51
|
Chen Y, Zeng Q, Liu X, Fu J, Zeng Z, Zhao Z, Liu Z, Bai W, Dong Z, Liu H, Lu X, Zhu Y, Lu Y. LINE-1 ORF-1p enhances the transcription factor activity of pregnenolone X receptor and promotes sorafenib resistance in hepatocellular carcinoma cells. Cancer Manag Res 2018; 10:4421-4438. [PMID: 30349375 PMCID: PMC6188112 DOI: 10.2147/cmar.s176088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND LINE-1 ORF-1p is encoded by the human pro-oncogene LINE-1. Our previous work showed that LINE-1 ORF-1p could enhance the resistance of hepatocellular carcinoma (HCC) cells to antitumor agents. However, the mechanisms involved in LINE-1 ORF-1p-mediated drug resistance remain largely unknown. MATERIALS AND METHODS The endogenous mRNA level of LINE-1 ORF-1p in clinical HCC specimens was examined using quantitative PCR (qPCR). The prognosis of HCC patients was assessed using time to progression and overall survival. The transcription factor activity of pregnenolone X receptor (PXR) was examined using luciferase gene reporter assays, qPCR, chromatin immunoprecipitation assays and cellular subfraction assays. Protein interaction between LINE-1 ORF-1p and PXR was detected by co-immunoprecipitation. The effect of LINE-1 ORF-1p on sorafenib resistance in HCC cells was studied using in vitro and in vivo models. RESULTS A high level of LINE-1 ORF-1p in clinical specimens was related to poor prognosis in patients who received sorafenib treatment. LINE-1 ORF-1p increased the transcription factor activity of PXR by interacting with PXR and enhancing its cytoplasmic/nuclear translocation, and recruiting PXR to its downstream gene promoter, in turn enhancing the expression of the sorafenib resistance-related genes, CYP3A4 and mdr-1. LINE-1 ORF-1p enhanced the resistance to and clearance of sorafenib in HCC cells. CONCLUSION LINE-1 ORF-1p enhances the transcription factor activation of PXR and promotes the clearance of and resistance to sorafenib in HCC cells.
Collapse
Affiliation(s)
- Yan Chen
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
- College of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing 100044, P.R. China,
| | - Qinglei Zeng
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou 450052, Henan Province, P.R. China
| | - Xiufang Liu
- Department of Oncology, Chinese PLA 251 Hospital, Zhangjiakou 075000, P.R. China
| | - Junliang Fu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Zhen Zeng
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Zhiqin Zhao
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Ze Liu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Wenlin Bai
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Zheng Dong
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Hongjin Liu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Xiaoxia Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Yunfeng Zhu
- College of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing 100044, P.R. China,
- Cancer Center in Division of Internal Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China,
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| |
Collapse
|
52
|
Yang X, Xia W, Chen L, Wu CX, Zhang CC, Olson P, Wang XQ. Synergistic antitumor effect of a γ-secretase inhibitor PF-03084014 and sorafenib in hepatocellular carcinoma. Oncotarget 2018; 9:34996-35007. [PMID: 30405889 PMCID: PMC6201862 DOI: 10.18632/oncotarget.26209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
As a multi-kinase inhibitor, sorafenib is beneficial in around 30% of hepatocellular carcinoma (HCC) patients; however, HCC patients develop acquired drug resistance quickly. Clinical benefits of sorafenib, in combination with transarterial chemoembolization (TACE), radiotherapy, and other chemodrugs are limited. We investigated the efficacy and mechanisms of Notch signaling inhibition as adjuvant to sorafenib in HCC spheroid-derived in vitro and in vivo tumor models, using the γ-secretase inhibitor (GSI), PF-03084014. The combination of PF-03084014 plus sorafenib inhibited proliferation and self-renewal of HCC spheroids (stem-like cancer cells). PF-03084014 significantly enhanced antitumor activity of sorafenib; both agents at low dose reached synergistic tumor growth suppression of HCC spheroid-derived orthotopic tumors. The Notch1-Snail1 signaling pathway contributed to sorafenib resistance via increasing epithelial-mesenchymal transition (EMT) and EMT-mediated cancer stem cell (CSC) features, such as increased expression of Snail1, N-cadherin, ABCG2, and the stem cell related genes Nanog and Oct4, and decreased expression of E-cadherin. Anti-tumor activity of the combination therapy was associated with decreased expression of survival signals (Mek/Erk, PI3K/Akt) and reduced microvessel density. PF-03084014 plus sorafenib targets Notch1-Snail1 signaling to reverse EMT and EMT-mediated CSC stemness in the tumors. These synergistic effects provide a rationale to utilize GSIs, in combination with sorafenib, as a new therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xuran Yang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Wei Xia
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chuan Xing Wu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Cathy C Zhang
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla, California, USA
| | - Peter Olson
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla, California, USA
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
53
|
