51
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front Oncol 2020; 10:587386. [PMID: 33194742 PMCID: PMC7645238 DOI: 10.3389/fonc.2020.587386] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERβ has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERβ1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERβ1 expression is associated with improved overall survival in women with breast cancer. The promise of ERβ activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERβ is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERβ.
Collapse
Affiliation(s)
- Rahul Mal
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexa Magner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joel David
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Meghna Vallabhaneni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mahmoud Kassem
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jasmine Manouchehri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Willingham
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jeffery Vandeusen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Sagar Sardesai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Nicole Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Maryam Lustberg
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Mathew A Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
52
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
53
|
Yan S, Dey P, Ziegler Y, Jiao X, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS. Contrasting activities of estrogen receptor beta isoforms in triple negative breast cancer. Breast Cancer Res Treat 2020; 185:281-292. [PMID: 33001337 PMCID: PMC7867590 DOI: 10.1007/s10549-020-05948-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, lacks the three major receptors for predicting outcome or targeting therapy. Hence, our aim was to evaluate the potential of estrogen receptor beta (ERβ) as a possible endocrine therapy target in TNBC. METHODS The expression and prognostic effect of ERβ isoforms were analyzed using TCGA breast tumor data, and the expression of ERβ isoform mRNA and protein in TNBC cell lines was assayed. Endogenous ERβ2 and ERβ5 were knocked down with siRNA, and ERβ2, ERβ5, and ERβ1 were upregulated using a doxycycline-inducible lentiviral system. Cell proliferation, migration and invasion, and specific gene expressions were evaluated. RESULTS ERβ2 and ERβ5 were the predominant endogenous forms of ERβ in TNBC tumors and cell lines. High ERβ2 predicted worse clinical outcome. Knockdown of endogenous ERβ2/ERβ5 in cell lines suppressed proliferation, migration and invasion, and downregulated proto-oncogene survivin expression. ERβ2/ERβ5 upregulation did the reverse, increasing survivin and these cell activities. ERβ1 was barely detectable in TNBC cell lines, but its upregulation reduced survivin, increased tumor suppressor expression (E-cadherin and cystatins), and suppressed proliferation, migration and invasion in both ligand-independent and dependent manners, suggesting the possible translational benefit of ERβ ligands. CONCLUSIONS ERβ2/ERβ5 and ERβ1 exhibit sharply contrasting activities in TNBC cells. Our findings imply that delineating the absolute amounts and relative ratios of the different ERβ isoforms might have prognostic and therapeutic relevance, and could enable better selection of optimal approaches for treatment of this often aggressive form of breast cancer.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Parama Dey
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin Jiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Respiration, Shenyang Chest Hospital, Liaoning Province, Shenyang, 110044, China
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
54
|
Lin JZ, Lin N, Zhao WJ. Identification and validation of a six-lncRNA prognostic signature with its ceRNA networks and candidate drugs in lower-grade gliomas. Genomics 2020; 112:2990-3002. [PMID: 32447005 DOI: 10.1016/j.ygeno.2020.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023]
Abstract
Gliomas account for 75% of the primary malignant brain tumors and a majority of lower-grade gliomas (LGG) inevitably develop into glioblastoma. The dysregulation of lncRNAs play a crucial role in LGG. In the present study, we first screened out six differentially expressed lncRNAs (AC021739.2, AL031722.1, AL354740.1, FGD5-AS1, LINC00844, and NEAT1) based on TCGA and GTEx RNA-seq databases. LncRNA prognostic signature was then established by Kaplan-Meier and multivariate Cox proportional hazards regression, with its predictive value validated by time-dependent receiver operating characteristic (ROC) curves. After lncRNA-miRNA-mRNA regulatory networks were established by Cytoscape 3.7.2, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, with results enriched in various malignancy-related functions and pathways. Finally, six putative drugs (irinotecan, camptothecin, mitoxantrone, azacitidine, mestranol, and enilconazole) were predicted by Connectivity Map. In conclusion, we identified a 6-lncRNA prognostic signature with its ceRNA networks, and six candidate drugs against LGG.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Nuan Lin
- Obstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
55
|
Role of 17 β-Estradiol on Cell Proliferation and Mitochondrial Fitness in Glioblastoma Cells. JOURNAL OF ONCOLOGY 2020; 2020:2314693. [PMID: 32148493 PMCID: PMC7042539 DOI: 10.1155/2020/2314693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary tumors of the central nervous system (CNS) in the adult. Previous data showed that estrogen affects cancer cells, but its effect is cell-type-dependent and controversial. The present study aimed to analyze the effects of estradiol (E2, 5 nM) in human glioblastoma multiforme U87-MG cells and how it may impact on cell proliferation and mitochondrial fitness. We monitored cell proliferation by xCELLigence technology and mitochondrial fitness by assessing the expression of genes involved in mitochondrial biogenesis (PGC1α, SIRT1, and TFAM), oxidative phosphorylation (ND4, Cytb, COX-II, COX IV, NDUFA6, and ATP synthase), and dynamics (OPA1, MNF2, MNF1, and FIS1). Finally, we evaluated Nrf2 nuclear translocation by immunocytochemical analysis. Our results showed that E2 resulted in a significant increase in cell proliferation, with a significant increase in the expression of genes involved in various mechanisms of mitochondrial fitness. Finally, E2 treatment resulted in a significant increase of Nrf2 nuclear translocation with a significant increase in the expression of one of its target genes (i.e., heme oxygenase-1). Our results suggest that E2 promotes proliferation in glioblastoma cells and regulate the expression of genes involved in mitochondrial fitness and chemoresistance pathway.
