51
|
Lu H, Martí J. Influence of Cholesterol on the Orientation of the Farnesylated GTP-Bound KRas-4B Binding with Anionic Model Membranes. MEMBRANES 2020; 10:E364. [PMID: 33266473 PMCID: PMC7700388 DOI: 10.3390/membranes10110364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
The Ras family of proteins is tethered to the inner leaflet of the cell membranes which plays an essential role in signal transduction pathways that promote cellular proliferation, survival, growth, and differentiation. KRas-4B, the most mutated Ras isoform in different cancers, has been under extensive study for more than two decades. Here we have focused our interest on the influence of cholesterol on the orientations that KRas-4B adopts with respect to the plane of the anionic model membranes. How cholesterol in the bilayer might modulate preferences for specific orientation states is far from clear. Herein, after analyzing data from in total 4000 ns-long molecular dynamics (MD) simulations for four KRas-4B systems, properties such as the area per lipid and thickness of the membrane as well as selected radial distribution functions, penetration of different moieties of KRas-4B, and internal conformational fluctuations of flexible moieties in KRas-4B have been calculated. It has been shown that high cholesterol content in the plasma membrane (PM) favors one orientation state (OS1), exposing the effector-binding loop for signal transduction in the cell from the atomic level. We confirm that high cholesterol in the PM helps KRas-4B mutant stay in its constitutively active state, which suggests that high cholesterol intake can increase mortality and may promote cancer progression for cancer patients. We propose that during the treatment of KRas-4B-related cancers, reducing the cholesterol level in the PM and sustaining cancer progression by controlling the plasma cholesterol intake might be taken into account in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech, 08034 Barcelona, Spain;
| |
Collapse
|
52
|
Lu H, Martí J. Long-lasting Salt Bridges Provide the Anchoring Mechanism of Oncogenic Kirsten Rat Sarcoma Proteins at Cell Membranes. J Phys Chem Lett 2020; 11:9938-9945. [PMID: 33170712 DOI: 10.1021/acs.jpclett.0c02809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RAS proteins work as GDP-GTP binary switches and regulate cytoplasmic signaling networks that are able to control several cellular processes, playing an essential role in signal transduction pathways involved in cell growth, differentiation, and survival, so that overacting RAS signaling can lead to cancer. One of the hardest challenges to face is the design of mutation-selective therapeutic strategies. In this work, a G12D-mutated farnesylated GTP-bound Kirsten RAt sarcoma (KRAS) protein has been simulated at the interface of a DOPC/DOPS/cholesterol model anionic cell membrane. A specific long-lasting salt bridge connection between farnesyl and the hypervariable region of the protein has been identified as the main mechanism responsible for the binding of oncogenic farnesylated KRAS-4B to the cell membrane. Free-energy landscapes allowed us to characterize local and global minima of KRAS-4B binding to the cell membrane, revealing the main pathways between anchored and released states.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Physics, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Barcelona, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Barcelona, Catalonia, Spain
| |
Collapse
|
53
|
Béganton B, Coyaud E, Laurent EMN, Mangé A, Jacquemetton J, Le Romancer M, Raught B, Solassol J. Proximal Protein Interaction Landscape of RAS Paralogs. Cancers (Basel) 2020; 12:cancers12113326. [PMID: 33187149 PMCID: PMC7696408 DOI: 10.3390/cancers12113326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RAS paralogs (HRAS, NRAS and KRAS) are of major interest in biology because they are involved in developmental disorders (e.g., Costello and Noonan syndromes) and in a broad variety of human neoplasia. Many research groups have devoted tremendous efforts to deepen our understanding of the RAS proteins functions and regulations, notably through identifying their functional protein partners. However, while most of these studies were focused on pathogenic RAS mutants, much less research has been dedicated to deciphering the normal activities of RAS paralogs. However, such characterization appears as a prerequisite to clearly identify pathogenic features. We delineated and compared the wild type RAS paralogs proximal interactomes. We detected more than 800 RAS high confident proximal interactors, either shared between paralogs or unique, and validated a subset of data through proximity ligation assays-based validation. Our results describe differential interactors enrichment between RAS paralogs and uncover novel ties between RAS signaling and cellular metabolism. We believe that our findings will support further studies aiming at better understanding how RAS paralogs could be differentially involved in discrete cellular processes and could serve as a basis to template oncogenic mechanism investigations. Abstract RAS proteins (KRAS, NRAS and HRAS) are frequently activated in different cancer types (e.g., non-small cell lung cancer, colorectal cancer, melanoma and bladder cancer). For many years, their activities were considered redundant due to their high degree of sequence homology (80% identity) and their shared upstream and downstream protein partners. However, the high conservation of the Hyper-Variable-Region across mammalian species, the preferential activation of different RAS proteins in specific tumor types and the specific post-translational modifications and plasma membrane-localization of each paralog suggest they could ensure discrete functions. To gain insights into RAS proteins specificities, we explored their proximal protein–protein interaction landscapes using the proximity-dependent biotin identification technology (BioID) in Flp-In T-REx 293 cell lines stably transfected and inducibly expressing wild type KRAS4B, NRAS or HRAS. We identified more than 800 high-confidence proximal interactors, allowing us to propose an unprecedented comparative analysis of wild type RAS paralogs protein networks. These data bring novel information on poorly characterized RAS functions, e.g., its putative involvement in metabolic pathways, and on shared as well as paralog-specific protein networks that could partially explain the complexity of RAS functions. These networks of protein interactions open numerous avenues to better understand RAS paralogs biological activities.
Collapse
Affiliation(s)
- Benoît Béganton
- CHU Montpellier, Department of Pathology and Onco-Biology, Univ Montpellier, 34295 Montpellier, France;
- IRCM, INSERM, Univ Montpellier, ICM, 34298 Montpellier, France;
- Correspondence: ; Tel.: +33-467-33-58-71
| | - Etienne Coyaud
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1L7, Canada; (E.C.); (E.M.N.L.); (B.R.)
| | - Estelle M. N. Laurent
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1L7, Canada; (E.C.); (E.M.N.L.); (B.R.)
| | - Alain Mangé
- IRCM, INSERM, Univ Montpellier, ICM, 34298 Montpellier, France;
| | - Julien Jacquemetton
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286, Université Lyon 1, 69008 Lyon, France; (J.J.); (M.L.R.)
| | - Muriel Le Romancer
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286, Université Lyon 1, 69008 Lyon, France; (J.J.); (M.L.R.)
| | - Brian Raught
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1L7, Canada; (E.C.); (E.M.N.L.); (B.R.)