Saber S, Mahmoud A, Helal N, El-Ahwany E, Abdelghany R. Liver Protective Effects of Renin-Angiotensin System Inhibition Have No Survival Benefits in Hepatocellular Carcinoma Induced By Repetitive Administration of Diethylnitrosamine in Mice. Open Access Maced J Med Sci 2018; 6:955-960. [PMID: 29983784 PMCID: PMC6026411 DOI: 10.3889/oamjms.2018.167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND: Preclinical studies have demonstrated that renin-angiotensin system (RAS) signalling has strong tumour-promoting effects and RAS inhibition was associated with improvement in the overall survival in some cancer types including hepatocellular carcinoma (HCC). OBJECTIVE: We aimed to investigate the effect of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin-II-receptor blockers (ARBs) on the survival of mice with diethylnitrosamine (DEN) induced HCC. METHODS: HCC was induced by weekly i.p. administration of DEN. Mice were treated with sorafenib (SO) (30 mg/kg), perindopril (PE) (1 mg/kg), fosinopril (FO) (2 mg/kg), losartan (LO) (10 mg/kg), PE (1 mg/kg) + SO (30 mg/kg), FO (2 mg/kg) + SO (30 mg/kg), or LO (10 mg/kg) + SO (30 mg/kg). Survival analysis was done using the Kaplan-Meier method, and the log-rank test was used for assessing the significance of difference between groups. RESULTS: The administration of PE, FO and LO as monotherapy or as combined with SO resulted in marked improvement in the liver histologic picture with no impact on overall survival of mice. CONCLUSION: Interfering the RAS either through the inhibition of ACE or the blockade of angiotensin II type 1 (AT1) receptors has similar effects on the liver of DEN-induced HCC mice and is not associated with longer survival due to detrimental effects of DEN on other organs. Hence, repetitive administration of DEN in such models of HCC is not suitable for mortality assessment studies.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amr Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Noha Helal
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rasha Abdelghany
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
54
|
Saber S, Mahmoud AAA, Goda R, Helal NS, El-Ahwany E, Abdelghany RH. Perindopril, fosinopril and losartan inhibited the progression of diethylnitrosamine-induced hepatocellular carcinoma in mice via the inactivation of nuclear transcription factor kappa-B. Toxicol Lett 2018; 295:32-40. [PMID: 29859236 DOI: 10.1016/j.toxlet.2018.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem. Therapeutic interventions of HCC are still limited because of its complicated molecular pathogenesis. Many reports showed that renin-angiotensin system (RAS) contributes to the development of different types of malignancies. Therefore, the present study aimed to examine the effect of RAS inhibition using perindopril (1 mg/kg), fosinopril (2 mg/kg), or losartan (10 mg/kg) on diethylnitrosamine-induced HCC compared to sorafenib (30 mg/kg). The administration of RAS inhibitors resulted in improved liver function and histologic picture with a reduction in AFP levels. These effects found to be mediated through inactivation of NFкB pathway by the inhibition of NFĸB p65 phosphorylation at the Ser536 residue and inhibition of the phosphorylation-induced degradation of NFĸBia. Consequently, expression levels of cyclin D1 mRNA were significantly lowered. In addition, NFкB-induced TNF-α and TGF-β1 levels were reduced leading to lower levels of MMP-2 and VEGF. We concluded that RAS inhibition either through inhibiting the ACE or the blockade of AT1R has the same therapeutic benefit and that the tissue affinity of the ACEIs has no impact on its anti-tumor activity. These results suggest that ACEIs and ARBs can serve as promising candidates for further clinical trials in the management of HCC.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Manasoura, Dakahleya, Egypt.
| | - Amr A A Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmacology, Oman Pharmacy Institute, Ministry of Health, Muscat, Oman
| | - Reham Goda
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Manasoura, Dakahleya, Egypt
| | - Noha S Helal
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rasha H Abdelghany
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
55
|
Reguera-Nuñez E, Man S, Xu P, Kerbel RS. Preclinical impact of high dose intermittent antiangiogenic tyrosine kinase inhibitor pazopanib in intrinsically resistant tumor models. Angiogenesis 2018; 21:793-804. [PMID: 29786782 DOI: 10.1007/s10456-018-9623-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022]
Abstract
Antiangiogenic tyrosine kinase inhibitors (TKIs) target vascular endothelial growth factor receptors and other receptor tyrosine kinases. As a result of toxicity, the clinical failures or the modest benefits associated with antiangiogenic TKI therapy may be related in some cases to suboptimal drug dosing and scheduling, thereby facilitating resistance. Most antiangiogenic TKIs, including pazopanib, are administered on a continuous daily basis. Here, instead, we evaluated the impact of increasing the dose and administering the drug intermittently. The rationale is that using such protocols, antitumor efficacy could be enhanced by direct tumor cell targeting effects in addition to inhibiting tumor angiogenesis. To test this, we employed two human tumor xenograft models, both of which manifest intrinsic resistance to pazopanib when it is administered continuously: the VHL-wildtype SN12-PM6-1 renal cell carcinoma (RCC) and the metastatic MDA-MB-231/LM2-4 variant breast cancer cell line, when treated as distant metastases. We evaluated four different doses and schedules of pazopanib in the context of primary tumors and advanced metastatic disease, in both models. The RCC model was not converted to drug sensitivity using the intermittent protocol. Using these protocols did not enhance the efficacy when treating primary LM2-4 tumors. However, one of the high-dose intermittent pazopanib protocols increased median survival when treating advanced metastatic disease. In conclusion, these results overall suggest that primary tumors showing sensitivity to continuous pazopanib treatment may predict response to this drug when given at high doses intermittently in the context of advanced metastatic disease, that are otherwise resistant to the conventional protocol.
