51
|
Stefanski CD, Prosperi JR. Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response. Int J Mol Sci 2020; 21:E7844. [PMID: 33105836 PMCID: PMC7660076 DOI: 10.3390/ijms21217844] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC's interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms.
Collapse
Affiliation(s)
- Casey D. Stefanski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA;
- Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Jenifer R. Prosperi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA;
- Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| |
Collapse
|
52
|
Rashmi R, Jayachandran K, Zhang J, Menon V, Muhammad N, Zahner M, Ruiz F, Zhang S, Cho K, Wang Y, Huang X, Huang Y, McCormick ML, Rogers BE, Spitz DR, Patti GJ, Schwarz JK. Glutaminase Inhibitors Induce Thiol-Mediated Oxidative Stress and Radiosensitization in Treatment-Resistant Cervical Cancers. Mol Cancer Ther 2020; 19:2465-2475. [PMID: 33087507 DOI: 10.1158/1535-7163.mct-20-0271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine if radiation (RT)-resistant cervical cancers are dependent upon glutamine metabolism driven by activation of the PI3K pathway and test whether PI3K pathway mutation predicts radiosensitization by inhibition of glutamine metabolism. Cervical cancer cell lines with and without PI3K pathway mutations, including SiHa and SiHa PTEN-/- cells engineered by CRISPR/Cas9, were used for mechanistic studies performed in vitro in the presence and absence of glutamine starvation and the glutaminase inhibitor, telaglenastat (CB-839). These studies included cell survival, proliferation, quantification of oxidative stress parameters, metabolic tracing with stable isotope-labeled substrates, metabolic rescue, and combination studies with L-buthionine sulfoximine (BSO), auranofin (AUR), and RT. In vivo studies of telaglenastat ± RT were performed using CaSki and SiHa xenografts grown in immune-compromised mice. PI3K-activated cervical cancer cells were selectively sensitive to glutamine deprivation through a mechanism that included thiol-mediated oxidative stress. Telaglenastat treatment decreased total glutathione pools, increased the percent glutathione disulfide, and caused clonogenic cell killing that was reversed by treatment with the thiol antioxidant, N-acetylcysteine. Telaglenastat also sensitized cells to killing by glutathione depletion with BSO, thioredoxin reductase inhibition with AUR, and RT. Glutamine-dependent PI3K-activated cervical cancer xenografts were sensitive to telaglenastat monotherapy, and telaglenastat selectively radiosensitized cervical cancer cells in vitro and in vivo These novel preclinical data support the utility of telaglenastat for glutamine-dependent radioresistant cervical cancers and demonstrate that PI3K pathway mutations may be used as a predictive biomarker for telaglenastat sensitivity.
Collapse
Affiliation(s)
- Ramachandran Rashmi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri
| | - Vishnu Menon
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Naoshad Muhammad
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Zahner
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Fiona Ruiz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Sisi Zhang
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Cho
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri
| | - Yuting Wang
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaojing Huang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Gary J Patti
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri. .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.,Alvin J. Siteman Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
53
|
Hong L, Chen J, Wu F, Wu F, Shen X, Zheng P, Shao R, Lu K, Liu Z, Chen D, Liang G, Cai Y, Zou P, Xia Y. Isodeoxyelephantopin Inactivates Thioredoxin Reductase 1 and Activates ROS-Mediated JNK Signaling Pathway to Exacerbate Cisplatin Effectiveness in Human Colon Cancer Cells. Front Cell Dev Biol 2020; 8:580517. [PMID: 33072762 PMCID: PMC7536313 DOI: 10.3389/fcell.2020.580517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Colon cancer is one of the leading causes of cancer-related death in the world. The development of new drugs and therapeutic strategies for patients with colon cancer are urgently needed. Isodeoxyelephantopin (ESI), a sesquiterpene lactone isolated from the medicinal plant Elephantopus scaber L., has been reported to exert antitumor effects on several cancer cells. However, the molecular mechanisms underlying the action of ESI is still elusive. In the present study, we found that ESI potently suppressed cell proliferation in human colon cancer cells. Furthermore, our results showed that ESI treatment markedly increased cellular reactive oxygen species (ROS) levels by inhibiting thioredoxin reductase 1 (TrxR1) activity, which leads to activation of the JNK signaling pathway and eventually cell death in HCT116 and RKO cells. Importantly, we found that ESI markedly enhanced cisplatin-induced cytotoxicity in HCT116 and RKO cells. Combination of ESI and cisplatin significantly increased the production of ROS, resulting in activation of the JNK signaling pathway in HCT116 and RKO cells. In vivo, we found that ESI combined with cisplatin significantly suppressed tumor growth in HCT116 xenograft models. Together, our study provide a preclinical proof-of-concept for ESI as a potential strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Lin Hong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China.,Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jundixia Chen