| | - Jérôme Solassol
- CHU Montpellier, Department of Pathology and Onco-Biology, Univ Montpellier, 34295 Montpellier, France;
- IRCM, INSERM, Univ Montpellier, ICM, 34298 Montpellier, France;
| |
Collapse
|
54
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
55
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
56
|
Ras assemblies and signaling at the membrane. Curr Opin Struct Biol 2020; 62:140-148. [DOI: 10.1016/j.sbi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
57
|
Nussinov R, Jang H, Zhang M, Tsai CJ, Sablina AA. The Mystery of Rap1 Suppression of Oncogenic Ras. Trends Cancer 2020; 6:369-379. [PMID: 32249186 PMCID: PMC7211489 DOI: 10.1016/j.trecan.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Decades ago, Rap1, a small GTPase very similar to Ras, was observed to suppress oncogenic Ras phenotype, reverting its transformation. The proposed reason, persisting since, has been competition between Ras and Rap1 for a common target. Yet, none was found. There was also Rap1's puzzling suppression of Raf-1 versus activation of BRAF. Reemerging interest in Rap1 envisages capturing its Ras suppression action by inhibitors. Here, we review the literature and resolve the enigma. In vivo oncogenic Ras exists in isoform-distinct nanoclusters. The presence of Rap1 within the nanoclusters reduces the number of the clustered oncogenic Ras molecules, thus suppressing Raf-1 activation and mitogen-activated protein kinase (MAPK) signaling. Nanoclustering suggests that Rap1 suppression is Ras isoform dependent. Altogether, a potent Rap1-like inhibitor appears unlikely.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna A Sablina
- VIB Center for the Biology of Disease and KU Leuven Department of Oncology, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
58
|
Verma AK, Messerli SM, Miskimins WK. Lactate induces PD-L1 in HRAS G12V-positive oropharyngeal squamous cell carcinoma. Oncotarget 2020; 11:1493-1504. [PMID: 32391119 PMCID: PMC7197448 DOI: 10.18632/oncotarget.27348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/13/2019] [Indexed: 12/02/2022] Open
Abstract
Intratumoral lactate production negatively correlates with survival and tumor clearance in the setting of human papillomavirus positive oropharyngeal squamous cell carcinoma (HPV-positive OPSCC). Robust anti-tumor immune activity is required for tumor clearance in human patients and animal models of this disease, and intratumoral lactate interferes with this process. While lactate is known to directly inhibit T cell activity, recent evidence has demonstrated that lactate can affect gene expression in multiple cell types. We therefore sought to determine if lactate in the tumor microenvironment could aid immune evasion by inducing the expression of immune checkpoint co-inhibitors. Using a mouse cell line transformed with HPV16 E6, E7, and HRASG12V, we determined that OPSCC cells carrying the HRASG12V mutant showed significantly increased expression of PD-L1 in the presence of extracellular lactate. Furthermore, we demonstrate here that lactate activates the MEK/ERK pathway in Ras-mutated cells.
Collapse
Affiliation(s)
- Alexander K Verma
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Shanta M Messerli
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - W Keith Miskimins
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| |
Collapse
|
59
|
Are Parallel Proliferation Pathways Redundant? Trends Biochem Sci 2020; 45:554-563. [PMID: 32345469 DOI: 10.1016/j.tibs.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Are the receptor tyrosine kinase (RTK) and JAK-STAT-driven proliferation pathways 'parallel' or 'redundant'? And what about those of K-Ras4B versus N-Ras? 'Parallel' proliferation pathways accomplish a similar drug resistance outcome. Thus, are they 'redundant'? In this paper, it is argued that there is a fundamental distinction between 'parallel' and 'redundant'. Cellular proliferation pathways are influenced by the genome sequence, 3D organization and chromatin accessibility, and determined by protein availability prior to cancer emergence. In the opinion presented, if they operate the same downstream protein families, they are redundant; if evolutionary-independent, they are parallel. Thus, RTK and JAK-STAT-driven proliferation pathways are parallel; those of Ras isoforms are redundant. Our Precision Medicine Call to map cancer proliferation pathways is vastly important since it can expedite effective therapeutics.
Collapse
|
60
|
Jang H, Zhang M, Nussinov R. The quaternary assembly of KRas4B with Raf-1 at the membrane. Comput Struct Biotechnol J 2020; 18:737-748. [PMID: 32257057 PMCID: PMC7125320 DOI: 10.1016/j.csbj.2020.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proximally located in the membrane, oncogenic Ras dimers (or nanoclusters) can recruit and promote Raf dimerization and MAPK (Raf/MEK/ERK) signaling. Among Ras isoforms, KRas4B is the most frequently mutated. Recent data on the binary KRas4B–Raf-1 complex suggested that Raf-1 CRD not only executes membrane anchorage, but also supports the high-affinity interaction of Raf-1 RBD with KRas4B catalytic domain. For a detailed mechanistic picture of Raf activation at the membrane, we employ explicit MD simulations of the quaternary KRas4B–Raf-1 complex. The complex contains two active GTP-bound KRas4B proteins forming a dimer through the allosteric lobe interface and two tandem RBD-CRD segments of Raf-1 interacting with the effector lobes at both ends of the KRas4B dimer. We show that Raf-1 RBD-CRD supports stable KRas4B dimer at preferred interface and orientation at the membrane, thereby cooperatively enhancing the affinity of the KRas4B–Raf-1 interaction. We propose that a Ras dimer at the membrane can increase the population of proximal Raf kinase domains, promoting kinase domain dimerization in the cytoplasm. Collectively, the dynamic Ras–Raf assembly promotes Raf activation not by allostery; instead, Ras activates Raf by shifting its ensemble toward kinase domain-accessible states through enhanced affinity at the membrane.