Collapse
Affiliation(s)
- Elaine Reguera-Nuñez
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 2J7, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 2J7, Canada.
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Room S-217, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
56
|
Multikinase inhibitor sorafenib induces skin toxicities in tumor-bearing mice. Cancer Chemother Pharmacol 2018; 81:1025-1033. [PMID: 29633006 DOI: 10.1007/s00280-018-3575-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To investigate the pathologic changes and pathogenesis of multikinase inhibitor (MKI)-induced skin lesions in an animal model. METHODS Tumor-bearing nude mice and BDF1 mice were treated with different doses (30-240 mg/kg, Bid) of sorafenib. The pathology and severity of the skin lesions was assessed and evaluated. The concentration of sorafenib in the skin was also determined. RESULTS Sorafenib transiently induced skin rash at high doses (120-240 mg/kg). The induced skin lesions had pathological manifestations resembling the observations in human patients. The skin of mice treated with sorafenib had significantly increased pathological scores and thickness of the stratum spinosum compared with the control, and induced more severe cutaneous lesions in nude mice than in BDF1 mice. The severity of skin lesions was correlated with the local concentration of sorafenib in the skin, which was significantly higher in nude mice than in BDF1 mice. Sorafenib treatment significantly increased the expression of F4-80, Ly6G, tumor growth factor (TGF)-1β, Smad2/3, α-smooth-muscle actin, and proliferating cell nuclear antigen. CONCLUSIONS The severity of skin lesions was positively correlated with the concentration of sorafenib in the skin. Our results suggested the involvement of the TGF-β1/Smads signaling pathway in the skin reaction induced by MKIs.
Collapse
|
57
|
Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 2018; 17:36. [PMID: 29455664 PMCID: PMC5817861 DOI: 10.1186/s12943-018-0801-5] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine kinase (PTK) is one of the major signaling enzymes in the process of cell signal transduction, which catalyzes the transfer of ATP-γ-phosphate to the tyrosine residues of the substrate protein, making it phosphorylation, regulating cell growth, differentiation, death and a series of physiological and biochemical processes. Abnormal expression of PTK usually leads to cell proliferation disorders, and is closely related to tumor invasion, metastasis and tumor angiogenesis. At present, a variety of PTKs have been used as targets in the screening of anti-tumor drugs. Tyrosine kinase inhibitors (TKIs) compete with ATP for the ATP binding site of PTK and reduce tyrosine kinase phosphorylation, thereby inhibiting cancer cell proliferation. TKI has made great progress in the treatment of cancer, but the attendant acquired acquired resistance is still inevitable, restricting the treatment of cancer. In this paper, we summarize the role of PTK in cancer, TKI treatment of tumor pathways and TKI acquired resistance mechanisms, which provide some reference for further research on TKI treatment of tumors.
Collapse
Affiliation(s)
- Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Shuliang Song
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| | - Yun-Shan Wang
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China.
| |
Collapse
|
58
|
Tang L, Zeng J, Geng P, Fang C, Wang Y, Sun M, Wang C, Wang J, Yin P, Hu C, Guo L, Yu J, Gao P, Li E, Zhuang Z, Xu G, Liu Y. Global Metabolic Profiling Identifies a Pivotal Role of Proline and Hydroxyproline Metabolism in Supporting Hypoxic Response in Hepatocellular Carcinoma. Clin Cancer Res 2018; 24:474-485. [PMID: 29084919 DOI: 10.1158/1078-0432.ccr-17-1707] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Purpose: Metabolic reprogramming is frequently identified in hepatocellular carcinoma (HCC), which is the most common type of liver malignancy. The reprogrammed cellular metabolisms promote tumor cell survival, proliferation, angiogenesis, and metastasis. However, the mechanisms of this process remain unclear in HCC.Experimental Design: The global nontargeted metabolic study in 69 paired hepatic carcinomas and adjacent tissue specimens was performed using capillary electrophoresis-time of flight mass spectrometry-based approach. Key findings were validated by targeted metabolomic approach. Biological studies were also performed to investigate the role of proline biosynthesis in HCC pathogenesis.Results: Proline metabolism was markedly changed in HCC tumor tissue, characterized with accelerated consumption of proline and accumulation of hydroxyproline, which significantly correlated with α-fetoprotein levels and poor prognosis in HCC. In addition, we found that hydroxyproline promoted hypoxia- and HIF-dependent phenotype in HCC. Moreover, we demonstrated that hypoxia activated proline biosynthesis via upregulation of ALDH18A1, subsequently leading to accumulation of hydroxyproline via attenuated PRODH2 activity. More importantly, we showed that glutamine, proline, and hydroxyproline metabolic axis supported HCC cell survival through modulating HIF1α stability in response to hypoxia. Finally, inhibition of proline biosynthesis significantly enhanced cytotoxicity of sorafenib in vitro and in vivoConclusions: Our results demonstrate that hypoxic microenvironment activates proline metabolism, resulting in accumulation of hydroxyproline that promotes HCC tumor progression and sorafenib resistance through modulating HIF1α. These findings provide the proof of concept for targeting proline metabolism as a potential therapeutic strategy for HCC. Clin Cancer Res; 24(2); 474-85. ©2017 AACR.