Collapse
|
56
|
McLaughlin JE, Santos MT, Binkley PA, Sultana M, Tekmal RR, Schenken RS, Knudtson JF. Inhibition of Hyaluronic Acid Synthesis Decreases Endometrial Cell Attachment, Migration, and Invasion. Reprod Sci 2020; 27:1058-1063. [PMID: 32016803 DOI: 10.1007/s43032-019-00100-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
Abstract
To characterize the effects of 4-methylumbelliferone (4-MU) on expression of the hyaluronic acid (HA) system and on attachment, migration, and invasion of endometrial epithelial (EECs) and stroma cells (ESCs) to peritoneal mesothelial cells (PMCs), this in vitro study was performed in an Academic Center. De-identified endometrial tissue samples used were from reproductive-aged women. EECs and ESCs isolated from menstrual endometrial biopsies were treated with 4-MU or vehicle. Real-time polymerase chain reaction and western blot were used to assess expression of HA synthases (HAS), hyaluronidase, and standard CD44. Established in vitro assays were used to assess attachment, migration, and invasion with and without treatment with 4-MU. Chi square and Student's t-test were used to analyze the results as appropriate. The addition of 4-MU decreased mRNA and protein expression of HAS 2, HAS 3, and CD44 in EECs and ESCs compared to control. Treatment with 4-MU also decreased attachment, migration, and invasion of EECs and ESCs to PMCs compared to control. 4-MU decreases endometrial cell adhesion, migration, and invasion to PMCs. This effect appears to be mediated by a decrease in HAS 2, HAS 3, and CD44. 4-MU is a potential treatment for endometriosis. Future in vivo studies are needed to evaluate 4-MU as a therapeutic agent for endometriosis.
Collapse
Affiliation(s)
- Jessica E McLaughlin
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA
| | - Marlen Tellez Santos
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA
| | - Peter A Binkley
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA
| | - Mubeen Sultana
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA
| | - Robert S Schenken
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA
| | - Jennifer F Knudtson
- Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, MC 7836, San Antonio, TX, 78229, USA.
| |
Collapse
|
57
|
Luo Y, Li M, Pratap UP, Viswanadhapalli S, Liu J, Venkata PP, Altwegg KA, Palacios BE, Li X, Chen Y, Rao MK, Brenner AJ, Sareddy GR, Vadlamudi RK. PELP1 signaling contributes to medulloblastoma progression by regulating the NF-κB pathway. Mol Carcinog 2019; 59:281-292. [PMID: 31872914 DOI: 10.1002/mc.23152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.