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fang Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Fengjiao Wu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Shen
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peisen Zheng
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongrong Shao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kongqin Lu
- Zhuji Institute of Biomedicine, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, China
| | - Zhiguo Liu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daoxing Chen
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China.,Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
54
|
Yang Y, Ji N, Cai C, Wang J, Lei Z, Teng Q, Wu Z, Cui Q, Pan Y, Chen Z. Modulating the function of ABCB1: in vitro and in vivo characterization of sitravatinib, a tyrosine kinase inhibitor. Cancer Commun (Lond) 2020; 40:285-300. [PMID: 32525624 PMCID: PMC7365458 DOI: 10.1002/cac2.12040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Overexpression of ATP-binding cassette (ABC) transporter is a major contributor to multidrug resistance (MDR), in which cancer cells acquire resistance to a wide spectrum of chemotherapeutic drugs. In this work, we evaluated the sensitizing effect of sitravatinib, a broad-spectrum tyrosine kinase inhibitor (TKI), on ATP-binding cassette subfamily B member 1 (ABCB1)- and ATP-binding cassette subfamily C member 10 (ABCC10)-mediated MDR. METHODS MTT assay was conducted to examine cytotoxicity and evaluate the sensitizing effect of sitravatinib at non-toxic concentrations. Tritium-labeled paclitaxel transportation, Western blotting, immunofluorescence analysis, and ATPase assay were carried out to elucidate the mechanism of sitravatinib-induced chemosensitization. The in vitro findings were translated into preclinical evaluation with the establishment of xenograft models. RESULTS Sitravatinib considerably reversed MDR mediated by ABCB1 and partially antagonized ABCC10-mediated MDR. Our in silico docking simulation analysis indicated that sitravatinib strongly and stably bound to the transmembrane domain of ABCB1 human-mouse chimeric model. Furthermore, sitravatinib inhibited hydrolysis of ATP and synchronously decreased the efflux function of ABCB1. Thus, sitravatinib could considerably enhance the intracellular concentration of anticancer drugs. Interestingly, no significant alterations of both expression level and localization of ABCB1 were observed. More importantly, sitravatinib could remarkably restore the antitumor activity of vincristine in ABCB1-mediated xenograft model without observable toxic effect. CONCLUSIONS The findings in this study suggest that the combination of sitrvatinib and substrate antineoplastic drugs of ABCB1 could attenuate the MDR mediated by the overexpression of ABCB1.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| | - Ning Ji
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
- State Key Laboratory of Experimental HematologyChinese Academy of Medical Science and Peking Union Medical CollegeInstitute of Hematology and Blood Diseases HospitalTianjin300020P. R. China
| | - Chao‐Yun Cai
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| | - Jing‐Quan Wang
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| | - Zi‐Ning Lei
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| | - Qingbin Cui
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
- School of Public HealthGuangzhou Medical UniversityGuangzhouGuangdong511436P. R. China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratorythe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439USA
| |
Collapse
|
55
|
RNA-based high-risk HPV genotyping and identification of high-risk HPV transcriptional activity in cervical tissues. Mod Pathol 2020; 33:748-757. [PMID: 31537894 DOI: 10.1038/s41379-019-0369-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Nearly all cervical cancers are initiated by a persistent infection with one of the high-risk human papillomaviruses (high-risk HPV). High-risk HPV DNA testing is highly sensitive but cannot distinguish between active, productive infections and dormant infections or merely deposited virus. A solution for this shortcoming may be the detection of transcriptional activity of viral oncogenes instead of mere presence of high-risk HPVs. In this study, fresh-frozen cervical tissues (n = 22) were subjected to high-risk HPV DNA detection using the line probe assay and to targeted RNA next-generation sequencing using single-molecule molecular inversion probes. Targeted RNA sequencing was applied for (1) RNA-based genotyping of high-risk HPV, giving information on specific HPV-subtype (2) discrimination of E2, E6, and E7 transcripts and (3) discovery of possible non-HPV cancer biomarkers. Data were analyzed using computational biology. Targeted RNA sequencing enabled reliable genotyping of high-risk HPV subtypes and allowed quantitative detection of E2, E6, and E7 viral gene expression, thereby discriminating cervical lesions from normal cervical tissues. Moreover, targeted RNA sequencing identified possible cervical cancer biomarkers other than high-risk HPV. Interestingly, targeted RNA sequencing also provided high-quality transcription profiles from cervical scrape samples, even after 1 week of dry storage or storage in Preservcyt fixative. This proof of concept study shows that targeted RNA sequencing can be used for high-risk HPV genotyping and simultaneous detection of high-risk HPV gene activity. Future studies are warranted to investigate the potential of targeted RNA sequencing for risk assessment for the development of cervical lesions, based on molecular analysis of cervical scrapes.