Collapse
Affiliation(s)
- Ling Tang
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Life Science, Dalian University, Dalian, China
| | - Jun Zeng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Dalian, China
| | - Pengyu Geng
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chengnan Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Wang
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Life Science, Dalian University, Dalian, China
| | - Mingju Sun
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Changsong Wang
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Critical Care Medicine, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiao Wang
- School of Life Science, Dalian University, Dalian, China
| | - Peiyuan Yin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lei Guo
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jane Yu
- Division of Pulmonary, Critical Care and Sleep Medicine Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Peng Gao
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Enyou Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Yang Liu
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
59
|
Sunitinib dose-escalation after disease progression in metastatic renal cell carcinoma. Urol Oncol 2018; 36:12.e1-12.e6. [DOI: 10.1016/j.urolonc.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
|
60
|
Jensen BC, Parry TL, Huang W, Beak JY, Ilaiwy A, Bain JR, Newgard CB, Muehlbauer MJ, Patterson C, Johnson GL, Willis MS. Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis. Br J Pharmacol 2017; 174:4797-4811. [PMID: 28977680 PMCID: PMC5727336 DOI: 10.1111/bph.14062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The human kinome consists of roughly 500 kinases, including 150 that have been proposed as therapeutic targets. Protein kinases regulate an array of signalling pathways that control metabolism, cell cycle progression, cell death, differentiation and survival. It is not surprising, then, that new kinase inhibitors developed to treat cancer, including sorafenib, also exhibit cardiotoxicity. We hypothesized that sorafenib cardiotoxicity is related to its deleterious effects on specific cardiac metabolic pathways given the critical roles of protein kinases in cardiac metabolism. EXPERIMENTAL APPROACH FVB/N mice (10 per group) were challenged with sorafenib or vehicle control daily for 2 weeks. Echocardiographic assessment of the heart identified systolic dysfunction consistent with cardiotoxicity in sorafenib-treated mice compared to vehicle-treated controls. Heart, skeletal muscle, liver and plasma were flash frozen and prepped for non-targeted GC-MS metabolomics analysis. KEY RESULTS Compared to vehicle-treated controls, sorafenib-treated hearts exhibited significant alterations in 11 metabolites, including markedly altered taurine/hypotaurine metabolism (25-fold enrichment), identified by pathway enrichment analysis. CONCLUSIONS AND IMPLICATIONS These studies identified alterations in taurine/hypotaurine metabolism in the hearts and skeletal muscles of mice treated with sorafenib. Interventions that rescue or prevent these sorafenib-induced changes, such as taurine supplementation, may be helpful in attenuating sorafenib-induced cardiac injury.