Collapse
Affiliation(s)
- Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
61
|
Belisario DC, Akman M, Godel M, Campani V, Patrizio MP, Scotti L, Hattinger CM, De Rosa G, Donadelli M, Serra M, Kopecka J, Riganti C. ABCA1/ABCB1 Ratio Determines Chemo- and Immune-Sensitivity in Human Osteosarcoma. Cells 2020; 9:cells9030647. [PMID: 32155954 PMCID: PMC7140509 DOI: 10.3390/cells9030647] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP Binding Cassette transporter B1 (ABCB1) induces chemoresistance in osteosarcoma, because it effluxes doxorubicin, reducing the intracellular accumulation, toxicity, and immunogenic cell death induced by the drug. The ATP Binding Cassette transporter A1 (ABCA1) effluxes isopentenyl pyrophosphate (IPP), a strong activator of anti-tumor Vγ9Vδ2 T-cells. Recruiting this population may represent an alternative strategy to rescue doxorubicin efficacy in ABCB1-expressing osteosarcoma. In this work, we analyzed how ABCA1 and ABCB1 are regulated in osteosarcoma, and if increasing the ABCA1-dependent activation of Vγ9Vδ2 T-cells could be an effective strategy against ABCB1-expressing osteosarcoma. We used 2D-cultured doxorubicin-sensitive human U-2OS and Saos-2 cells, their doxorubicin-resistant sublines (U-2OS/DX580 and Saos-2/DX580), and 3D cultures of U-2OS and Saos-2 cells. DX580-sublines and 3D cultures had higher levels of ABCB1 and higher resistance to doxorubicin than parental cells. Surprisingly, they had reduced ABCA1 levels, IPP efflux, and Vγ9Vδ2 T-cell-induced killing. In these chemo-immune-resistant cells, the Ras/Akt/mTOR axis inhibits the ABCA1-transcription induced by Liver X Receptor α (LXRα); Ras/ERK1/2/HIF-1α axis up-regulates ABCB1. Targeting the farnesylation of Ras with self-assembling nanoparticles encapsulating zoledronic acid (NZ) simultaneously inhibited both axes. In humanized mice, NZ reduced the growth of chemo-immune-resistant osteosarcomas, increased intratumor necro-apoptosis, and ABCA1/ABCB1 ratio and Vγ9Vδ2 T-cell infiltration. We suggest that the ABCB1highABCA1low phenotype is indicative of chemo-immune-resistance. We propose aminobisphosphonates as new chemo-immune-sensitizing tools against drug-resistant osteosarcomas.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Virginia Campani
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Maria Pia Patrizio
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Lorena Scotti
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Claudia Maria Hattinger
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
| | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
- Correspondence: ; Tel.: +39-0116705857
| |
Collapse
|
62
|
Poque E, Arnaud-Cormos D, Patrignoni L, Ruigrok HJ, Poulletier De Gannes F, Hurtier A, Renom R, Garenne A, Lagroye I, Lévêque P, Percherancier Y. Effects of radiofrequency fields on RAS and ERK kinases activity in live cells using the bioluminescence resonance energy transfer technique. Int J Radiat Biol 2020; 96:836-843. [PMID: 32052678 DOI: 10.1080/09553002.2020.1730016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose: The present study was conducted to re-evaluate the effect of low-level 1800 MHz RF signals on RAS/MAPK activation in live cells.Material and methods: Using Bioluminescence Resonance Energy Transfer technique (BRET), we assessed the effect of Continuous wave (CW) and Global System for Mobile (GSM)-modulated 1800 MHz signals (up to 2 W/kg) on ERK and RAS kinases' activity in live HuH7 cells.Results: We found that radiofrequency field (RF) exposure for 24 h altered neither basal level of RAS and ERK activation nor the potency of phorbol-12-myristate-13-acetate (PMA) to activate RAS and ERK kinases. However, we found that exposure to GSM-modulated 1800 MHz signals at 2 W/kg decreased the PMA maximal efficacy to activate both RAS and ERK kinases' activity. Exposure with CW 1800 MHz signal at 2 W/kg only decreased maximal efficacy of PMA to activate ERK but not RAS. No effects of RF exposure at 0.5 W/kg was observed on maximal efficacy of PMA to activate either RAS or ERK whatever the signal used.Conclusions: Our results indicate that RF exposure decreases the efficiency of the cascade of events, which, from the binding of PMA to its receptor(s), leads to the activation of RAS and ERK kinases.
Collapse
Affiliation(s)
- Emmanuelle Poque
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | | | | | | | | | - Annabelle Hurtier
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | - Rémy Renom
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, Institute of Neurodegenerative Diseases, UMR 5293, Talence, France
| | - Isabelle Lagroye
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France.,Paris Sciences et Lettres Research University, EPHE, Paris, France
| | | | | |
Collapse
|
63
|
Muratcioglu S, Aydin C, Odabasi E, Ozdemir ES, Firat-Karalar EN, Jang H, Tsai CJ, Nussinov R, Kavakli IH, Gursoy A, Keskin O. Oncogenic K-Ras4B Dimerization Enhances Downstream Mitogen-activated Protein Kinase Signaling. J Mol Biol 2020; 432:1199-1215. [PMID: 31931009 PMCID: PMC8533050 DOI: 10.1016/j.jmb.2020.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Ras recruits and activates effectors that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, Raf's activation requires dimerization, which can be facilitated by Ras dimerization. Previously, we showed that active K-Ras4B dimerizes in silico and in vitro through two major interfaces: (i) β-interface, mapped to Switch I and effector-binding regions, (ii) α-interface at the allosteric lobe. Here, we chose constitutively active K-Ras4B as our control and two double mutants (K101D and R102E; and R41E and K42D) in the α- and β-interfaces. Two of the mutations are from The Cancer Genome Atlas (TCGA) and the Catalogue Of Somatic Mutations In Cancer (COSMIC) data sets. R41 and R102 are found in several adenocarcinomas in Ras isoforms. We performed site-directed mutagenesis, cellular localization experiments, and molecular dynamics (MD) simulations to assess the impact of the mutations on K-Ras4B dimerization and function. α-interface K101D/R102E double mutations reduced dimerization but only slightly reduced downstream phosphorylated extracellular signal-regulated kinase (ERK) (pERK) levels. While β-interface R41E/K42D double mutations did not interfere with dimerization, they almost completely blocked K-Ras4B-mediated ERK phosphorylation. Both double mutations increased downstream phosphorylated Akt (pAkt) levels in cells. Changes in pERK and pAkt levels altered ERK- and Akt-regulated gene expressions, such as EGR1, JUN, and BCL2L11. These results underscore the role of the α-interface in K-Ras4B homodimerization and the β-surface in effector binding. MD simulations highlight that the membrane and hypervariable region (HVR) interact with both α- and β-interfaces of K-Ras4B mutants, respectively, inhibiting homodimerization and probably effector binding. Mutations at both interfaces interfered with mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase signaling but in different forms and extents. We conclude that dimerization is not necessary but enhances downstream MAPK signaling.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Cihan Aydin
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Departments of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - E Sila Ozdemir
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | | | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ibrahim Halil Kavakli
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey; Departments of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Attila Gursoy
- Departments of Computer Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey.
| | - Ozlem Keskin
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
64
|
Khan I, Rhett JM, O'Bryan JP. Therapeutic targeting of RAS: New hope for drugging the "undruggable". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118570. [PMID: 31678118 PMCID: PMC6937383 DOI: 10.1016/j.bbamcr.2019.118570] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered "undruggable", the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America.