Collapse
|
56
|
Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020; 9:antiox9030193. [PMID: 32106613 PMCID: PMC7139512 DOI: 10.3390/antiox9030193] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.
Collapse
|
57
|
Li Q, Wang Q, Zhang Q, Zhang J, Zhang J. Collagen prolyl 4-hydroxylase 2 predicts worse prognosis and promotes glycolysis in cervical cancer. Am J Transl Res 2019; 11:6938-6951. [PMID: 31814898 PMCID: PMC6895525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
P4HA2 is one of collagen prolyl 4-hydroxylase (P4H) isoform and increased in several types of human cancer. However, the role of P4HA2 during cervical tumorigenesis remains largely unknown. Here, we report that the protein level of P4HA2 is significantly increased in cervical cancer tissues. Silencing of P4HA2 inhibits cervical cancer cell proliferation, colony formation and migration. We also demonstrate decreased glucose uptake and lactate production in P4HA2 knockdown cells. Mechanistically, P4HA2 promotes cervical cancer cell glycolysis through upregulation of PGK1 and LDHA. We find a positive correlation between P4HA2 and PGK1/LDHA expression in cervical cancer tissues. Importantly, high expression of P4HA2, PGK1 or LDHA has a significantly shorter overall survival period and the survival prediction is enhanced by using combination of P4HA2 and PGK1/LDHA expression. Collectively, we identify P4HA2 as a regulator of glycolysis through PGK1 and LDHA, which may serve as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Qingxian Li
- Department of Gynaecology and Obstetrics, Putuo Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Qinyi Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai, China
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan UniversityShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji UniversityShanghai, China
| |
Collapse
|
58
|
Floberg JM, Wang L, Bandara N, Rashmi R, Mpoy C, Garbow JR, Rogers BE, Patti GJ, Schwarz JK. Alteration of Cellular Reduction Potential Will Change 64Cu-ATSM Signal With or Without Hypoxia. J Nucl Med 2019; 61:427-432. [PMID: 31586008 DOI: 10.2967/jnumed.119.230805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 01/11/2023] Open
Abstract
Therapies targeting reductive/oxidative (redox) metabolism hold potential in cancers resistant to chemotherapy and radiation. A redox imaging marker would help identify cancers susceptible to redox-directed therapies. Copper(II)-diacetyl-bis(4-methylthiosemicarbazonato) (Cu-ATSM) is a PET tracer developed for hypoxia imaging that could potentially be used for this purpose. We aimed to demonstrate that Cu-ATSM signal is dependent on cellular redox state, irrespective of hypoxia. Methods: We investigated the relationship between 64Cu-ATSM signal and redox state in human cervical and colon cancer cells. We altered redox state using drug strategies and single-gene mutations in isocitrate dehydrogenases (IDH1/2). Concentrations of reducing molecules were determined by spectrophotometry and liquid chromatography-mass spectrometry and compared with 64Cu-ATSM signal in vitro. Mouse models of cervical cancer were used to evaluate the relationship between 64Cu-ATSM signal and levels of reducing molecules in vivo, as well as to evaluate the change in 64Cu-ATSM signal after redox-active drug treatment. Results: A correlation exists between baseline 64Cu-ATSM signal and cellular concentration of glutathione, nicotinamide adenine dinucleotide phosphate (NADPH), and nicotinamide adenine dinucleotide (NADH). Altering NADH and NADPH metabolism using drug strategies and IDH1 mutations resulted in significant changes in 64Cu-ATSM signal under normoxic conditions. Hypoxia likewise changed 64Cu-ATSM signal, but treatment of hypoxic cells with redox-active drugs resulted in a more dramatic change than hypoxia alone. A significant difference in NADPH was seen between cervical tumor orthotopic implants in vivo, without a corresponding difference in 64Cu-ATSM signal. After treatment with β-lapachone, there was a change in 64Cu-ATSM signal in xenograft tumors smaller than 50 mg but not in larger tumors. Conclusion: 64Cu-ATSM signal reflects redox state, and altering redox state impacts 64Cu-ATSM metabolism. Our animal data suggest there are other modulating factors in vivo. These findings have implications for the use of 64Cu-ATSM as a predictive marker for redox therapies, though further in vivo work is needed.