Collapse
Affiliation(s)
- Brian C Jensen
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
- Department of Internal MedicineDivision of Cardiology University of North CarolinaChapel HillNCUSA
- Department of PharmacologyUniversity of North CarolinaChapel HillNCUSA
| | - Traci L Parry
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
| | - Wei Huang
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Ju Youn Beak
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
- Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamNCUSA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
- Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamNCUSA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
- Division of Endocrinology, Metabolism, and Nutrition, Department of MedicineDuke University Medical CenterDurhamNCUSA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNCUSA
| | - Cam Patterson
- Presbyterian Hospital/Weill‐Cornell Medical CenterNew YorkNYUSA
| | - Gary L Johnson
- Department of PharmacologyUniversity of North CarolinaChapel HillNCUSA
| | - Monte S Willis
- McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- Department of PharmacologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
61
|
Liu Y, Lou G, Norton JT, Wang C, Kandela I, Tang S, Shank NI, Gupta P, Huang M, Avram MJ, Green R, Mazar A, Appella D, Chen Z, Huang S. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib. FASEB J 2017; 31:5453-5465. [PMID: 28821631 DOI: 10.1096/fj.201700306rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading form of cancer worldwide, and its incidence is increasing rapidly in the United States, tripling over the past 3 decades. The current chemotherapeutic strategies against localized and metastatic HCC are ineffective. Here we report that 6-methoxyethylamino-numonafide (MEAN) is a potent growth inhibitor of murine xenografts of 2 human HCC cell lines. At the same dose and with the same treatment strategies, MEAN was more efficacious in inhibiting tumor growth in mice than sorafenib, the only approved drug for HCC. Treatment by MEAN at an effective dose for 6 wk was well tolerated by animals. Combined therapy using both sorafenib and MEAN enhanced tumor growth inhibition over monotherapy with either agent. Additional experiments revealed that MEAN inhibited tumor growth through mechanisms distinct from those of either its parent compound, amonafide, or sorafenib. MEAN suppressed C-MYC expression and increased expression of several tumor suppressor genes, including Src homology region 2 domain-containing phosphatase-1 (SHP-1) and TXNIP (thioredoxin-interacting protein). As an encouraging feature for envisioned clinical application, the IC50 of MEAN was not significantly changed in several drug-resistant cell lines with activated P-glycoprotein drug efflux pumps compared to drug-sensitive parent cells, demonstrating the ability of MEAN to be effective in cells resistant to existing chemotherapy regimens. MEAN is a promising candidate for clinical development as a single-agent therapy or in combination with sorafenib for the management of HCC.-Liu, Y., Lou, G., Norton, J. T., Wang, C., Kandela, I., Tang, S., Shank, N. I., Gupta, P., Huang, M., Avram, M. J., Green, R., Mazar, A., Appella, D., Chen, Z., Huang, S. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib.
Collapse
Affiliation(s)
- Yanning Liu
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lou
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - John T Norton
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chen Wang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Irawati Kandela
- Developmental Therapeutics Core, Northwestern University, Chicago, Illinois, USA
| | - Shuai Tang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nathaniel I Shank
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pankaj Gupta
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Michael J Avram
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard Green
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew Mazar
- Developmental Therapeutics Core, Northwestern University, Chicago, Illinois, USA
| | - Daniel Appella
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi Chen
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China;
| | - Sui Huang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
62
|
Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2017; 4:303-323.e1. [PMID: 28840186 PMCID: PMC5560912 DOI: 10.1016/j.jcmgh.2017.05.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). METHODS We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers (ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. RESULTS We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. CONCLUSIONS We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.
Collapse
Key Words
- EMT, epithelial to mesenchymal transition
- FA, fatty acid
- HCC
- HCC, hepatocellular carcinoma
- Liver Cancer
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NB, nucleotide biosynthesis
- OXPHOS, oxidative phosphorylation
- PPP, pentose phosphate pathway
- TCA, tricarboxylic acid
- TCGA, The Cancer Genome Atlas
- Tumor Metabolism
- XM, xenobiotics metabolism
- logFC, log of fold change
Collapse
|
63
|
Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett 2017; 398:12-21. [PMID: 28377178 DOI: 10.1016/j.canlet.2017.03.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Use of the tyrosine kinase inhibitor sorafenib in patients with advanced hepatocellular carcinoma (HCC) is often hindered by the development of resistance, which has been recently shown to be associated with the emergence of a cancer stem cell (CSC) subpopulation. However, it remains largely unknown whether epigenetic mechanisms, especially histone posttranslational modifications, are causally linked to the maintenance of stem-like properties in sorafenib-resistant HCC. In this study, we report that the activity of lysine-specific histone demethylase 1A (KDM1A or LSD1) is required for the emergence of cancer stem cells following prolonged sorafenib treatment. As such, KDM1A inhibitors, such as pargyline and GSK2879552, dramatically suppress stem-like properties of sorafenib-resistant HCC cells. Mechanistically, KDM1A inhibitors derepress the expression of multiple upstream negative regulators of the Wnt signaling pathway to downregulate the β-catenin pathway. More importantly, KDM1A inhibition resensitizes sorafenib-resistant HCC cells to sorafenib in vivo, at least in part through reducing a CSC pool, suggesting a promising opportunity for this therapeutic combination. Together, these findings suggest that KDM1A inhibitors may be utilized to alleviate acquired resistance to sorafenib, thus increasing the therapeutic efficacy of sorafenib in HCC patients.
