51
|
Abdullah MI, de Wolf E, Jawad MJ, Richardson A. The poor design of clinical trials of statins in oncology may explain their failure - Lessons for drug repurposing. Cancer Treat Rev 2018; 69:84-89. [PMID: 29936313 DOI: 10.1016/j.ctrv.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/27/2023]
Abstract
Statins are widely used to treat hypercholesterolaemia. However, by inhibiting the production of mevalonate, they also reduce the production of several isoprenoids that are necessary for the function of small GTPase oncogenes such as Ras. As such, statins offer an attractive way to inhibit an "undruggable" target, suggesting that they may be usefully repurposed to treat cancer. However, despite numerous studies, there is still no consensus whether statins are useful in the oncology arena. Numerous preclinical studies have provided evidence justifying the evaluation of statins in cancer patients. Some retrospective studies of patients taking statins to control cholesterol have identified a reduced risk of cancer mortality. However, prospective clinical studies have mostly not been successful. We believe that this has occurred because many of the prospective clinical trials have been poorly designed. Many of these trials have failed to take into account some or all of the factors identified in preclinical studies that are likely to be necessary for statins to be efficacious. We suggest an improved trial design which takes these factors into account. Importantly, we suggest that the design of clinical trials of drugs which are being considered for repurposing should not assume it is appropriate to use them in the same way as they are used in their original indication. Rather, such trials deserve to be informed by preclinical studies that are comparable to those for any novel drug.
Collapse
Affiliation(s)
- Marwan I Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Elizabeth de Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Mohammed J Jawad
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom; School of Pharmacy, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
52
|
Lai SC, Phelps CA, Short AM, Dutta SM, Mu D. Thyroid transcription factor 1 enhances cellular statin sensitivity via perturbing cholesterol metabolism. Oncogene 2018; 37:3290-3300. [PMID: 29551766 PMCID: PMC6003839 DOI: 10.1038/s41388-018-0174-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 01/11/2023]
Abstract
We have discovered an unexpected connection between a critical lung development and cancer gene termed thyroid transcription factor 1 (TTF-1 also known as NKX2-1) and cholesterol metabolism. Our published work implicates that TTF-1 positively regulates miR-33a which is known to repress ATP-binding cassette transporter 1 (ABCA1) and thus its cholesterol efflux activity. We set out to demonstrate that a higher TTF-1 expression would presumably inhibit cholesterol efflux and consequently raise intracellular cholesterol level. Surprisingly, raising TTF-1 expression actually lowers intracellular cholesterol level, which, we believe, is attributed to a direct transactivation of ABCA1 by TTF-1. Subsequently, we show that lung cancer cells primed with a TTF-1-driven decrease of cholesterol were more vulnerable to simvastatin, a frequently prescribed cholesterol biosynthesis inhibitor. In view of the fact that pathologists routinely interrogate human lung cancers for TTF-1 immunopositivity to guide diagnosis and the prevalent use of statins, TTF-1 should be further investigated as a putative biomarker of lung cancer vulnerability to statins.
Collapse
Affiliation(s)
- Shao-Chiang Lai
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- bioAffinity Technologies Inc., San Antonio, TX, USA
| | - Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
| | - Aleena M Short
- Biotechnology Master's Program, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
| | - Sucharita M Dutta
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Beth Israel Deaconess Medical School, Boston, MA, USA
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
| |
Collapse
|
53
|
Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38:27. [PMID: 29784041 PMCID: PMC5993136 DOI: 10.1186/s40880-018-0301-4] [Citation(s) in RCA: 515] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic structure of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
54
|
Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-Cultured Dendritic Cells Enhance Anti-Tumor Gamma Delta T Cell Functions through IL-15 Secretion. Front Immunol 2018; 9:658. [PMID: 29692776 PMCID: PMC5902500 DOI: 10.3389/fimmu.2018.00658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccination can be an effective post-remission therapy for acute myeloid leukemia (AML). Yet, current DC vaccines do not encompass the ideal stimulatory triggers for innate gamma delta (γδ) T cell anti-tumor activity. Promoting type 1 cytotoxic γδ T cells in patients with AML is, however, most interesting, considering these unconventional T cells are primed for rapid function and exert meaningful control over AML. In this work, we demonstrate that interleukin (IL)-15 DCs have the capacity to enhance the anti-tumoral functions of γδ T cells. IL-15 DCs of healthy donors and of