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Lingjue Wang
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Ramachandran Rashmi
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri; and
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University, St. Louis, Missouri.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri; and.,Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri
| |
Collapse
|
59
|
Abstract
Radiation therapy is one of the most commonly used treatments for cancer. Radiation modifiers are agents that alter tumor or normal tissue response to radiation, such as radiation sensitizers and radiation protectors. Radiation sensitizers target aspects of tumor molecular biology or physiology to enhance tumor cell killing after irradiation. Radioprotectors prevent damage of normal tissues selectively. Radiation modifiers remain largely investigational at present, with the promise that molecular characterization of tumors may enhance the capacity for successful clinical development moving forward. A variety of radiation modifiers are described.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10 CRC, Room B2-3500, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
60
|
Hasse FC, Koerber SA, Prigge ES, Liermann J, von Knebel Doeberitz M, Debus J, Sterzing F. Overcoming radioresistance in WiDr cells with heavy ion irradiation and radiosensitization by 2-deoxyglucose with photon irradiation. Clin Transl Radiat Oncol 2019; 19:52-58. [PMID: 31517070 PMCID: PMC6733777 DOI: 10.1016/j.ctro.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/31/2022] Open
Abstract
2-DG acts as a radiosensitizer to photons depending on the time of its application. There is no sensitization to 12C irradiation by 2-DG. 12C combination therapy still has the higher dose effectiveness.
Background and purpose Radiosensitizers and heavy ion irradiation could improve therapy for female patients with malignant tumors located in the pelvic region through dose reduction. Aim of the study was to investigate the radiosensitizing potential of 2-deoxy-d-glucose (2-DG) in combination with carbon ion-irradiation (12C) in representative cell lines of cancer in the female pelvic region. Materials and methods The human cervix carcinoma cell line CaSki and the colorectal carcinoma cell line WiDr were used. 2-DG was employed in two different settings, pretreatment and treatment simultaneous to irradiation. Clonogenic survival, α and β values for application of the linear quadratic model and relative biological effectiveness (RBE) were determined. ANOVA tests were used for statistical group comparison. Isobolograms were generated for curve comparisons. Results The comparison of monotherapy with 12C versus photons yielded RBE values of 2.4 for CaSki and 3.5 for WiDr along with a significant increase of α values in the 12C setting. 2-DG monotherapy reduced the colony formation of both cell lines. Radiosensitization was found in WiDr for the combination of photon irradiation with synchronous application of 2-DG. The same setup for 12C showed no radiosensitization, but rather an additive effect. In all settings with CaSki, the combination of irradiation and 2-DG exhibited additive properties. Conclusion The combination of 2-DG and photon therapy, as well as irradiation with carbon ions can overcome radioresistance of tumor cells such as WiDr.