Collapse
|
64
|
Bins S, van Doorn L, Phelps MA, Gibson AA, Hu S, Li L, Vasilyeva A, Du G, Hamberg P, Eskens F, de Bruijn P, Sparreboom A, Mathijssen R, Baker SD. Influence of OATP1B1 Function on the Disposition of Sorafenib-β-D-Glucuronide. Clin Transl Sci 2017; 10:271-279. [PMID: 28371445 PMCID: PMC5504481 DOI: 10.1111/cts.12458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 01/05/2023] Open
Abstract
The oral multikinase inhibitor sorafenib undergoes extensive UGT1A9-mediated formation of sorafenib-β-D-glucuronide (SG). Using transporter-deficient mouse models, it was previously established that SG can be extruded into bile by ABCC2 or follow a liver-to-blood shuttling loop via ABCC3-mediated efflux into the systemic circulation, and subsequent uptake in neighboring hepatocytes by OATP1B-type transporters. Here we evaluated the possibility that this unusual process, called hepatocyte hopping, is also operational in humans and can be modulated through pharmacological inhibition. We found that SG transport by OATP1B1 or murine Oatp1b2 was effectively inhibited by rifampin, and that this agent can significantly increase plasma levels of SG in wildtype mice, but not in Oatp1b2-deficient animals. In human subjects receiving sorafenib, rifampin acutely increased the systemic exposure to SG. Our study emphasizes the need to consider hepatic handling of xenobiotic glucuronides in the design of drug-drug interaction studies of agents that undergo extensive phase II conjugation.
Collapse
Affiliation(s)
- S Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - L van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - M A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - A A Gibson
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - S Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - L Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Vasilyeva
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Du
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - P Hamberg
- Department of Internal Medicine, St. Franciscus Gasthuis, Rotterdam, The Netherlands
| | - Falm Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - P de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - A Sparreboom
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands.,Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Rhj Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - S D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
65
|
Manzanares MÁ, Usui A, Campbell DJ, Dumur CI, Maldonado GT, Fausther M, Dranoff JA, Sirica AE. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1068-1092. [PMID: 28315313 DOI: 10.1016/j.ajpath.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
To gain insight into the cellular and molecular interactions mediating the desmoplastic reaction and aggressive malignancy of mass-forming intrahepatic cholangiocarcinoma (ICC), we modeled ICC desmoplasia and progression in vitro. A unique three-dimensional (3D) organotypic culture model was established; within a dilute collagen-type I hydrogel, a novel clonal strain of rat cancer-associated myofibroblasts (TDFSM) was co-cultured with a pure rat cholangiocarcinoma cell strain (TDECC) derived from the same ICC type as TDFSM. This 3D organotypic culture model reproduced key features of desmoplastic reaction that closely mimicked those of the in situ tumor, as well as promoted cholangiocarcinoma cell growth and progression. Our results supported a resident liver mesenchymal cell origin of the TDFSM cells, which were not neoplastically transformed. Notably, 3D co-culturing of TDECC cells with TDFSM cells provoked the formation of a dense fibrocollagenous stroma in vitro that was associated with significant increases in both proliferative TDFSM myofibroblastic cells and TDECC cholangiocarcinoma cells accumulating within the gel matrix. This dramatic desmoplastic ICC-like phenotype, which was not observed in the TDECC or TDFSM controls, was highly dependent on transforming growth factor (TGF)-β, but not promoted by TGF-α. However, TGF-α was determined to be a key factor for promoting cholangiocarcinoma cell anaplasia, hyperproliferation, and higher malignant grading in this 3D culture model of desmoplastic ICC.
Collapse
Affiliation(s)
- Miguel Á Manzanares
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Akihiro Usui
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Deanna J Campbell
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine I Dumur
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Gabrielle T Maldonado
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Michel Fausther
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
66
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol Lett 2017; 13:800-804. [PMID: 28356961 PMCID: PMC5351389 DOI: 10.3892/ol.2016.5510] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/18/2016] [Indexed: 12/25/2022] Open
Abstract
Cancer cells consume more glucose than normal cells, mainly due to their increased rate of glycolysis. 2-Deoxy-d-glucose (2DG) is an analogue of glucose, and sorafenib is a kinase inhibitor and molecular agent used to treat hepatocellular carcinoma (HCC). The present study aimed to demonstrate whether combining 2DG and sorafenib suppresses tumor cell proliferation and motility more effectively than either drug alone. HLF and PLC/PRF/5 HCC cells were incubated with sorafenib with or without 1 µM 2DG, and subjected to a proliferation assay. A scratch assay was then performed to analyze cell motility following the addition of 2DG and sorafenib in combination, and each agent alone. RNA was isolated and subjected to reverse transcription-quantitative polymerase chain reaction to analyze the expression of cyclin D1 and matrix metalloproteinase-9 (MMP9) following the addition of 2DG and sorafenib in combination and each agent alone. Proliferation was markedly suppressed in cells cultured with 1 µM 2DG and 30 µM sorafenib compared with cells cultured with either agent alone (P<0.05). In addition, levels of Cyclin D1 expression decreased in cells exposed to 3 µM sorafenib and 1 µM 2DG compared with cells exposed to 2DG or sorafenib alone (P<0.05). Scratch assay demonstrated that the distance between the growing edge of the cell sheet and the scratched line was shorter in cells cultured with sorafenib and 2DG than in cells cultured with 2DG or sorafenib alone (P<0.05). Levels of MMP9 expression decreased more in cells treated with both sorafenib and 2DG than in cells treated with 2DG or sorafenib alone (P<0.05). Therefore, 2DG and sorafenib in combination suppressed the proliferation and motility of HCC cells more effectively than 2DG or sorafenib alone, and a cancer treatment combining both drugs may be more effective than sorafenib alone.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Fuminobu Shinozaki
