kindlin-3, is one of three kindlin family members expressed in mammals. Kindlins are cytosolic, adaptor proteins that are important activators and regulators of integrin function. They have also been shown to play critical roles in the development and progression of various cancers. In the present study, we hypothesized that FERMT3 would enhance glioblastoma multiforme (GBM) cell survival. Indeed, expression level analyses showed significant FERMT3 upregulation in human glioma tissues as compared to normal brain tissues. The effect was particularly pronounced in high-grade gliomas. We then demonstrated that FERMT3 knockdown suppresses glioma cell proliferation and chemoresistance to temozolomide (TMZ). To determine the mechanism by which FERMT3 enhances glioma cell proliferation and chemoresistance, we examined the effects of FERMT3 on integrin activation and Wnt/β-catenin signaling. Through the use of western blot assays and TOPflash and FOPflash plasmid transfection into glioma cells lines, we demonstrated that FERMT3 regulates glioma cell activity through integrin-mediated Wnt/β-catenin signaling. These results suggest that FERMT3 activates integrin activity in high-grade gliomas to enhance glioma cell survival and chemoresistance. The present study thus indicates a potential role for FERMT3 as a genetic target in the treatment of GBM.
Collapse
Affiliation(s)
- Chunhe Lu
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Chengzhi Cui
- Department of Neurosurgery, Dalian Municipal Central Hosptial, Dalian 116033, China
| | - Bo Liu
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Shufang Zou
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Hongwei Song
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Hongfei Tian
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Jiang Zhao
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China; Department of Neurosurgery, Shanghai Fourth People's Hospital, Shanghai 200081, China.
| | - Yan Li
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China; Department of Rehabilitation, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
83
|
Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem 2017; 398:721-735. [PMID: 28002024 DOI: 10.1515/hsz-2016-0326] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.
Collapse
Affiliation(s)
| | - Nils Cordes
- , Faculty of Medicine and University Hospital Carl Gustav Carus
| |
Collapse
|
84
|
Leight JL, Drain AP, Weaver VM. Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer L. Leight
- Department of Biomedical Engineering and The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Allison P. Drain
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
85
|
Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep 2017; 7:43612. [PMID: 28252668 PMCID: PMC5333632 DOI: 10.1038/srep43612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/26/2017] [Indexed: 01/12/2023] Open
Abstract
VEGF and VEGFR antibodies have been used as a therapeutic strategy to inhibit angiogenesis in many diseases; however, frequent and repeated administration of these antibodies to patients induces immunogenicity. In previous studies, we demonstrated that aggretin, a heterodimeric snake venom C-type lectin, exhibits pro-angiogenic activities via integrin α2β1 ligation. We hypothesised that small-mass aggretin fragments may bind integrin α2β1 and act as antagonists of angiogenesis. In this study, the anti-angiogenic efficacy of a synthesised aggretin α-chain C-terminus (AACT, residue 106–136) was evaluated in both in vitro and in vivo angiogenesis models. The AACT demonstrated inhibitory effects on collagen-induced platelet aggregation and HUVEC adhesion to immobilised collagen. These results indicated that AACT may block integrin α2β1−collagen interaction. AACT also inhibited HUVEC migration and tube formation. Aortic ring sprouting and Matrigel implant models demonstrated that AACT markedly inhibited VEGF-induced neovascularisation. In addition, induction of FAK/PI3K/ERK1/2 tyrosine phosphorylation and talin 1/2 associated with integrin β1 which are induced by VEGF were blocked by AACT. Similarly, tyrosine phosphorylation of VEFGR2 and ERK1/2 induced by VEGF was diminished in integrin α2-silenced endothelial cells. Our results demonstrate that AACT is a potential therapeutic candidate for angiogenesis related-diseases via integrin α2β1 blockade.