Collapse
Affiliation(s)
- Felix Christian Hasse
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Elena Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
61
|
Llufrio EM, Cho K, Patti GJ. Systems-level analysis of isotopic labeling in untargeted metabolomic data by X 13CMS. Nat Protoc 2019; 14:1970-1990. [PMID: 31168088 PMCID: PMC7323898 DOI: 10.1038/s41596-019-0167-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
Identification of previously unreported metabolites (so-called 'unknowns') in untargeted metabolomic data has become an increasingly active area of research. Considerably less attention, however, has been dedicated to identifying unknown metabolic pathways. Yet, for each unknown metabolite structure, there is potentially a yet-to-be-discovered chemical transformation. Elucidating these biochemical connections is essential to advancing our knowledge of cellular metabolism and can be achieved by tracking an isotopically labeled precursor to an unexpected product. In addition to their role in mapping metabolic fates, isotopic labels also provide critical insight into pathway dynamics (i.e., metabolic fluxes) that cannot be obtained from conventional label-free metabolomic analyses. When labeling is compared quantitatively between conditions, for example, isotopic tracers can enable relative pathway activities to be inferred. To discover unexpected chemical transformations or unanticipated differences in metabolic pathway activities, we have developed X13CMS, a platform for analyzing liquid chromatography/mass spectrometry (LC/MS) data at the systems level. After providing cells, animals, or patients with an isotopically enriched metabolite (e.g., 13C, 15N, or 2H), X13CMS identifies compounds that have incorporated the isotopic tracer and reports the extent of labeling for each. The analysis can be performed with a single condition, or isotopic fates can be compared between multiple conditions. The choice of which metabolite to enrich and which isotopic label to use is highly context dependent, but 13C-glucose and 13C-glutamine are often applied because they feed a large number of metabolic pathways. X13CMS is freely available.
Collapse
Affiliation(s)
- Elizabeth M Llufrio
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
62
|
McGee HM, Jiang D, Soto-Pantoja DR, Nevler A, Giaccia AJ, Woodward WA. Targeting the Tumor Microenvironment in Radiation Oncology: Proceedings from the 2018 ASTRO-AACR Research Workshop. Clin Cancer Res 2019; 25:2969-2974. [PMID: 30723144 PMCID: PMC7265991 DOI: 10.1158/1078-0432.ccr-18-3781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
The development of cancers and their response to radiation are intricately linked to the tumor microenvironment (TME) in which they reside. Tumor cells, immune cells, and stromal cells interact with each other and are influenced by the microbiome and metabolic state of the host, and these interactions are constantly evolving. Stromal cells not only secrete extracellular matrix and participate in wound contraction, but they also secrete fibroblast growth factors (FGF), which mediate macrophage differentiation. Tumor-associated macrophages migrate to hypoxic areas and secrete vascular endothelial growth factor (VEGF) to promote angiogenesis. The microbiome and its byproducts alter the metabolic milieu by shifting the balance between glucose utilization and fatty acid oxidation, and these changes subsequently influence the immune response in the TME. Not only does radiation exert cell-autonomous effects on tumor cells, but it influences both the tumor-promoting and tumor-suppressive components in the TME. To gain a deeper understanding of how the TME influences the response to radiation, the American Society for Radiation Oncology and the American Association of Cancer Research organized a scientific workshop on July 26-27, 2018, to discuss how the microbiome, the immune response, the metabolome, and the stroma all shift the balance between radiosensitivity and radioresistance. The proceedings from this workshop are discussed here and highlight recent discoveries in the field, as well as the most important areas for future research.
Collapse
Affiliation(s)
- Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Soto-Pantoja
- Department of Radiation Oncology, Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Avinoam Nevler
- Department of Surgery, Thomas Jefferson School of Medicine, Philadelphia, Pennsylvania
- Talpoit Medical Leadership Program, Sheba Medical Center, Ramat-Gan, Israel
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
63
|
Cui Q, Cai CY, Gao HL, Ren L, Ji N, Gupta P, Yang Y, Shukla S, Ambudkar SV, Yang DH, Chen ZS. Glesatinib, a c-MET/SMO Dual Inhibitor, Antagonizes P-glycoprotein Mediated Multidrug Resistance in Cancer Cells. Front Oncol 2019; 9:313. [PMID: 31106148 PMCID: PMC6494935 DOI: 10.3389/fonc.2019.00313] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is one of the leading causes of treatment failure in cancer chemotherapy. One major mechanism of MDR is the overexpressing of ABC transporters, whose inhibitors hold promising potential in antagonizing MDR. Glesatinib is a dual inhibitor of c-Met and SMO that is under phase II clinical trial for non-small cell lung cancer. In this work, we report the reversal effects of glesatinib to P-glycoprotein (P-gp) mediated MDR. Glesatinib can sensitize paclitaxel, doxorubicin, colchicine resistance to P-gp overexpressing KB-C2, SW620/Ad300, and P-gp transfected Hek293/ABCB1 cells, while has no effect to their corresponding parental cells and negative control drug cisplatin. Glesatinib suppressed the efflux function of P-gp to [3H]-paclitaxel and it didn't impact both the expression and cellular localization of P-gp based on Western blot and immunofluorescent analysis. Furthermore, glesatinib can stimulate ATPase in a dose-dependent manner. The docking study indicated that glesatinib interacted with human P-gp through several hydrogen bonds. Taken together, c-Met/SMO inhibitor glesatinib can antagonize P-gp mediated MDR by inhibiting its cell membrane transporting functions, suggesting new application in clinical trials.