| |
Collapse
|
65
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
66
|
Post JB, Roodhart JML, Snippert HJG. Colorectal Cancer Modeling with Organoids: Discriminating between Oncogenic RAS and BRAF Variants. Trends Cancer 2020; 6:111-129. [PMID: 32061302 DOI: 10.1016/j.trecan.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
RAS and BRAF proteins are frequently mutated in colorectal cancer (CRC) and have been associated with therapy resistance in metastatic CRC patients. RAS isoforms are considered to act as redundant entities in physiological and pathological settings. However, there is compelling evidence that mutant variants of RAS and BRAF have different oncogenic potentials and therapeutic outcomes. In this review we describe similarities and differences between various RAS and BRAF oncogenes in CRC development, histology, and therapy resistance. In addition, we discuss the potential of patient-derived tumor organoids for personalized therapy, as well as CRC modeling using genome editing in preclinical model systems to study similarities and discrepancies between the effects of oncogenic MAPK pathway mutations on tumor growth and drug response.
Collapse
Affiliation(s)
- Jasmin B Post
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, CX Utrecht, The Netherlands; Oncode Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Jeanine M L Roodhart
- Department of Medical Oncology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Oncode Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, CX Utrecht, The Netherlands; Oncode Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands.
| |
Collapse
|
67
|
Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J 2019; 18:189-198. [PMID: 31988705 PMCID: PMC6965201 DOI: 10.1016/j.csbj.2019.12.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/10/2023] Open
Abstract
One of the most common drivers in human cancer is the mutant KRAS protein. Not so long ago KRAS was considered as an undruggable oncoprotein. After a long struggle, however, we finally see some light at the end of the tunnel as promising KRAS targeted therapies are in or approaching clinical trials. In recent years, together with the promising progress in RAS drug discovery, our understanding of KRAS has increased tremendously. This progress has been accompanied with a resurgence of publicly available KRAS structures, which were limited to nine structures less than ten years ago. Furthermore, the ever-increasing computational capacity has made biologically relevant timescales accessible, enabling molecular dynamics (MD) simulations to study the dynamics of KRAS protein in more detail at the atomistic level. In this minireview, my aim is to provide the reader an overview of the publicly available KRAS structural data, insights to conformational dynamics revealed by experiments and what we have learned from MD simulations. Also, I will discuss limitations of the current data and provide suggestions for future research related to KRAS, which would fill out the existing gaps in our knowledge and provide guidance in deciphering this enigmatic oncoprotein.
Collapse
Affiliation(s)
- Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| |
Collapse
|
68
|
Li QF, Decker-Rockefeller B, Bajaj A, Pumiglia K. Activation of Ras in the Vascular Endothelium Induces Brain Vascular Malformations and Hemorrhagic Stroke. Cell Rep 2019; 24:2869-2882. [PMID: 30208313 DOI: 10.1016/j.celrep.2018.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebrovascular malformations (CVMs) affect approximately 3% of the population, risking hemorrhagic stroke, seizures, and neurological deficits. Recently Ras mutations have been identified in a majority of brain arterio-venous malformations. We generated an endothelial-specific, inducible HRASV12 mouse model, which results in dilated, proliferative blood vessels in the brain, blood-brain barrier breakdown, intracerebral hemorrhage, and rapid lethality. Organoid morphogenesis models revealed abnormal cessation of proliferation, abnormalities in expression of tip and stalk genes, and a failure to properly form elongating tubes. These defects were influenced by both hyperactive PI-3' kinase signaling and altered TGF-β signaling. Several phenotypic changes predicted by the in vitro morphogenesis analysis were validated in the mouse model. These data provide a model of brain vascular malformations induced by mutant Ras and reveal insights into intersecting molecular mechanisms in the pathogenesis of brain vascular malformations.
Collapse
Affiliation(s)
- Qing-Fen Li
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | | | - Anshika Bajaj
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
69
|
Abdelkarim H, Banerjee A, Grudzien P, Leschinsky N, Abushaer M, Gaponenko V. The Hypervariable Region of K-Ras4B Governs Molecular Recognition and Function. Int J Mol Sci 2019; 20:ijms20225718. [PMID: 31739603 PMCID: PMC6888304 DOI: 10.3390/ijms20225718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
The flexible C-terminal hypervariable region distinguishes K-Ras4B, an important proto-oncogenic GTPase, from other Ras GTPases. This unique lysine-rich portion of the protein harbors sites for post-translational modification, including cysteine prenylation, carboxymethylation, phosphorylation, and likely many others. The functions of the hypervariable region are diverse, ranging from anchoring K-Ras4B at the plasma membrane to sampling potentially auto-inhibitory binding sites in its GTPase domain and participating in isoform-specific protein-protein interactions and signaling. Despite much research, there are still many questions about the hypervariable region of K-Ras4B. For example, mechanistic details of its interaction with plasma membrane lipids and with the GTPase domain require further clarification. The roles of the hypervariable region in K-Ras4B-specific protein-protein interactions and signaling are incompletely defined. It is also unclear why post-translational modifications frequently found in protein polylysine domains, such as acetylation, glycation, and carbamoylation, have not been observed in K-Ras4B. Expanding knowledge of the hypervariable region will likely drive the development of novel highly-efficient and selective inhibitors of K-Ras4B that are urgently needed by cancer patients.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
| | - Patrick Grudzien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Nicholas Leschinsky
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Mahmoud Abushaer
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
- Correspondence: ; Tel.: +312-355-4839
| |
Collapse
|
70
|
Dynamic Protein Allosteric Regulation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:25-43. [DOI: 10.1007/978-981-13-8719-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
71
|
Lu H, Martí J. Binding and dynamics of melatonin at the interface of phosphatidylcholine-cholesterol membranes. PLoS One 2019; 14:e0224624. [PMID: 31697738 PMCID: PMC6837308 DOI: 10.1371/journal.pone.0224624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