Collapse
|
86
|
Nukaga S, Yasuda H, Tsuchihara K, Hamamoto J, Masuzawa K, Kawada I, Naoki K, Matsumoto S, Mimaki S, Ikemura S, Goto K, Betsuyaku T, Soejima K. Amplification of EGFR Wild-Type Alleles in Non–Small Cell Lung Cancer Cells Confers Acquired Resistance to Mutation-Selective EGFR Tyrosine Kinase Inhibitors. Cancer Res 2017; 77:2078-2089. [DOI: 10.1158/0008-5472.can-16-2359] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/04/2017] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
|
87
|
Qin Q, Wei F, Zhang J, Li B. miR-134 suppresses the migration and invasion of non-small cell lung cancer by targeting ITGB1. Oncol Rep 2017; 37:823-830. [DOI: 10.3892/or.2017.5350] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
|
88
|
Wang A, Qu L, Wang L. At the crossroads of cancer stem cells and targeted therapy resistance. Cancer Lett 2017; 385:87-96. [DOI: 10.1016/j.canlet.2016.10.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
|
89
|
Miklos W, Heffeter P, Pirker C, Hager S, Kowol CR, van Schoonhoven S, Stojanovic M, Keppler BK, Berger W. Loss of phosphodiesterase 4D mediates acquired triapine resistance via Epac-Rap1-Integrin signaling. Oncotarget 2016; 7:84556-84574. [PMID: 27602951 PMCID: PMC5356681 DOI: 10.18632/oncotarget.11821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
Triapine, an anticancer thiosemicarbazone, is currently under clinical investigation. Whereas promising results were obtained in hematological diseases, trials in solid tumors widely failed. To understand mechanisms causing triapine insensitivity, we have analysed genomic alterations in a triapine-resistant SW480 subline (SW480/tria). Only one distinct genomic loss was observed specifically in SW480/tria cells affecting the phosphodiesterase 4D (PDE4D) gene locus. Accordingly, pharmacological inhibition of PDE4D resulted in significant triapine resistance in SW480 cells. Hence, we concluded that enhanced cyclic AMP levels might confer protection against triapine. Indeed, hyperactivation of both major downstream pathways, namely the protein kinase A (PKA)-cAMP response element-binding protein (Creb) and the exchange protein activated by cAMP (Epac)-Ras-related protein 1 (Rap1) signaling axes, was observed in SW480/tria cells. Unexpectedly, inhibition of PKA did not re-sensitize SW480/tria cells against triapine. In contrast, Epac activation resulted in distinct triapine resistance in SW480 cells. Conversely, knock-down of Epac expression and pharmacological inhibition of Rap1 re-sensitized SW480/tria cells against triapine. Rap1 is a well-known regulator of integrins. Accordingly, SW480/tria cells displayed enhanced plasma membrane expression of several integrin subunits, enhanced adhesion especially to RGD-containing matrix components, and bolstered activation/expression of the integrin downstream effectors Src and RhoA/Rac. Accordingly, integrin and Src inhibition resulted in potent triapine re-sensitization especially of SW480/tria cells. In summary, we describe for the first time integrin activation based on cAMP-Epac-Rap1 signaling as acquired drug resistance mechanism. combinations of triapine with inhibitors of several steps in this resistance cascade might be feasible strategies to overcome triapine insensitivity of solid tumors.
Collapse
Affiliation(s)
- Walter Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Hager
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mirjana Stojanovic
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| |
Collapse
|
90
|
Löffek S, Franzke CW, Helfrich I. Tension in Cancer. Int J Mol Sci 2016; 17:ijms17111910. [PMID: 27854331 PMCID: PMC5133907 DOI: 10.3390/ijms17111910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022] Open
Abstract
Integrins represent a large family of cell receptors that mediate adhesion to the extracellular matrix (ECM), thereby modulating a variety of cellular functions that are required for proliferation, migration, malignant conversion and invasiveness. During tumorigenesis the conversion of a tumor cell from sessile, stationary phenotype to an invasive phenotype requires the ability of tumor cells to interact with their environment in order to transduce signals from the ECM into the cells. Hence, there is increasing evidence that changes in the composition, topography and tension of tumor matrix can be sensed by integrin receptors, leading to the regulation of intracellular signalling events which subsequently help to fuel cancer progression. The fact that intracellular signals perceived from integrin ligand binding impact on almost all steps of tumor progression, including tumor cell proliferation, survival, metastatic dissemination and colonization of a metastatic niche, renders integrins as ideal candidates for the development of therapeutic agents. In this review we summarize the role of integrins in cancer with the special focus on cancer therapies and the recent progress that has been made in the understanding of “integrin-induced tension in cancer”. Finally, we conclude with clinical evidence for the role of integrin-mediated mechanotransduction in the development of therapy-resistant tumors.
Collapse
Affiliation(s)
- Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), University Duisburg-Essen, 45147 Essen, Germany.
| | - Claus-Werner Franzke
- Department of Dermatology and Venerology, Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany.
