51
|
Tim-3 expression predicts the abnormal innate immune status and poor prognosis of glioma patients. Clin Chim Acta 2018; 476:178-184. [DOI: 10.1016/j.cca.2017.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
52
|
Rabinovich GA, Conejo-García JR. Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways. J Mol Biol 2016; 428:3266-3281. [PMID: 27038510 DOI: 10.1016/j.jmb.2016.03.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
|
53
|
Pérez-Martínez A, Fernández L, Díaz MA. The therapeutic potential of natural killer cells to target medulloblastoma. Expert Rev Anticancer Ther 2016; 16:573-6. [PMID: 27144504 DOI: 10.1080/14737140.2016.1184978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Lucia Fernández
- b Clinical Research department , Spanish National Cancer Research Centre CNIO , Madrid , Spain
| | - Miguel Angel Díaz
- c Pediatric Hemato-Oncology , Hospital Universitario Niño Jesús , Madrid , Spain
| |
Collapse
|
54
|
Pessina S, Cantini G, Kapetis D, Cazzato E, Di Ianni N, Finocchiaro G, Pellegatta S. The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma. Oncoimmunology 2016; 5:e1108513. [PMID: 27467914 PMCID: PMC4910710 DOI: 10.1080/2162402x.2015.1108513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 10/24/2022] Open
Abstract
Abcc3, a member of the ATP-binding cassette transporter superfamily, plays a role in multidrug resistance. Here, we found that Abcc3 is highly expressed in blood-derived NK cells but not in CD8(+) T cells. In GL261 glioma-bearing mice treated with the alkylating agent temozolomide (TMZ) for 5 d, an early increased frequency of NK cells was observed. We also found that Abcc3 is strongly upregulated and functionally active in NK cells from mice treated with TMZ compared to controls. We demonstrate that Abcc3 is critical for NK cell survival during TMZ administration; more importantly, Akt, involved in lymphocyte survival, is phosphorylated only in NK cells expressing Abcc3. The resistance of NK cells to chemotherapy was accompanied by increased migration and homing in the brain at early time points. Cytotoxicity, evaluated by IFNγ production and specific lytic activity against GL261 cells, increased peripherally in the later phases, after conclusion of TMZ treatment. Intra-tumor increase of the NK effector subset as well as in IFNγ, granzymes and perforin-1 expression, were found early and persisted over time, correlating with a profound modulation on glioma microenvironment induced by TMZ. Our findings reveal an important involvement of Abcc3 in NK cell resistance to chemotherapy and have important clinical implications for patients treated with chemo-immunotherapy.
Collapse
Affiliation(s)
| | | | - Dimos Kapetis
- Unit of Bioinformatics, Fondazione I.R.C.C.S. Istituto Neurologico C Besta, Milan, Italy
| | | | | | | | | |
Collapse
|
55
|
Lowenstein PR, Castro MG. The Long and Winding Road: From the High-Affinity Choline Uptake Site to Clinical Trials for Malignant Brain Tumors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:147-73. [PMID: 27288077 DOI: 10.1016/bs.apha.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant brain tumors are one of the most lethal cancers. They originate from glial cells which infiltrate throughout the brain. Current standard of care involves surgical resection, radiotherapy, and chemotherapy; median survival is currently ~14-20 months postdiagnosis. Given that the brain immune system is deficient in priming systemic immune responses to glioma antigens, we proposed to reconstitute the brain immune system to achieve immunological priming from within the brain. Two adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1-derived thymidine kinase which converts ganciclovir into a compound only cytotoxic to dividing glioma cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine that attracts dendritic cells to the brain. HSV-1/ganciclovir killing of tumor cells releases tumor antigens that are taken up by dendritic cells within the brain tumor microenvironment. Tumor killing also releases HMGB1, an endogenous TLR2 agonist that activates dendritic cells. HMGB1-activated dendritic cells, loaded with glioma antigens, migrate to cervical lymph nodes to stimulate a systemic CD8+ T cells cytotoxic immune response against glioma. This immune response is specific to glioma tumors, induces immunological memory, and does neither cause brain toxicity nor autoimmune responses. An IND was granted by the FDA on 4/7/2011. A Phase I, first in person trial, to test whether reengineering the brain immune system is potentially therapeutic is ongoing.
Collapse
Affiliation(s)
- P R Lowenstein
- The Medical School, The University of Michigan, Ann Arbor, MI, United States.
| | - M G Castro
- The Medical School, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
56
|
Baker GJ, Chockley P, Zamler D, Castro MG, Lowenstein PR. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells. Oncoimmunology 2016; 5:e1163461. [PMID: 27471637 DOI: 10.1080/2162402x.2016.1163461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022] Open
Abstract
Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.