The characterization of interactions between melatonin, one main ingredient of medicines regulating sleeping rhythms, and basic components of cellular plasma membranes (phospholipids, cholesterol, metal ions and water) is very important to elucidate the main mechanisms for the introduction of melatonin into cells and also to identify its local structure and microscopic dynamics. Molecular dynamics simulations of melatonin inside mixtures of dimyristoylphosphatidylcholine and cholesterol in NaCl solution at physiological concentration have been performed at 303.15 K to systematically explore melatonin-cholesterol, melatonin-lipid and melatonin-water interactions. Properties such as the area per lipid and thickness of the membrane as well as selected radial distribution functions, binding free energies, angular distributions, atomic spectral densities and translational diffusion of melatonin are reported. The presence of cholesterol significantly affects the behavior of melatonin, which is mainly buried into the interfaces of membranes. Introducing cholesterol into the system helps melatonin change from folded to extended configurations more easily. Our results suggest that there exists a competition between the binding of melatonin to phospholipids and to cholesterol by means of hydrogen-bonds. Spectral densities of melatonin reported in this work, in overall good agreement with experimental data, revealed the participation of each atom of melatonin to its complete spectrum. Melatonin self-diffusion coefficients are of the order of 10-7 cm2/s and they significantly increase when cholesterol is addeed to the membrane.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Physics, Technical University of Catalonia-Barcelona Tech. Barcelona, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech. Barcelona, Catalonia, Spain
| |
Collapse
|
72
|
Gimple RC, Wang X. RAS: Striking at the Core of the Oncogenic Circuitry. Front Oncol 2019; 9:965. [PMID: 31681559 PMCID: PMC6798062 DOI: 10.3389/fonc.2019.00965] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer is a devastating disease process that touches the lives of millions worldwide. Despite advances in our understanding of the genomic architecture of cancers and the mechanisms that underlie cancer development, a great therapeutic challenge remains. Here, we revisit the birthplace of cancer biology and review how one of the first discovered oncogenes, RAS, drives cancers in new and unexpected ways. As our understanding of oncogenic signaling has evolved, it is clear that RAS signaling is not homogenous, but activates distinct downstream effectors in different cancer types and grades. RAS signaling is tightly controlled through a series of post-transcriptional mechanisms, which are frequently distorted in the context of cancer, and establish key metabolic and immunologic states that support cancer growth, migration, survival, metastasis, and plasticity. While targeting RAS has been fiercely pursued for decades, new strategies have recently emerged with the potential for therapeutic efficacy. Thus, understanding the complexities of RAS biology may translate into improved therapies for patients with RAS-driven cancers.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, Case Western University, Cleveland, OH, United States
| | - Xiuxing Wang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
73
|
Ras functional proximity proteomics establishes mTORC2 as new direct ras effector. Oncotarget 2019; 10:5126-5135. [PMID: 31497244 PMCID: PMC6718260 DOI: 10.18632/oncotarget.27025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/14/2023] Open
Abstract
Although oncogenic mutations in the three major Ras isoforms, KRAS, HRAS and NRAS, are present in nearly a third of human cancers, therapeutic targeting of Ras remains a challenge due to its structure and complex regulation. However, an in-depth examination of the protein interactome of oncogenic Ras may provide new insights into key regulators, effectors and other mediators of its tumorigenic functions. Previous proteomic analyses have been limited by experimental tools that fail to capture the dynamic, transient nature of Ras cellular interactions. Therefore, in a recent study, we integrated proximity-dependent biotin labeling (BioID) proteomics with CRISPR screening of identified proteins to identify Ras proximal proteins required for Ras-dependent cancer cell growth. Oncogenic Ras was proximal to proteins involved in unexpected biological processes, such as vesicular trafficking and solute transport. Critically, we identified a direct, bona fide interaction between active Ras and the mTOR Complex 2 (mTORC2) that stimulated mTORC2 kinase activity. The oncogenic Ras-mTORC2 interaction resulted in a downstream pro-proliferative transcriptional program and promoted Ras-dependent tumor growth in vivo. Here we provide additional insight into the Ras isoform-specific protein interactomes, highlighting new opportunities for unique tumor-type therapies. Finally, we discuss the active Ras-mTORC2 interaction in detail, providing a more complete understanding of the direct relationship between Ras and mTORC2. Collectively, our findings support a model wherein Ras integrates an expanded array of pro-oncogenic signals to drive tumorigenic processes, including action on mTORC2 as a direct effector of Ras-driven proliferative signals.
Collapse
|
74
|
Yoshino H, Yin G, Kawaguchi R, Popov KI, Temple B, Sasaki M, Kofuji S, Wolfe K, Kofuji K, Okumura K, Randhawa J, Malhotra A, Majd N, Ikeda Y, Shimada H, Kahoud ER, Haviv S, Iwase S, Asara JM, Campbell SL, Sasaki AT. Identification of lysine methylation in the core GTPase domain by GoMADScan. PLoS One 2019; 14:e0219436. [PMID: 31390367 PMCID: PMC6685615 DOI: 10.1371/journal.pone.0219436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
RAS is the founding member of a superfamily of GTPases and regulates signaling pathways involved in cellular growth control. While recent studies have shown that the activation state of RAS can be controlled by lysine ubiquitylation and acetylation, the existence of lysine methylation of the RAS superfamily GTPases remains unexplored. In contrast to acetylation, methylation does not alter the side chain charge and it has been challenging to deduce its impact on protein structure by conventional amino acid substitutions. Herein, we investigate lysine methylation on RAS and RAS-related GTPases. We developed GoMADScan (Go language-based Modification Associated Database Scanner), a new user-friendly application that scans and extracts posttranslationally modified peptides from databases. The GoMADScan search on PhosphoSitePlus databases identified methylation of conserved lysine residues in the core GTPase domain of RAS superfamily GTPases, including residues corresponding to RAS Lys-5, Lys-16, and Lys-117. To follow up on these observations, we immunoprecipitated endogenous RAS from HEK293T cells, conducted mass spectrometric analysis and found that RAS residues, Lys-5 and Lys-147, undergo dimethylation and monomethylation, respectively. Since mutations of Lys-5 have been found in cancers and RASopathies, we set up molecular dynamics (MD) simulations to assess the putative impact of Lys-5 dimethylation on RAS structure. Results from our MD analyses predict that dimethylation of Lys-5 does not significantly alter RAS conformation, suggesting that Lys-5 methylation may alter existing protein interactions or create a docking site to foster new interactions. Taken together, our findings uncover the existence of lysine methylation as a novel posttranslational modification associated with RAS and the RAS superfamily GTPases, and putative impact of Lys-5 dimethylation on RAS structure.