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
91
|
Co-targeting of EGF receptor and neuropilin-1 overcomes cetuximab resistance in pancreatic ductal adenocarcinoma with integrin β1-driven Src-Akt bypass signaling. Oncogene 2016; 36:2543-2552. [PMID: 27797376 DOI: 10.1038/onc.2016.407] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells usually overexpress the epidermal growth factor receptor (EGFR); however, most are resistant to the anti-EGFR monoclonal antibody, cetuximab. In this study, we report that the molecular mechanism of resistance to cetuximab in PDAC cells is mediated by the overexpression of active integrin β1 with downstream Src-Akt activation; this triggers an EGFR ligand-independent proliferation signaling, bypassing EGFR-blocking effect. Knockdown of integrin β1 or inhibition of Src or Akt sensitized cetuximab-resistant (CtxR) PDAC cells to cetuximab. We found that neuropilin-1 (NRP1) physically interacts with active integrin β1, but not inactive one, on the cell surface. To inhibit active integrin β1-driven signaling by targeting NRP1, while suppressing EGFR signaling, we generated an EGFR and NRP1 dual targeting antibody, Ctx-TPP11, by genetic fusion of the NRP1-targeting peptide, TPP11, to the C terminus of the cetuximab heavy chain (Ctx-TPP11). We demonstrate that Ctx-TPP11 efficiently inhibited the growth of CtxR PDAC cells, in vitro and in vivo. The sensitization mechanism involved downregulating active integrin β1 levels through NRP1-coupled internalization mediated by the TPP11 moiety, leading to the inhibition of active integrin β1-driven bypass signaling. Our findings identify aberrant active integrin β1-driven Src-Akt hyperactivation as a primary resistance mechanism to cetuximab in PDAC cells and offer an effective therapeutic strategy to overcome this resistance using an EGFR and NRP1 dual targeting antibody.
Collapse
|
92
|
Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells. PLoS One 2016; 11:e0158587. [PMID: 27385117 PMCID: PMC4934785 DOI: 10.1371/journal.pone.0158587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation.
Collapse
|
93
|
Systematic identification of novel biomarker signatures associated with acquired erlotinib resistance in cancer cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0018-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Wang J, Wang B, Chu H, Yao Y. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations. Onco Targets Ther 2016; 9:3711-26. [PMID: 27382309 PMCID: PMC4922765 DOI: 10.2147/ott.s106399] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10-16 months, followed by disease progression. Moreover, ~20%-30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan, People’s Republic of China
| | - Baocheng Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan, People’s Republic of China
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan, People’s Republic of China
| | - Yunfeng Yao
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan, People’s Republic of China
| |
Collapse
|
95
|
Integrinβ1 modulates tumour resistance to gemcitabine and serves as an independent prognostic factor in pancreatic adenocarcinomas. Tumour Biol 2016; 37:12315-12327. [PMID: 27289231 DOI: 10.1007/s13277-016-5061-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/01/2016] [Indexed: 01/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies because of its broad resistance to chemotherapy. Numerous evidence indicates that integrinβ1 is upregulated in some human cancers, and it is correlated with resistance to various therapies. However, the role of integrinβ1 in chemotherapy is not clear in pancreatic cancer. The present study evaluates the potential of integrinβ1 to predict chemoresistance and prognosis in patients and to modulate resistance to gemcitabine in PDAC cells. Primary drug-resistance (DR) cancer cells were isolated, and DR cells from MiaPaCa-2 and AsPC-1 parent cell lines (PCL) were selected. Integrinβ1 expression was determined using immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and Western blotting. Changes in drug response after knockdown of integrinβ1 via RNA interference (RNAi) were evaluated using the viability of cancer cells as colon formation, proliferation using Western blot of Ki-67 and apoptosis using cleaved caspase-3 immunofluorescence. qRT-PCR and Western blot also detected variations in the activities of cdc42 and AKT after integrinβ1 suppression. Patient survival and relative factors were assessed using Kaplan-Meier and Cox regression analyses. Integrinβ1 expression was upregulated in PDAC, which was significantly associated with intrinsic and acquired gemcitabine resistance and worse outcomes. The downregulation of integrinβ1 attenuated PDAC chemoresistance, and this attenuation partially correlated with reduced Cdc42 and AKT activity, which are target molecules of integrinβ1 in some human cancers. These findings identified integrinβ1 as a special marker of drug resistance and a serious prognosis, and they furthermore support the use of integrinβ1 as a novel potential therapeutic target to overcome chemotherapy resistance. The results also suggest a possible drug-resistant signalling pathway of integrinβ1 in PDAC.