Collapse
Affiliation(s)
- Gregory J Baker
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Chockley
- Graduate Program in Immunology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Daniel Zamler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
57
|
Hockl PF, Wolosiuk A, Pérez-Sáez JM, Bordoni AV, Croci DO, Toum-Terrones Y, Soler-Illia GJAA, Rabinovich GA. Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacol Res 2016; 109:45-54. [PMID: 26855319 DOI: 10.1016/j.phrs.2016.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/28/2022]
Abstract
Recent efforts toward defining the molecular features of the tumor microenvironment have revealed dramatic changes in the expression of glycan-related genes including glycosyltransferases and glycosidases. These changes affect glycosylation of proteins and lipids not only in cancer cells themselves, but also in cancer associated-stromal, endothelial and immune cells. These glycan alterations including increased frequency of β1,6-branched N-glycans and bisecting N-glycans, overexpression of tumor-associated mucins, preferred expression of T, Tn and sialyl-Tn antigen and altered surface sialylation, may contribute to tumor progression by masking or unmasking specific ligands for endogenous lectins, including members of the C-type lectin, siglec and galectin families. Differential expression of glycans or glycan-binding proteins could be capitalized for the identification of novel biomarkers and might provide novel opportunities for therapeutic intervention. This review focuses on the biological relevance of lectin-glycan interactions in the tumor microenvironment (mainly illustrated by the immunosuppressive and pro-angiogenic activities of galectin-1) and the design of functionalized nanoparticles for pharmacological delivery of multimeric glycans, lectins or selective inhibitors of lectin-glycan interactions with antitumor activity.
Collapse
Affiliation(s)
- Pablo F Hockl
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, 1650 San Martín, Argentina
| | - Juan M Pérez-Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Andrea V Bordoni
- Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, 1650 San Martín, Argentina
| | - Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de correo 56, 5500 Mendoza, Argentina
| | - Yamili Toum-Terrones
- Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, 1650 San Martín, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina.
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
58
|
Abstract
Gliomas are the most common primary brain tumors of the central nervous system, and carry a grim prognosis. Novel approaches utilizing the immune system as adjuvant therapy are quickly emerging as viable and effective options. Immunotherapeutic strategies being investigated to treat glioblastoma include: vaccination therapy targeted against either specific tumor antigens or whole tumor lysate, adoptive cellular therapy with cytotoxic T lymphocytes, chimeric antigen receptors and bi-specific T-cell engaging antibodies allowing circumvention of major histocompatibility complex restriction, aptamer therapy with aims for more efficient target delivery, and checkpoint blockade in order to release the tumor-mediated inhibition of the immune system. Given the heterogeneity of glioblastoma and its ability to gain mutations throughout the disease course, multifaceted treatment strategies utilizing multiple forms of immunotherapy in combination with conventional therapy will be most likely to succeed moving forward.
Collapse
Affiliation(s)
- Brandon D Liebelt
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Houston Methodist Neurological Institute, Houston, TX, USA
| | - Gaetano Finocchiaro
- Department of Neuro-oncology, IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Amy B Heimberger
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
59
|
Karakostis K, Costa C, Zito F, Matranga V. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity. Sci Rep 2015; 5:17665. [PMID: 26640155 PMCID: PMC4671058 DOI: 10.1038/srep17665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields.
Collapse
Affiliation(s)
- Kostantinos Karakostis
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
60
|
Baker GJ, Castro MG, Lowenstein PR. Isolation and Flow Cytometric Analysis of Glioma-infiltrating Peripheral Blood Mononuclear Cells. J Vis Exp 2015. [PMID: 26650233 DOI: 10.3791/53676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our laboratory has recently demonstrated that natural killer (NK) cells are capable of eradicating orthotopically implanted mouse GL26 and rat CNS-1 malignant gliomas soon after intracranial engraftment if the cancer cells are rendered deficient in their expression of the β-galactoside-binding lectin galectin-1 (gal-1). More recent work now shows that a population of Gr-1+/CD11b+ myeloid cells is critical to this effect. To better understand the mechanisms by which NK and myeloid cells cooperate to confer gal-1-deficient tumor rejection we have developed a comprehensive protocol for the isolation and analysis of glioma-infiltrating peripheral blood mononuclear cells (PBMC). The method is demonstrated here by comparing PBMC infiltration into the tumor microenvironment of gal-1-expressing GL26 gliomas with those rendered gal-1-deficient via shRNA knockdown. The protocol begins with a description of how to culture and prepare GL26 cells for inoculation into the syngeneic C57BL/6J mouse brain. It then explains the steps involved in the isolation and flow cytometric analysis of glioma-infiltrating PBMCs from the early brain tumor microenvironment. The method is adaptable to a number of in vivo experimental designs in which temporal data on immune infiltration into the brain is required. The method is sensitive and highly reproducible, as glioma-infiltrating PBMCs can be isolated from intracranial tumors as soon as 24 hr post-tumor engraftment with similar cell counts observed from time point matched tumors throughout independent experiments. A single experimentalist can perform the method from brain harvesting to flow cytometric analysis of glioma-infiltrating PBMCs in roughly 4-6 hr depending on the number of samples to be analyzed. Alternative glioma models and/or cell-specific detection antibodies may also be used at the experimentalists' discretion to assess the infiltration of several other immune cell types of interest without the need for alterations to the overall procedure.