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Yasufumi Motoyoshi
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Takao Sugiyama
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Shigenori Yamamoto
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Naoki Ishige
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|
67
|
Zhu M, Li W, Guo J, Lu Y, Dong X, Lin B, Chen Y, Zhang X, Li M. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells. Oncotarget 2016; 7:75749-75762. [PMID: 27716619 PMCID: PMC5342775 DOI: 10.18632/oncotarget.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is a dietary isothiocyanate derived from cruciferous vegetables. Recent studies showed that BITC inhibited the growth of many cancer cells, including hepatocellular carcinoma (HCC) cells. Alpha-fetoprotein (AFP) is a important molecule for promoting progression of HCC, in the present investigation, we explore the influence of AFP on the role of BITC in the malignant behaviours of HCC cells, and the potential underlying mechanisms. We found thatBITC inhibited viability, migration, invasion and induced apoptosis of human liver cancer cell lines, Bel 7402(AFP producer) and HLE(non-AFP producer) cells in vitro. The role of BITC involve in promoting actived-caspase-3 and PARP-1 expression, and enhancing caspase-3 activity but decreasing MMP-2/9, survivin and CXCR4 expression. AFP antagonized the effect of BITC. This study suggests that BITC induced significant reductions in the viability of HCC cell lines. BITC may activate caspase-3 signal and inhibit the expression of growth- and metastasis-related proteins; AFP is an pivotal molecule for the HCC chemo-resistance of BITC.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Xueer Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Undergraduate Student of Clinical Medicine, Hainan Medical College, Haikou 571199, P.R. China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
- Institution of Tumour, Hainan Medical College, Haikou 570102, Hainan Province, P.R. China
| |
Collapse
|
68
|
Lin J, Wu L, Bai X, Xie Y, Wang A, Zhang H, Yang X, Wan X, Lu X, Sang X, Zhao H. Combination treatment including targeted therapy for advanced hepatocellular carcinoma. Oncotarget 2016; 7:71036-71051. [PMID: 27626176 PMCID: PMC5342607 DOI: 10.18632/oncotarget.11954] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Management of advanced hepatocellular carcinoma (HCC), one of the most lethal cancers worldwide, has presented a therapeutic challenge over past decades. Most patients with advanced HCC and a low possibility of surgical resection have limited treatment options and no alternative but to accept local or palliative treatment. In the new era of cancer therapy, increasing numbers of molecular targeted agents (MTAs) have been applied in the treatment of advanced HCC. However, mono-targeted therapy has shown disappointing outcomes in disease control, primarily because of tumor heterogeneity and complex cell signal transduction. Because incapacitation of a single target is insufficient for cancer suppression, combination treatment for targeted therapy has been proposed and experimentally tested in several clinical trials. In this article, we review research studies aimed to enhance the efficacy of targeted therapy for HCC through combination strategies. Combination treatments involving targeted therapy for advanced HCC are compared and discussed.
Collapse
Affiliation(s)
- Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xue Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Center of Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
69
|
Prieto-Domínguez N, Ordóñez R, Fernández A, Méndez-Blanco C, Baulies A, Garcia-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J. Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J Pineal Res 2016; 61:396-407. [PMID: 27484637 PMCID: PMC5018464 DOI: 10.1111/jpi.12358] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
Abstract
Effects of sorafenib in hepatocellular carcinoma (HCC) are frequently transient due to tumor-acquired resistance, a phenotype that could be targeted by other molecules to reduce this adaptive response. Because melatonin is known to exert antitumor effects in HCC cells, this study investigated whether and how melatonin reduces resistance to sorafenib. Susceptibility to sorafenib (10 nmol/L to 50 μmol/L) in the presence of melatonin (1 and 2 mmol/L) was assessed in HCC cell lines HepG2, HuH7, and Hep3B. Cell viability was reduced by sorafenib from 1 μmol/L in HepG2 or HuH7 cells, and 2.5 μmol/L in Hep3B cells. Co-administration of melatonin and sorafenib exhibited a synergistic cytotoxic effect on HepG2 and HuH7 cells, while Hep3B cells displayed susceptibility to doses of sorafenib that had no effect when administrated alone. Co-administration of 2.5 μmol/L sorafenib and 1 mmol/L melatonin induced apoptosis in Hep3B cells, increasing PARP hydrolysis and BAX expression. We also observed an early colocalization of mitochondria with lysosomes, correlating with the expression of mitophagy markers PINK1 and Parkin and a reduction of mitofusin-2 and mtDNA compared with sorafenib administration alone. Moreover, increased reactive oxygen species production and mitochondrial membrane depolarization were elicited by drug combination, suggesting their contribution to mitophagy induction. Interestingly, Parkin silencing by siRNA to impair mitophagy significantly reduced cell killing, PARP cleavage, and BAX expression. These results demonstrate that the pro-oxidant capacity of melatonin and its impact on mitochondria stability and turnover via mitophagy increase sensitivity to the cytotoxic effect of sorafenib.