Collapse
|
96
|
Bernardes N, Abreu S, Carvalho FA, Fernandes F, Santos NC, Fialho AM. Modulation of membrane properties of lung cancer cells by azurin enhances the sensitivity to EGFR-targeted therapy and decreased β1 integrin-mediated adhesion. Cell Cycle 2016; 15:1415-24. [PMID: 27096894 DOI: 10.1080/15384101.2016.1172147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In lung cancer, the Epidermal Growth Factor Receptor (EGFR) is one of the main targets for clinical management of this disease. The effectiveness of therapies toward this receptor has already been linked to the expression of integrin receptor subunit β1 in NSCLC A549 cells. In this work we demonstrate that azurin, an anticancer therapeutic protein originated from bacterial cells, controls the levels of integrin β1 and its appropriate membrane localization, impairing the intracellular signaling cascades downstream these receptors and the invasiveness of cells. We show evidences that azurin when combined with gefitinib and erlotinib, tyrosine kinase inhibitors which targets specifically the EGFR, enhances the sensitivity of these lung cancer cells to these molecules. The broad effect of azurin at the cell surface level was examined by Atomic Force Microscopy. The Young 's module (E) shows that the stiffness of A549 lung cancer cells decreased with exposure to azurin and also gefitinib, suggesting that the alterations in the membrane properties may be the basis of the broad anticancer activity of this protein. Overall, these results show that azurin may be relevant as an adjuvant to improve the effects of other anticancer agents already in clinical use, to which patients often develop resistance hampering its full therapeutic response.
Collapse
Affiliation(s)
- Nuno Bernardes
- a iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group , Lisbon , Portugal
| | - Sofia Abreu
- a iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group , Lisbon , Portugal
| | - Filomena A Carvalho
- b Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Fábio Fernandes
- c Centro de Quimica-Fisica Molecular, Instituto Superior Técnico , Lisbon , Portugal
| | - Nuno C Santos
- b Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Arsénio M Fialho
- a iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group , Lisbon , Portugal.,d Department of Bioengineering , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
97
|
Zscheppang K, Kurth I, Wachtel N, Dubrovska A, Kunz-Schughart LA, Cordes N. Efficacy of Beta1 Integrin and EGFR Targeting in Sphere-Forming Human Head and Neck Cancer Cells. J Cancer 2016; 7:736-45. [PMID: 27076856 PMCID: PMC4829561 DOI: 10.7150/jca.14232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/22/2016] [Indexed: 12/11/2022] Open
Abstract
Background: Resistance to radiotherapy continues to be a limiting factor in the treatment of cancer including head and neck squamous cell carcinoma (HNSCC). Simultaneous targeting of β1 integrin and EGFR was shown to have a higher radiosensitizing potential than mono-targeting in the majority of tested HNSCC cancer models. As tumor-initiating cells (TIC) are thought to play a key role for therapy resistance and recurrence and can be enriched in sphere forming conditions, this study investigated the efficacy of β1 integrin/EGFR targeting without and in combination with X-ray irradiation on the behavior of sphere-forming cells (SFC). Methods: HNSCC cell lines (UTSCC15, UTSCC5, Cal33, SAS) were injected subcutaneously into nude mice for tumor up-take and plated for primary and secondary sphere formation under non-adhesive conditions which is thought to reflect the enrichment of SFC and their self-renewal capacity, respectively. Treatment was accomplished by inhibitory antibodies for β1 integrin (AIIB2) and EGFR (Cetuximab) as well as X-ray irradiation (2 - 6 Gy single doses). Further, flow cytometry for TIC marker expression and cell cycling as well as Western blotting for DNA repair protein expression and phosphorylation were employed. Results: We found higher primary and secondary sphere forming capacity of SAS cells relative to other HNSCC cell lines, which was in line with the tumor up-take rates of SAS versus UTSCC15 cells. AIIB2 and Cetuximab administration had minor cytotoxic and no radiosensitizing effects on SFC. Intriguingly, secondary SAS spheres, representing the fraction of surviving SFC upon passaging, showed greatly enhanced radiosensitivity compared to primary spheres. Intriguingly, neither AIIB2 nor Cetuximab significantly altered basal sphere forming capacity and radiosensitivity. While an increased accumulation of G0/G1 phase cells was observable in secondary SAS spheres, DNA double strand break repair indicated no difference on the basis of significantly enhanced ATM and Chk2 dephosphorylation upon irradiation. Conclusions: In the HNSCC model, sphere-forming conditions select for cells, which are unsusceptible to both anti-β1 integrin and anti-EGFR inhibitory antibodies. With regard to primary and secondary sphere formation, our data suggest that both of these SFC fractions express distinct survival strategies independent from β1 integrin and EGFR and that future work is warranted to better understand SFC survival and enrichment before and after treatment to untangle the underlying mechanisms for identifying novel, druggable cancer targets in SFC.