Collapse
Affiliation(s)
- Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Risa Kawaguchi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Konstantin I. Popov
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Brenda Temple
- University of North Carolina, R. L. Juliano Structural Bioinformatics Core Facility, Chapel Hill, North Carolina, United States of America
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kaori Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Koichi Okumura
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jaskirat Randhawa
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akshiv Malhotra
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nazanin Majd
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hiroko Shimada
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Emily Rose Kahoud
- Harvard Medical School, Department of Medicine and Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts, United States of America
| | - Sasson Haviv
- Harvard Medical School, Department of Medicine and Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts, United States of America
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, Michigan, United States of America
| | - John M. Asara
- Harvard Medical School, Department of Medicine and Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Atsuo T. Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Cancer Biology, University of Cincinnati College of Medicine, Ohio, United States of America
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, Ohio, United States of America
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
75
|
Lisi L, Ciotti GMP, Chiavari M, Pizzoferrato M, Mangiola A, Kalinin S, Feinstein DL, Navarra P. Phospho-mTOR expression in human glioblastoma microglia-macrophage cells. Neurochem Int 2019; 129:104485. [PMID: 31195027 DOI: 10.1016/j.neuint.2019.104485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
The glioblastoma (GBM) immune microenvironment is highly heterogeneous, and microglia may represent 30-70% of the entire tumor. However, the role of microglia and other specific immune populations is poorly characterized. Activation of mTOR signaling occurs in numerous human cancers and has roles in microglia-glioma cell interactions. We now show in human tumor specimens (42 patients), that 39% of tumor-associated microglial (TAM) cells express mTOR phosphorylated at Ser-2448; and similar mTOR activation is observed using a human microglia-glioma interaction paradigm. In addition, we confirm previous studies that microglia express urea and ARG1 (taken as M2 marker) in the presence of glioma cells, and this phenotype is down-regulated in the presence of a mTOR inhibitor. These results suggest that mTOR suppression in GBM patients might induce a reduction of the M2 phenotype expression in up to 40% of all TAMs. Since the M2 profile of microglial activation is believed to be associated with tumor progression, reductions in that phenotype may represent an additional anti-tumor mechanism of action of mTOR inhibitors, along with direct anti-proliferative activities.
Collapse
Affiliation(s)
- Lucia Lisi
- Institute of Farmacologia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy.
| | | | - Marta Chiavari
- Institute of Farmacologia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy
| | - Michela Pizzoferrato
- Institute of Farmacologia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy
| | - Annunziato Mangiola
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio Chieti-Pescara, via Colle dell'Ara 100, Chieti, Italy
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pierluigi Navarra
- Institute of Farmacologia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy; Fondazione Policlinico Universitario Agostino Gemelli, L.go F. Vito 1, Rome, Italy
| |
Collapse
|
76
|
Zhang M, Jang H, Nussinov R. The structural basis for Ras activation of PI3Kα lipid kinase. Phys Chem Chem Phys 2019; 21:12021-12028. [PMID: 31135801 PMCID: PMC6556208 DOI: 10.1039/c9cp00101h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PI3Kα is a principal Ras effector that phosphorylates PIP2 to PIP3 in the PI3K/Akt/mTOR pathway. How Ras activates PI3K has been unclear: is Ras' role confined to PI3K recruitment to the membrane or does Ras activation also involve allostery? Recently, we determined the mechanism of PI3Kα activation at the atomic level. We showed the vital role and significance of conformational change in PI3Kα activation. Here, by a 'best-match for hydrogen-bonding pair' (BMHP) computational protocol and molecular dynamics (MD) simulations, we model the atomic structure of KRas4B in complex with the Ras binding domain (RBD) of PI3Kα, striving to understand the mechanism of PI3Kα activation by Ras. Point mutations T208D, K210E, and K227E disrupt the KRas4B-RBD interface in the models, in line with the experiments. We identify allosteric signaling pathways connecting Ras to RBD in the p110α subunit. However, the observed weak allosteric signals coupled with the detailed mechanism of PI3Kα activation make us conclude that the dominant mechanistic role of Ras is likely to be recruitment and restriction of the PI3Kα population at the membrane. Thus, RTK recruits the PI3Kα to the membrane and activates it by relieving its autoinhibition exerted by the nSH2 domain, leading to exposure of the kinase domain, which permits PIP2 binding. Ras recruitment can shift the PI3Kα ensemble toward a population where the kinase domain surface and the active site position and orientation favor PIP2 insertion. This work helps elucidate Ras-mediated PI3K activation and explores the structural basis for Ras-PI3Kα drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
77
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|
78
|
Wood LD, Yurgelun MB, Goggins MG. Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology 2019; 156:2041-2055. [PMID: 30660730 DOI: 10.1053/j.gastro.2018.12.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
In the previous decade, comprehensive genomic analyses have yielded important insights about the genetic alterations that underlie pancreatic tumorigenesis. Whole-exome and whole-genome sequencing of pancreatic ductal adenocarcinomas have confirmed the critical driver genes altered in the majority of pancreatic cancers, as well as identified numerous less frequently altered driver genes, and have delineated cancer subgroups with unique biological and clinical features. It is now appreciated that pancreatic susceptibility gene alterations are often identified in patients with pancreatic cancer without family histories suggestive of a familial cancer syndrome, prompting recent efforts to expand gene testing to all patients with pancreatic cancer. Studies of pancreatic cancer precursor lesions have begun to elucidate the evolutionary history of pancreatic tumorigenesis and to help us understand the utility of biomarkers for early detection and targets to develop new therapeutic strategies. In this review, we discuss the results of comprehensive genomic characterization of pancreatic ductal adenocarcinoma and its precursor lesions, and we highlight translational applications in early detection and therapy.