AML patients in remission induce the upregulation of cytotoxicity-associated and co-stimulatory molecules on the γδ T cell surface, but not of co-inhibitory molecules, incite γδ T cell proliferation and stimulate their interferon-γ production in the presence of blood cancer cells and phosphoantigens. Moreover, the innate cytotoxic capacity of γδ T cells is significantly enhanced upon interaction with IL-15 DCs, both towards leukemic cell lines and allogeneic primary AML blasts. Finally, we address soluble IL-15 secreted by IL-15 DCs as the main mechanism behind the IL-15 DC-mediated γδ T cell activation. These results indicate that the application of IL-15-secreting DC subsets could render DC-based anti-cancer vaccines more effective through, among others, the involvement of γδ T cells in the anti-leukemic immune response.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Sébastien Anguille
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
55
|
Kim G, Jang SY, Nam CM, Kang ES. Statin use and the risk of hepatocellular carcinoma in patients at high risk: A nationwide nested case-control study. J Hepatol 2018; 68:476-484. [PMID: 29107150 DOI: 10.1016/j.jhep.2017.10.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Statins are widely used to treat hypercholesterolemia. Statins may prevent hepatocellular carcinoma (HCC), but have not yet been fully studied, particularly in patients at high risk. Therefore, we investigated the risk of HCC after statin use in the whole general population and evaluated the effects of preexisting diabetes mellitus (DM) and liver cirrhosis (LC) on that risk. METHODS A nationwide, nested case-control study was conducted with data from the National Health Insurance Service Physical Health Examination Cohort 2002-2013 in the Republic of Korea. Individuals diagnosed with HCC were matched to controls based on the time of the follow-up, sex, and age at index date. Odds ratios (ORs) and 95% confidence intervals (CIs) for HCC associated with statin use were analyzed by multivariable conditional logistic regression analyses. In total, 1,642 HCC cases were matched to 8,210 control individuals from 514,866 participants. RESULTS Statin use was associated with reduced risk of HCC development (adjusted OR [AOR] 0.44; 95% CI 0.33-0.58) compared with nonusers. The reduction in risk was significant in the presence (AOR 0.28; 95% CI 0.17-0.46) and absence of DM (AOR 0.53; 95% CI 0.39-0.73) and in the presence (AOR 0.39; 95% CI 0.26-0.60) and absence of LC (AOR 0.42; 95% CI 0.32-0.57). Statin use also significantly reduced the risk of HCC among patients with DM, without chronic complications (AOR 0.19; 95% CI 0.08-0.46) or with chronic complications (AOR 0.34; 95% CI 0.19-0.64), compared to nonusers. CONCLUSIONS Statin use may have a beneficial inhibitory effect on HCC development, particularly in patients with DM or LC, at high risk of HCC. LAY SUMMARY In this longitudinal nationwide population-based nested case-control study, the association between statin use and the risk of HCC was investigated in Asian populations. Herein, we noted a beneficial effect of statin use on the development of HCC in the general population and individuals at high risk of HCC (i.e. those with diabetes or liver cirrhosis).
Collapse
Affiliation(s)
- Gyuri Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk-Yong Jang
- Department of Preventive Medicine, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Health Services Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
56
|
Ashida S, Kawada C, Inoue K. Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol Lett 2017; 14:6533-6542. [PMID: 29163687 PMCID: PMC5686443 DOI: 10.3892/ol.2017.7025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
It has been suggested that the tumor microenvironment plays an important role in tumor progression, acquisition of androgen independence, and distant metastasis in prostate cancer (PC). However, little is known about the transcriptional basis of cellular interactions in the human PC microenvironment. To clarify the mechanism of PC progression and metastasis, we investigated the interaction of PC, epithelial, and stromal cells using genome-wide gene expression profiling. We hypothesized that PC cells could induce stromal cells to differentiate into so-called cancer-associated fibroblasts (CAFs), which might contribute to cancer invasion and metastasis. Genes upregulated in normal human prostate stromal cells (PrSC) co-cultured with human PC cells (LNCaP) included the mevalonate pathway enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Knockdown of endogenous HMGCS1 or HMGCR in PC cells by shRNA resulted in a significant reduction of PC cell viability. Importantly, exogenous overexpression of HMGCS1 or HMGCR in either PC cells or prostate stromal cells stimulated PC cell growth, suggesting a possible autocrine/paracrine mechanism of action. Immunohistochemical analysis confirmed that HMGCS1 and HMGCR were overexpressed in PC stroma, especially in early stage PC. These results provide clues to the molecular mechanisms underlying PC invasion and metastasis, and suggest that HMGCS1 and HMGCR in PC, as well as in PC stroma, might serve as molecular targets for the treatment of PC.