Collapse
Affiliation(s)
- Gregory J Baker
- Department of Neurosurgery, University of Michigan; Department of Cell and Developmental Biology, University of Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan; Department of Cell and Developmental Biology, University of Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan; Department of Cell and Developmental Biology, University of Michigan;
| |
Collapse
|
61
|
Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 2015; 589:3407-18. [PMID: 26352298 DOI: 10.1016/j.febslet.2015.08.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/01/2023]
Abstract
Programs that control immune cell homeostasis are orchestrated through the coordinated action of a number of regulatory cell populations, including regulatory T cells, regulatory B cells, myeloid-derived suppressor cells, alternatively-activated macrophages and tolerogenic dendritic cells. These regulatory cell populations can prevent harmful inflammation following completion of protective responses and thwart the development of autoimmune pathology. However, they also have a detrimental role in cancer by favoring escape from immune surveillance. One of the hallmarks of regulatory cells is their remarkable plasticity as they can be positively or negatively modulated by a plethora of cytokines, growth factors and co-stimulatory signals that tailor their differentiation, stability and survival. Here we focus on the emerging roles of galectins, a family of highly conserved glycan-binding proteins in regulating the fate and function of regulatory immune cell populations, both of lymphoid and myeloid origins. Given the broad distribution of circulating and tissue-specific galectins, understanding the relevance of lectin-glycan interactions in shaping regulatory cell compartments will contribute to the design of novel therapeutic strategies aimed at modulating their function in a broad range of immunological disorders.
Collapse
|
62
|
Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y, Chang AE, Wicha MS. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches. Stem Cells 2015; 33:2085-92. [PMID: 25873269 DOI: 10.1002/stem.2039] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid-derived suppressor cells, and cytokines, for example, IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs.
Collapse
Affiliation(s)
- Qin Pan
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shuang Liu
- Department of Neurosurgery, Navy General Hospital, Beijing, People's Republic of China
| | - Ning Ning
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yingxin Xu
- Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
63
|
Han J, Alvarez-Breckenridge CA, Wang QE, Yu J. TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res 2015; 5:945-955. [PMID: 26045979 PMCID: PMC4449428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine, secreted by a variety of cells including immune cells, tumor cells, and stromal cells. TGF-β signaling is dysregulated in cancer patients, and this aberrant signaling at least in part contributes to initiation and progression of many cancers including glioma. The dysregulated signaling components provide molecular targets for the treatment of glioma. In this article, we review TGF-β signaling and its targeting in glioma.
Collapse
Affiliation(s)
- Jianfeng Han
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State UniversityColumbus, Ohio 43210, USA
- The Ohio State University Comprehensive Cancer CenterColumbus, Ohio 43210, USA
| | | | - Qi-En Wang
- The Ohio State University Comprehensive Cancer CenterColumbus, Ohio 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State UniversityColumbus, Ohio 43210, USA
- The Ohio State University Comprehensive Cancer CenterColumbus, Ohio 43210, USA
| |
Collapse
|
64
|
Calinescu AA, Kamran N, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Overview of current immunotherapeutic strategies for glioma. Immunotherapy 2015; 7:1073-104. [PMID: 26598957 PMCID: PMC4681396 DOI: 10.2217/imt.15.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.
Collapse
Affiliation(s)
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gregory Baker
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
65
|
Lowenstein PR, Baker GJ, Castro MG. Cracking the glioma-NK inhibitory code: toward successful innate immunotherapy. Oncoimmunology 2014; 3:e965573. [PMID: 25941594 DOI: 10.4161/21624011.2014.965573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 01/10/2023] Open
Abstract
Natural killer (NK) cells eradicate galectin-deficient malignant gliomas without the necessity for T cell cooperation. This phenomenon was discovered as a consequence of reducing glioma-derived galectin-1. We propose that stimulation of endogenous antitumor NK cell activity may be achieved by reducing potent tumor-derived NK cell inhibitors, such as galectin-1, and that such agents be tested in the clinic to treatbrain tumors.
Collapse
Affiliation(s)
- Pedro R Lowenstein
- Departments of Neurosurgery and Cell and Developmental Biology; and Immunology; Cancer Biology; and Neuroscience Training Programs; The University of Michigan Medical School ; Ann Arbor, MI, USA
| | - Gregory J Baker
- Departments of Neurosurgery and Cell and Developmental Biology; and Immunology; Cancer Biology; and Neuroscience Training Programs; The University of Michigan Medical School ; Ann Arbor, MI, USA
| | - Maria G Castro
- Departments of Neurosurgery and Cell and Developmental Biology; and Immunology; Cancer Biology; and Neuroscience Training Programs; The University of Michigan Medical School ; Ann Arbor, MI, USA
| |
Collapse
|