Collapse
Affiliation(s)
- Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
79
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
80
|
Nussinov R, Tsai CJ, Shehu A, Jang H. Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules 2019; 24:molecules24030637. [PMID: 30759724 PMCID: PMC6384756 DOI: 10.3390/molecules24030637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
Computational biology has made powerful advances. Among these, trends in human health have been uncovered through heterogeneous 'big data' integration, and disease-associated genes were identified and classified. Along a different front, the dynamic organization of chromatin is being elucidated to gain insight into the fundamental question of genome regulation. Powerful conformational sampling methods have also been developed to yield a detailed molecular view of cellular processes. when combining these methods with the advancements in the modeling of supramolecular assemblies, including those at the membrane, we are finally able to get a glimpse into how cells' actions are regulated. Perhaps most intriguingly, a major thrust is on to decipher the mystery of how the brain is coded. Here, we aim to provide a broad, yet concise, sketch of modern aspects of computational biology, with a special focus on computational structural biology. We attempt to forecast the areas that computational structural biology will embrace in the future and the challenges that it may face. We skirt details, highlight successes, note failures, and map directions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Amarda Shehu
- Departments of Computer Science, Department of Bioengineering, and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
81
|
Oncogenic KRas mobility in the membrane and signaling response. Semin Cancer Biol 2019; 54:109-113. [DOI: 10.1016/j.semcancer.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
|
82
|
Precision medicine review: rare driver mutations and their biophysical classification. Biophys Rev 2019; 11:5-19. [PMID: 30610579 PMCID: PMC6381362 DOI: 10.1007/s12551-018-0496-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
How can biophysical principles help precision medicine identify rare driver mutations? A major tenet of pragmatic approaches to precision oncology and pharmacology is that driver mutations are very frequent. However, frequency is a statistical attribute, not a mechanistic one. Rare mutations can also act through the same mechanism, and as we discuss below, “latent driver” mutations may also follow the same route, with “helper” mutations. Here, we review how biophysics provides mechanistic guidelines that extend precision medicine. We outline principles and strategies, especially focusing on mutations that drive cancer. Biophysics has contributed profoundly to deciphering biological processes. However, driven by data science, precision medicine has skirted some of its major tenets. Data science embodies genomics, tissue- and cell-specific expression levels, making it capable of defining genome- and systems-wide molecular disease signatures. It classifies cancer driver genes/mutations and affected pathways, and its associated protein structural data guide drug discovery. Biophysics complements data science. It considers structures and their heterogeneous ensembles, explains how mutational variants can signal through distinct pathways, and how allo-network drugs can be harnessed. Biophysics clarifies how one mutation—frequent or rare—can affect multiple phenotypic traits by populating conformations that favor interactions with other network modules. It also suggests how to identify such mutations and their signaling consequences. Biophysics offers principles and strategies that can help precision medicine push the boundaries to transform our insight into biological processes and the practice of personalized medicine. By contrast, “phenotypic drug discovery,” which capitalizes on physiological cellular conditions and first-in-class drug discovery, may not capture the proper molecular variant. This is because variants of the same protein can express more than one phenotype, and a phenotype can be encoded by several variants.
Collapse
|
83
|
Cheng F, Liang H, Butte AJ, Eng C, Nussinov R. Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacol Rev 2019; 71:1-19. [PMID: 30545954 PMCID: PMC6294046 DOI: 10.1124/pr.118.016253] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent remarkable advances in genome sequencing have enabled detailed maps of identified and interpreted genomic variation, dubbed "mutanomes." The availability of thousands of exome/genome sequencing data has prompted the emergence of new challenges in the identification of novel druggable targets and therapeutic strategies. Typically, mutanomes are viewed as one- or two-dimensional. The three-dimensional protein structural view of personal mutanomes sheds light on the functional consequences of clinically actionable mutations revealed in tumor diagnosis and followed up in personalized treatments, in a mutanome-informed manner. In this review, we describe the protein structural landscape of personal mutanomes and provide expert opinions on rational strategies for more streamlined oncological drug discovery and molecularly targeted therapies for each individual and each tumor. We provide the structural mechanism of orthosteric versus allosteric drugs at the atom-level via targeting specific somatic alterations for combating drug resistance and the "undruggable" challenges in solid and hematologic neoplasias. We discuss computational biophysics strategies for innovative mutanome-informed cancer immunotherapies and combination immunotherapies. Finally, we highlight a personal mutanome infrastructure for the emerging development of personalized cancer medicine using a breast cancer case study.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Han Liang
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Atul J Butte
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Ruth Nussinov
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| |
Collapse
|
84
|
Tsai CJ, Nussinov R. Allosteric activation of RAF in the MAPK signaling pathway. Curr Opin Struct Biol 2018; 53:100-106. [DOI: 10.1016/j.sbi.2018.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
|
85
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
86
|
Pantsar T, Rissanen S, Dauch D, Laitinen T, Vattulainen I, Poso A. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. PLoS Comput Biol 2018; 14:e1006458. [PMID: 30199525 PMCID: PMC6147662 DOI: 10.1371/journal.pcbi.1006458] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
A mutated KRAS protein is frequently observed in human cancers. Traditionally, the oncogenic properties of KRAS missense mutants at position 12 (G12X) have been considered as equal. Here, by assessing the probabilities of occurrence of all KRAS G12X mutations and KRAS dynamics we show that this assumption does not hold true. Instead, our findings revealed an outstanding mutational bias. We conducted a thorough mutational analysis of KRAS G12X mutations and assessed to what extent the observed mutation frequencies follow a random distribution. Unique tissue-specific frequencies are displayed with specific mutations, especially with G12R, which cannot be explained by random probabilities. To clarify the underlying causes for the nonrandom probabilities, we conducted extensive atomistic molecular dynamics simulations (170 μs) to study the differences of G12X mutations on a molecular level. The simulations revealed an allosteric hydrophobic signaling network in KRAS, and that protein dynamics is altered among the G12X mutants and as such differs from the wild-type and is mutation-specific. The shift in long-timescale conformational dynamics was confirmed with Markov state modeling. A G12X mutation was found to modify KRAS dynamics in an allosteric way, which is especially manifested in the switch regions that are responsible for the effector protein binding. The findings provide a basis to understand better the oncogenic properties of KRAS G12X mutants and the consequences of the observed nonrandom frequencies of specific G12X mutations. The oncogene KRAS is frequently mutated in various cancers. When the amino acid glycine 12 is mutated, KRAS protein acquires oncogenic properties that result in tumor cell-growth and cancer progression. These mutations prevail especially in the pancreatic ductal adenocarcinoma, which is a cancer with an exceptionally dismal prognosis. To date, there is a limited understanding of the different mutations at the position 12, also regarding whether the different mutations would have different consequences. These discrepancies could have major implications for the future drug therapies targeting KRAS mutant harboring tumors. In this study, we made a critical assessment of the observed frequency of KRAS G12X mutations and the underlying causes for these frequencies. We also assessed KRAS G12X mutant discrepancies on an atomistic level by utilizing state-of-the-art molecular dynamics simulations. We found that the dynamics of the mutants does not only differ from the wild-type protein, but there is also a profound difference among the different mutants. These results emphasize that the different KRAS G12X mutations are not equal, and thereby they suggest that the future research related to mutant KRAS biology should account for these observations.