Collapse
Affiliation(s)
- Katja Zscheppang
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 2. Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Ina Kurth
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 3. National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Nicole Wachtel
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Anna Dubrovska
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 5. Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany;; 6. German Cancer Consortium (DKTK), Dresden, Germany;; 7. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leoni A Kunz-Schughart
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 5. Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Nils Cordes
- 1. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Germany;; 4. Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany;; 5. Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany;; 6. German Cancer Consortium (DKTK), Dresden, Germany;; 7. German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
98
|
Kuwano M, Sonoda K, Murakami Y, Watari K, Ono M. Overcoming drug resistance to receptor tyrosine kinase inhibitors: Learning from lung cancer. Pharmacol Ther 2016; 161:97-110. [PMID: 27000770 DOI: 10.1016/j.pharmthera.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are various receptor tyrosine kinase (TK)-targeted drugs that are currently used in the treatment of patients with non-small cell lung cancer (NSCLC). Among them, the epidermal growth factor receptor (EGFR) TK inhibitors (TKIs) are the most extensively studied. Receptor TKIs including EGFR TKIs have shown dramatic therapeutic efficacies in malignant tumors, which harbor activating mutations in the EGFR gene. However, within 1 or 2years after treatment, patients harboring these mutations often develop resistance to TKI therapy. This review article is aimed at drawing attention to the fact that we must first understand how receptor TKI resistance is acquired to develop strategies for overcoming resistance to TKIs. Furthermore, an insight into the specific molecules or signaling pathways that mediate resistance is a key factor for understanding and overcoming acquired drug resistance. Finally, we present our views on the continuing battle against "drug resistance," and provide further guidelines and strategies on how to minimize the development of drug-resistant tumors.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, St. Mary's Hospital, Kurume 830-8543, Japan; Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Kahori Sonoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Murakami
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, St. Mary's Hospital, Kurume 830-8543, Japan; Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
99
|
Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Front Pharmacol 2015; 6:279. [PMID: 26635609 PMCID: PMC4656837 DOI: 10.3389/fphar.2015.00279] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023] Open
Abstract
Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells, and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg (2011), integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Guillaume Renner
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Maxime Lehmann
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Isabelle Lelong-Rebel
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Sophie Martin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Monique Dontenwill
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| |
Collapse
|
100
|
Targeting HER-3 to elicit antitumor helper T cells against head and neck squamous cell carcinoma. Sci Rep 2015; 5:16280. [PMID: 26538233 PMCID: PMC4633732 DOI: 10.1038/srep16280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022] Open
Abstract
HER-3 expression has been reported to act as an important oncoprotein in head and neck squamous cell carcinoma. This protein is known to control tumor proliferation and acquisition of resistance by tumor cells towards EGFR inhibitors, therefore, development of a HER-3-targeted therapy is desirable. In this study, we found that HER-3 expression on tumor cells was increased after EGFR inhibition. To establish a novel therapeutic approach for HER-3-positive head and neck carcinoma, we identified a HER-3 helper epitope that could elicit effective helper T cell responses to the naturally processed HER-3-derived epitope presented in a HER-3 expressing tumors. This epitope induced potent cytolytic activity of CD4 T cells against such tumor cells. Moreover, pan HER-family tyrosine kinase inhibitor augmented the responses of HER-3-reactive CD4 T cells via upregulation of HLA-DR protein on the surface of tumor cells. Our results supports the validity of CD4 T cell-dependent HER-3-targeted therapy combined with a broad inhibitor of HER-family.
Collapse
|