Collapse
Affiliation(s)
- Néstor Prieto-Domínguez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Anna Baulies
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
| | - José C Fernández-Checa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| |
Collapse
|
70
|
Saad NS, Floyd K, Ahmed AAE, Mohler PJ, Janssen PML, Elnakish MT. The Effect of Sorafenib, Tadalafil and Macitentan Treatments on Thyroxin-Induced Hemodynamic Changes and Cardiac Abnormalities. PLoS One 2016; 11:e0153694. [PMID: 27082116 PMCID: PMC4833287 DOI: 10.1371/journal.pone.0153694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022] Open
Abstract
Multikinase inhibitors (e.g. Sorafenib), phosphodiesterase-5 inhibitors (e.g. Tadalafil), and endothelin-1 receptor blockers (e.g. Macitentan) exert influential protection in a variety of animal models of cardiomyopathy; however, their effects on thyroxin-induced cardiomyopathy have never been investigated. The goal of the present study was to assess the functional impact of these drugs on thyroxin-induced hemodynamic changes, cardiac hypertrophy and associated altered responses of the contractile myocardium both in-vivo at the whole heart level and ex-vivo at the cardiac tissue level. Control and thyroxin (500 μg/kg/day)-treated mice with or without 2-week treatments of sorafenib (10 mg/kg/day; I.P), tadalafil (1 mg/kg/day; I.P or 4 mg/kg/day; oral), macitentan (30 and 100 mg/kg/day; oral), and their vehicles were studied. Blood pressure, echocardiography and electrocardiogram were non-invasively evaluated, followed by ex-vivo assessments of isolated multicellular cardiac preparations. Thyroxin increased blood pressure, resulted in cardiac hypertrophy and left ventricular dysfunction in-vivo. Also, it caused contractile abnormalities in right ventricular papillary muscles ex-vivo. None of the drug treatments were able to significantly attenuate theses hemodynamic changes or cardiac abnormalities in thyroxin-treated mice. We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), phosphodiesterase-5, and endothelin-1 pathways have no major role in thyroxin-induced hemodynamic changes and cardiac abnormalities. In particular, our data show that the involvement of endothelin-1 pathway in thyroxine-induced cardiac hypertrophy/dysfunction seems to be model-dependent and should be carefully interpreted.
Collapse
Affiliation(s)
- Nancy S. Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kyle Floyd
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Amany A. E. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Peter J. Mohler
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Mohammad T. Elnakish
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- * E-mail:
| |
Collapse
|
71
|
Li WF, Ou Q, Dai H, Liu CA. Lentiviral-Mediated Short Hairpin RNA Knockdown of MTDH Inhibits Cell Growth and Induces Apoptosis by Regulating the PTEN/AKT Pathway in Hepatocellular Carcinoma. Int J Mol Sci 2015; 16:19419-32. [PMID: 26287185 PMCID: PMC4581304 DOI: 10.3390/ijms160819419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022] Open
Abstract
The activation of oncogenes and the loss of tumor suppressor genes are believed to play critical roles in the pathogenesis of human hepatocellular carcinoma (HCC). Metaherin (MTDH), also called astrocyte elevated gene-1 (AEG-1), is frequently amplified in a variety of cancers, but the roles of MTDH with regard to growth and apoptosis in HCC have not yet been studied. In the present study, we first analyzed the expression of MTDH in HCC samples. We found that MTDH protein levels are higher in most HCC cancerous tissues compared with their matched adjacent non-tumor tissues. Additionally, the MTDH mRNA was also higher in HCC tissues compared to their matched adjacent non-tumor tissues. Knockdown of the endogenous MTDH using small interfering RNA further showed that deficiency of MTDH suppressed cell growth and caused apoptosis in HCC cells. Knockdown MTDH promoted PTEN and p53 expression in HCC cells and inhibited AKT phosphorylation. Knockdown MTDH also inhibited tumor growth in vivo. All these results indicated that MTDH protein levels in most HCC tissues are higher than non-tumor tissues, and knockdown of MTDH inhibited growth and induced apoptosis in HCC cells through the activation of PTEN. Therefore, MTDH might be an effective targeted therapy gene for HCC.
Collapse
Affiliation(s)
- Wen-Fang Li
- Department of Hepatibiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qin Ou
- Department of Cancer Research Center, Hubei Medical University, Shiyan 442000, China.
| | - Hang Dai
- Department of Hepatibiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Chang-An Liu
- Department of Hepatibiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Shiyan 442000, China.
| |
Collapse
|