Collapse
Affiliation(s)
- Shingo Ashida
- Department of Urology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Chiaki Kawada
- Department of Urology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
57
|
Hamilton RJ. Making Sense of the Statin-Prostate Cancer Relationship: Is It Time for a Randomized Controlled Trial? Eur Urol Focus 2017; 3:221-222. [PMID: 28753767 DOI: 10.1016/j.euf.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Robert J Hamilton
- Division of Urology, Departments of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, Canada.
| |
Collapse
|
58
|
Epstein MM, Divine G, Chao CR, Wells KE, Feigelson HS, Scholes D, Roblin D, Ulcickas Yood M, Engel LS, Taylor A, Fortuny J, Habel LA, Johnson CC. Statin use and risk of multiple myeloma: An analysis from the cancer research network. Int J Cancer 2017; 141:480-487. [PMID: 28425616 DOI: 10.1002/ijc.30745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/03/2017] [Indexed: 01/24/2023]
Abstract
Animal and human data suggest statins may be protective against developing multiple myeloma; however, findings may be biased by the interrelationship with lipid levels. We investigated the association between statin use and risk of multiple myeloma in a large US population, with an emphasis on accounting for this potential bias. We conducted a case-control study nested within 6 US integrated healthcare systems participating in the National Cancer Institute-funded Cancer Research Network. Adults aged ≥40 years who were diagnosed with multiple myeloma from 1998-2008 were identified through cancer registries (N = 2,532). For each case, five controls were matched on age, sex, health plan, and membership duration prior to diagnosis/index date. Statin prescriptions were ascertained from electronic pharmacy records. To address potential biases related to lipid levels and medication prescribing practices, multivariable marginal structural models were used to model statin use (≥6 cumulative months) and risk of multiple myeloma, with examination of multiple latency periods. Statin use 48-72 months prior to diagnosis/index date was associated with a suggestive 20-28% reduced risk of developing multiple myeloma, compared to non-users. Recent initiation of statins was not associated with myeloma risk (risk ratio range 0.90-0.99 with 0-36 months latency). Older patients had more consistent protective associations across all latency periods (risk ratio range 0.67-0.87). Our results suggest that the association between statin use and multiple myeloma risk may vary by exposure window and age. Future research is warranted to investigate the timing of statin use in relation to myeloma diagnosis.
Collapse
Affiliation(s)
- Mara M Epstein
- Meyers Primary Care Institute and Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital & Health System, Detroit, MI
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Karen E Wells
- Department of Public Health Sciences, Henry Ford Hospital & Health System, Detroit, MI
| | | | - Delia Scholes
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente, Seattle, Washington, WA
| | - Douglas Roblin
- School of Public Health, Georgia State University, Atlanta, GA; Center for Clinical and Outcomes Research, Kaiser Permanente Georgia, Atlanta, GA
| | | | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Taylor
- Department of Public Health Sciences, Henry Ford Hospital & Health System, Detroit, MI
| | | | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Christine C Johnson
- Department of Public Health Sciences, Henry Ford Hospital & Health System, Detroit, MI
| |
Collapse
|
59
|
Halim L, Parente-Pereira AC, Maher J. Prospects for immunotherapy of acute myeloid leukemia using γδ T cells. Immunotherapy 2017; 9:111-114. [PMID: 28128710 DOI: 10.2217/imt-2016-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Viral/immunology
- Cancer Vaccines/immunology
- Cross Reactions
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Interleukin-17/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Leena Halim
- CAR Mechanics Group, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Ana Catarina Parente-Pereira
- CAR Mechanics Group, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- CAR Mechanics Group, Division of Cancer Studies, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Clinical Immunology & Allergy, King's College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
60
|
Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 2016; 16:718-731. [PMID: 27562463 DOI: 10.1038/nrc.2016.76] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate (MVA) pathway is an essential metabolic pathway that uses acetyl-CoA to produce sterols and isoprenoids that are integral to tumour growth and progression. In recent years, many oncogenic signalling pathways have been shown to increase the activity and/or the expression of MVA pathway enzymes. This Review summarizes recent advances and discusses unique opportunities for immediately targeting this metabolic vulnerability in cancer with agents that have been approved for other therapeutic uses, such as the statin family of drugs, to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Peter J Mullen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Rosemary Yu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Michael C Archer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
61
|
Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Giordano A, Desiderio V, Ghigo D, Caraglia M, De Rosa G, Riganti C. Self-assembling nanoparticles encapsulating zoledronic acid revert multidrug resistance in cancer cells. Oncotarget 2016; 6:31461-78. [PMID: 26372812 PMCID: PMC4741618 DOI: 10.18632/oncotarget.5058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
The overexpression of ATP binding cassette (ABC) transporters makes tumor cells simultaneously resistant to several cytotoxic drugs. Impairing the energy metabolism of multidrug resistant (MDR) cells is a promising chemosensitizing strategy, but many metabolic modifiers are too toxic in vivo. We previously observed that the aminobisphosphonate zoledronic acid inhibits the activity of hypoxia inducible factor-1α (HIF-1α), a master regulator of cancer cell metabolism. Free zoledronic acid, however, reaches low intratumor concentration. We synthesized nanoparticle formulations of the aminobisphosphonate that allow a higher intratumor delivery of the drug. We investigated whether they are effective metabolic modifiers and chemosensitizing agents against human MDR cancer cells in vitro and in vivo. At not toxic dosage, nanoparticles carrying zoledronic acid chemosensitized MDR cells to a broad spectrum of cytotoxic drugs, independently of the type of ABC transporters expressed. The nanoparticles inhibited the isoprenoid synthesis and the Ras/ERK1/2-driven activation of HIF-1α, decreased the transcription and activity of glycolytic enzymes, the glucose flux through the glycolysis and tricarboxylic acid cycle, the electron flux through the mitochondrial respiratory chain, the synthesis of ATP. So doing, they lowered the ATP-dependent activity of ABC transporters, increasing the chemotherapy efficacy in vitro and in vivo. These effects were more pronounced in MDR cells than in chemosensitive ones and were due to the inhibition of farnesyl pyrophosphate synthase (FPPS), as demonstrated in FPPS-silenced tumors. Our work proposes nanoparticle formulations of zoledronic acid as the first not toxic metabolic modifiers, effective against MDR tumors.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Sara Lusa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Giuseppina Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Dario Ghigo
- Department of Oncology, University of Torino, Torino, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Giuseppe De Rosa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
62
|
Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death. Oncotarget 2016; 6:26909-21. [PMID: 26353928 PMCID: PMC4694962 DOI: 10.18632/oncotarget.4817] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
The mevalonate (MVA) pathway is often dysregulated or overexpressed in many cancers suggesting tumor dependency on this classic metabolic pathway. Statins, which target the rate-limiting enzyme of this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), are promising agents currently being evaluated in clinical trials for anti-cancer efficacy. To uncover novel targets that potentiate statin-induced apoptosis when knocked down, we carried out a pooled genome-wide short hairpin RNA (shRNA) screen. Genes of the MVA pathway were amongst the top-scoring targets, including sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and geranylgeranyl diphosphate synthase 1 (GGPS1). Each gene was independently validated and shown to significantly sensitize A549 cells to statin-induced apoptosis when knocked down. SREBP2 knockdown in lung and breast cancer cells completely abrogated the fluvastatin-induced upregulation of sterol-responsive genes HMGCR and HMGCS1. Knockdown of SREBP2 alone did not affect three-dimensional growth of lung and breast cancer cells, yet in combination with fluvastatin cell growth was disrupted. Taken together, these results show that directly targeting multiple levels of the MVA pathway, including blocking the sterol-feedback loop initiated by statin treatment, is an effective and targetable anti-tumor strategy.