Collapse
Affiliation(s)
- Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- * E-mail: (TP); (AP)
| | - Sami Rissanen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
| | - Daniel Dauch
- Department of Internal Medicine VIII, University Hospital Tuebingen, Tuebingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
- MEMPHYS-Center for Biomembrane Physics, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Department of Internal Medicine VIII, University Hospital Tuebingen, Tuebingen, Germany
- * E-mail: (TP); (AP)
| |
Collapse
|
87
|
Lai H, Wang Y, Duan F, Li Y, Jiang Z, Luo L, Liu L, Leung ELH, Yao X. Krukovine Suppresses KRAS-Mutated Lung Cancer Cell Growth and Proliferation by Inhibiting the RAF-ERK Pathway and Inactivating AKT Pathway. Front Pharmacol 2018; 9:958. [PMID: 30186180 PMCID: PMC6113384 DOI: 10.3389/fphar.2018.00958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Oncogenic activation of the KRAS gene via point mutations occurs in 20-30% of patients with non-small cell lung cancer (NSCLC). The RAS-RAF-ERK and RAS-PI3K-AKT pathways are the major hyper-activated downstream pathways in RAS mutation, which promotes the unlimited lifecycle of cancer cells and their metastasis in humans. However, the success of targeted therapy is restricted by many factors. Herein, we show a new pharmacological KRAS signaling inhibitor krukovine, which is a small molecular bisbenzylisoquinoline alkaloid, isolated from the bark of Abuta grandifolia (Mart.) Sandw. (Menispermaceae). This alkaloid targets the KRAS downstream signaling pathways in different NSCLC cell lines, such as H460 and A549, which are established by KRAS mutations. In the present study, we initially investigated the anti-cancer activities of krukovine in KRAS-mutated NSCLC cell lines, as well as KRAS wild type cancer cell line and normal lung cell. Results indicated that krukovine can inhibit the growth and dose-dependently inhibit the colony formation capacity and wound healing ability of H460 and A549. This cytotoxic effect is associated with the induction of cell apoptosis and G1 arrest in those cell lines. Krukovine treatment also suppressed the C-RAF, ERK, AKT, PI3K, p70s6k, and mTOR phosphorylation in H460 and A549. This finding suggests that krukovine represses the growth and proliferation of KRAS-mutated cells by inactivating AKT signaling pathway and downregulating the RAF-ERK signaling pathway. This study provides detailed insights into the novel cytotoxic mechanism of an anti-cancer compound from an herbal plant and promotes the anti-cancer potential of krukovine in NSCLC with KRAS mutation.
Collapse
Affiliation(s)
- Huanling Lai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Fugang Duan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Zebo Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Lianxiang Luo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Elaine L. H. Leung
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
88
|
Ozdemir ES, Jang H, Gursoy A, Keskin O, Nussinov R. Arl2-Mediated Allosteric Release of Farnesylated KRas4B from Shuttling Factor PDEδ. J Phys Chem B 2018; 122:7503-7513. [PMID: 29961325 PMCID: PMC8087113 DOI: 10.1021/acs.jpcb.8b04347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proper localization of Ras proteins at the plasma membrane (PM) is crucial for their functions. To get to the PM, KRas4B and some other Ras family proteins bind to the PDEδ shuttling protein through their farnesylated hypervariable regions (HVRs). The docking of their farnesyl (and to a lesser extent geranylgeranyl) in the hydrophobic pocket of PDEδ's stabilizes the interaction. At the PM, guanosine 5'-triphosphate (GTP)-bound Arf-like protein 2 (Arl2) assists in the release of Ras from the PDEδ. However, exactly how is still unclear. Using all-atom molecular dynamics simulations, we unraveled the detailed mechanism of Arl2-mediated release of KRas4B, the most abundant oncogenic Ras isoform, from PDEδ. We simulated ternary Arl2-PDEδ-KRas4B HVR complexes and observed that Arl2 binding weakens the PDEδ-farnesylated HVR interaction. Our detailed analysis showed that allosteric changes (involving β6 of PDEδ and additional PDEδ residues) compress the hydrophobic PDEδ pocket and push the HVR out. Mutating PDEδ residues that mediate allosteric changes in PDEδ terminates the release process. Mutant Ras proteins are enriched in human cancers, with currently no drugs in the clinics. This mechanistic account may inspire efforts to develop drugs suppressing oncogenic KRas4B release.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
- Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
- Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
89
|
Cohen BE. Membrane Thickness as a Key Factor Contributing to the Activation of Osmosensors and Essential Ras Signaling Pathways. Front Cell Dev Biol 2018; 6:76. [PMID: 30087894 PMCID: PMC6066546 DOI: 10.3389/fcell.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
The cell membrane provides a functional link between the external environment and the replicating DNA genome by using ligand-gated receptors and chemical signals to activate signaling transduction pathways. However, increasing evidence has also indicated that the phospholipid bilayer itself by altering various physical parameters serves as a sensor that regulate membrane proteins in a specific manner. Changes in thickness and/or curvature of the membrane have been shown to be induced by mechanical forces and transmitted through the transmembrane helices of several types of mechanosensitive (MS) ion channels underlying functions such as osmoregulation in bacteria and sensory processing in mammalian cells. This review focus on recent protein functional and structural data indicating that the activation of bacterial and yeast osmosensors is consistent with thickness-induced tilting changes of the transmembrane domains of these proteins. Membrane thinning in combination with curvature changes may also lead to the lateral transfer of the small lipid-anchored GTPases Ras1 and H-Ras out of lipid rafts for clustering and signaling. The modulation of signaling pathways by amphiphilic peptides and the membrane-active antibiotics colistin and Amphotericin B is also discussed.
Collapse
Affiliation(s)
- B Eleazar Cohen
- Division of External Activities, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
90
|
|
91
|
Fogg CN, Kovats DE, Shamir R. Message from the ISCB: 2018 ISCB Accomplishments by a Senior Scientist Award. Bioinformatics 2018; 34:2332-2333. [DOI: 10.1093/bioinformatics/bty284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Diane E Kovats
- International Society for Computational Biology, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
92
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
93
|
Affiliation(s)
| | | | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
94
|
Li S, Jang H, Zhang J, Nussinov R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018; 26:513-525.e2. [PMID: 29429878 PMCID: PMC8183739 DOI: 10.1016/j.str.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
K-Ras4B preferentially activates Raf-1. The high-affinity interaction of Ras-binding domain (RBD) of Raf with Ras was solved, but the relative position of Raf's cysteine-rich domain (CRD) in the Ras/Raf complex at the membrane and key question of exactly how it affects Raf signaling are daunting. We show that CRD stably binds anionic membranes inserting a positively charged loop into the amphipathic interface. Importantly, when in complex with Ras/RBD, covalently connected CRD presents the same membrane interaction mechanism, with CRD locating at the space between the RBD and membrane. To date, CRD's role was viewed in terms of stabilizing Raf-membrane interaction. Our observations argue for a key role in reducing Ras/RBD fluctuations at the membrane, thereby increasing Ras/RBD affinity. Even without K-Ras, via CRD, Raf-1 can recruit to the membrane; however, by reducing the Ras/RBD fluctuations and enhancing Ras/RBD affinity at the membrane, CRD promotes Raf's activation and MAPK signaling over other pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|