Collapse
Affiliation(s)
- Qingbin Cui
- School of Public Health, Guangzhou Medical University, Guangdong, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Hai-Ling Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Histology and Embryology, Clinical Medical College, Weifang Medical University, Weifang, China
| | - Liang Ren
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
64
|
Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol 2019; 29:33-41. [PMID: 30573182 DOI: 10.1016/j.semradonc.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulated glucose and redox metabolism are near universal features of cancers. They therefore represent potential selectively toxic metabolic targets. This review outlines the preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer, with a focus on drug strategies that have the most available evidence. In particular, inhibition of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the glutathione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor auranofin, have shown promise in preclinical studies to increase sensitivity to chemotherapy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycolysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant cancer models in vitro and in vivo. Although the preclinical data support this approach, clinical data are limited to exploratory trials using a single drug in combination with either chemotherapy or radiation. Open research questions include optimizing drug strategies for targeting glycolysis and redox metabolism, determining the appropriate timing for administering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers to determine the cancers that would benefit most from this approach. Given the quality of preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with chemotherapy and radiation should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
65
|
Zaal EA, Berkers CR. The Influence of Metabolism on Drug Response in Cancer. Front Oncol 2018; 8:500. [PMID: 30456204 PMCID: PMC6230982 DOI: 10.3389/fonc.2018.00500] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Resistance to therapeutic agents, either intrinsic or acquired, is currently a major problem in the treatment of cancers and occurs in virtually every type of anti-cancer therapy. Therefore, understanding how resistance can be prevented, targeted and predicted becomes increasingly important to improve cancer therapy. In the last decade, it has become apparent that alterations in cellular metabolism are a hallmark of cancer cells and that a rewired metabolism is essential for rapid tumor growth and proliferation. Recently, metabolic alterations have been shown to play a role in the sensitivity of cancer cells to widely-used first-line chemotherapeutics. This suggests that metabolic pathways are important mediators of resistance toward anticancer agents. In this review, we highlight the metabolic alterations associated with resistance toward different anticancer agents and discuss how metabolism may be exploited to overcome drug resistance to classical chemotherapy.
Collapse
Affiliation(s)
- Esther A. Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Celia R. Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
66
|
Desbats MA, Giacomini I, Prayer-Galetti T, Montopoli M. Iron granules in plasma cells. J Clin Pathol 1982; 10:281. [PMID: 32211323 PMCID: PMC7068907 DOI: 10.3389/fonc.2020.00281] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023]
Abstract
Resistance of cancer cells to chemotherapy is the first cause of cancer-associated death. Thus, new strategies to deal with the evasion of drug response and to improve clinical outcomes are needed. Genetic and epigenetic mechanisms associated with uncontrolled cell growth result in metabolism reprogramming. Cancer cells enhance anabolic pathways and acquire the ability to use different carbon sources besides glucose. An oxygen and nutrient-poor tumor microenvironment determines metabolic interactions among normal cells, cancer cells and the immune system giving rise to metabolically heterogeneous tumors which will partially respond to metabolic therapy. Here we go into the best-known cancer metabolic profiles and discuss several studies that reported tumors sensitization to chemotherapy by modulating metabolic pathways. Uncovering metabolic dependencies across different chemotherapy treatments could help to rationalize the use of metabolic modulators to overcome therapy resistance.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Monica Montopoli
| |
Collapse
|