Collapse
|
63
|
Hargrove TY, Friggeri L, Wawrzak Z, Sivakumaran S, Yazlovitskaya EM, Hiebert SW, Guengerich FP, Waterman MR, Lepesheva GI. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. J Lipid Res 2016; 57:1552-63. [PMID: 27313059 DOI: 10.1194/jlr.m069229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, IL
| | - Suneethi Sivakumaran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
64
|
Sharon C, Baranwal S, Patel NJ, Rodriguez-Agudo D, Pandak WM, Majumdar APN, Krystal G, Patel BB. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget 2016; 6:15332-47. [PMID: 25895029 PMCID: PMC4558155 DOI: 10.18632/oncotarget.3684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/06/2015] [Indexed: 01/06/2023] Open
Abstract
We observed a co-upregulation of the insulin-like growth factor receptor (IGF-1R)/AKT/mammalian target of rapamycin (mTOR) [InAT] axis and the mevalonate-isoprenoid biosynthesis (MIB) pathways in colorectal cancer stem cells (CSCs) in an unbiased approach. Hence, we hypothesized that the InAT axis might regulate the MIB pathway to govern colorectal CSCs growth. Stimulation (IGF-1) or inhibition (IGF-1R depletion and pharmacological inhibition of IGF-1R/mTOR) of the InAT axis produced induction or attenuation of CSC growth as well as expression of CSC markers and self-renewal factors respectively. Intriguingly, activation of the InAT axis (IGF-1) caused significant upregulation of the MIB pathway genes (both mRNA and protein); while its inhibition produced the opposite effects in colonospheres. More importantly, supplementation with dimethylallyl- and farnesyl-PP, MIB metabolites downstream of isopentenyl-diphosphate delta isomerase (IDI), but not mevalonate and isopentenyl-pp that are upstream of IDI, resulted in a near-complete reversal of the suppressive effect of the InAT axis inhibitors on CSCs growth. The latter findings suggest a specific regulation of the MIB pathway by the InAT axis distal to the target of statins that inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Effects of IGF-1R inhibition on colonic CSCs proliferation and the MIB pathway were confirmed in an ‘in vivo’ HCT-116 xenograft model. These observations establish a novel mechanistic link between the InAT axis that is commonly deregulated in colorectal cancer and the MIB pathway in regulation of colonic CSCs growth. Hence, the InAT-MIB corridor is a novel target for developing paradigm shifting optimum anti-CSCs therapies for colorectal cancer.
Collapse
Affiliation(s)
- Chetna Sharon
- Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Somesh Baranwal
- Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Daniel Rodriguez-Agudo
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Medicine, Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Medicine, Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Geoffrey Krystal
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Bhaumik B Patel
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
65
|
Riz I, Hawley TS, Hawley RG. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget 2016; 6:14814-31. [PMID: 26109433 PMCID: PMC4558117 DOI: 10.18632/oncotarget.4530] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Because of a high rate of immunoglobulin synthesis, the endoplasmic reticulum of MM cells is subjected to elevated basal levels of stress. Consequently, proteasome inhibitors, which exacerbate this stress by inhibiting ubiquitin-proteasome-mediated protein degradation, are an important new class of chemotherapeutic agents being used to combat this disease. However, MM cells still develop resistance to proteasome inhibitors such as carfilzomib. Toward this end, we have established carfilzomib-resistant derivatives of MM cell lines. We found that resistance to carfilzomib was associated with elevated levels of prosurvival autophagy, and Kruppel-like factor 4 (KLF4) was identified as a contributing factor. Expression levels as well as nuclear localization of KLF4 protein were elevated in MM cells with acquired carfilzomib resistance. Chromatin immunoprecipitations indicated that endogenous KLF4 bound to the promoter regions of the SQSTM1 gene encoding the ubiquitin-binding adaptor protein sequestosome/p62 that links the proteasomal and autophagic protein degradation pathways. Ectopic expression of KLF4 induced upregulation of SQSTM1. On the other hand, inhibitors of autophagy sensitized MM cells to carfilzomib, even in carfilzomib-resistant derivatives having increased expression of the multidrug resistance protein P-glycoprotein. Thus, we report here a novel function for KLF4, one of the Yamanaka reprogramming factors, as being a contributor to autophagy gene expression which moderates preclinical proteasome inhibitor efficacy in MM.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, The George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC, USA
| |
Collapse
|
66
|
Pandyra A, Penn LZ. Targeting tumor cell metabolism via the mevalonate pathway: Two hits are better than one. Mol Cell Oncol 2014; 1:e969133. [PMID: 27308369 PMCID: PMC4905210 DOI: 10.4161/23723548.2014.969133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 11/19/2022]
Abstract
Statins are promising anticancer agents that target the mevalonate pathway. Tumor cells are sensitive to depletion of mevalonate-derived products but this activity triggers a homeostatic feedback loop that blunts statin efficacy. We showed that dipyridamole inhibits this feedback response and potentiates statin antitumor activity. This study identifies statins plus dypridamole as a preclinically effective combination of approved agents.
Collapse
Affiliation(s)
- Aleksandra Pandyra
- Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Medical Biophysics; University of Toronto ; Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Medical Biophysics; University of Toronto ; Toronto, ON, Canada
| |
Collapse
|