Collapse
Affiliation(s)
- Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Xiangya Hospital, Xiangya School of Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Prabhakar P Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjeet K Rao
- Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas.,Department of Hematology and Oncology, University of Texas Health San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
58
|
Sareddy GR, Pratap UP, Viswanadhapalli S, Venkata PP, Nair BC, Krishnan SR, Zheng S, Gilbert AR, Brenner AJ, Brann DW, Vadlamudi RK. PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol Adv 2019; 1:vdz042. [PMID: 32309805 PMCID: PMC7147719 DOI: 10.1093/noajnl/vdz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. PELP1 expression in established and primary GBM cell lines was analyzed by Western blotting. The effect of PELP1 knockdown was studied using cell proliferation, colony formation, migration, and invasion assays. Mechanistic studies were conducted using RNA-seq, RT-qPCR, immunoprecipitation, reporter gene assays, and signaling analysis. Mouse orthotopic models were used for preclinical evaluation of PELP1 knock down. Results Nuclear receptor coregulator PELP1 is highly expressed in gliomas compared to normal brain tissues, with the highest expression in GBM. PELP1 expression was elevated in established and patient-derived GBM cell lines compared to normal astrocytes. Knockdown of PELP1 resulted in a significant decrease in cell viability, survival, migration, and invasion. Global RNA-sequencing studies demonstrated that PELP1 knockdown significantly reduced the expression of genes involved in the Wnt/β-catenin pathway. Mechanistic studies demonstrated that PELP1 interacts with and functions as a coactivator of β-catenin. Knockdown of PELP1 resulted in a significant increase in survival of mice implanted with U87 and GBM PDX models. Conclusions PELP1 expression is upregulated in GBM and PELP1 signaling via β-catenin axis contributes to GBM progression. Thus, PELP1 could be a potential target for the development of therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
59
|
Matteoni S, Abbruzzese C, Villani V, Malorni W, Pace A, Matarrese P, Paggi MG. The influence of patient sex on clinical approaches to malignant glioma. Cancer Lett 2019; 468:41-47. [PMID: 31605777 DOI: 10.1016/j.canlet.2019.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Gliomas are tumors that originate from the glial tissue, thus involving the central nervous system with varying degrees of malignancy. The most aggressive and frequent form is glioblastoma multiforme, a disease characterized by resistance to therapies, frequent recurrences, and extremely poor median survival time. Data on overall glioma case studies demonstrate clear sex disparities regarding incidence, prognosis, drug toxicity, clinical outcome, and, recently, prediction of therapeutic response. In this study, we analyze data in the literature regarding malignant glioma, mainly glioblastoma multiforme, focusing on epidemiological and clinical evaluations. Less discussed issues, such as the role of viral infections, energy metabolism, and predictive aspects concerning the possible use of dedicated therapeutic approaches for male or female patients, will be reported together with different estimated pathogenetic mechanisms underlying astrocyte transformation and glioma chemosensitivity. In this era, where personalized/precision medicine is the most important driver for targeted cancer therapies, the lines of evidence discussed herein strongly suggest that clinical approaches to malignant glioma should consider the patient's sex. Furthermore, retrospectively revising previous clinical studies considering patient sex as a crucial variable is recommended.
Collapse
Affiliation(s)
- Silvia Matteoni
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Veronica Villani
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Walter Malorni
- Istituto Superiore di Sanità, 00161, Rome, Italy; University of Tor Vergata, 00133, Rome, Italy
| | - Andrea Pace
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Marco G Paggi
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
60
|
Yue Z, Willey CD, Hjelmeland AB, Chen JY. BEERE: a web server for biomedical entity expansion, ranking and explorations. Nucleic Acids Res 2019; 47:W578-W586. [PMID: 31114876 PMCID: PMC6602520 DOI: 10.1093/nar/gkz428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 12/02/2022] Open
Abstract
BEERE (Biomedical Entity Expansion, Ranking and Explorations) is a new web-based data analysis tool to help biomedical researchers characterize any input list of genes/proteins, biomedical terms or their combinations, i.e. 'biomedical entities', in the context of existing literature. Specifically, BEERE first aims to help users examine the credibility of known entity-to-entity associative or semantic relationships supported by database or literature references from the user input of a gene/term list. Then, it will help users uncover the relative importance of each entity-a gene or a term-within the user input by computing the ranking scores of all entities. At last, it will help users hypothesize new gene functions or genotype-phenotype associations by an interactive visual interface of constructed global entity relationship network. The output from BEERE includes: a list of the original entities matched with known relationships in databases; any expanded entities that may be generated from the analysis; the ranks and ranking scores reported with statistical significance for each entity; and an interactive graphical display of the gene or term network within data provenance annotations that link to external data sources. The web server is free and open to all users with no login requirement and can be accessed at http://discovery.informatics.uab.edu/beere/.
Collapse
Affiliation(s)
- Zongliang Yue
- Informatics Institute, School of Medicine, the University of Alabama at Birmingham, AL 35233, USA
| | - Christopher D Willey
- Department of Radiation Oncology, School of Medicine, the University of Alabama at Birmingham, AL 35233, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, School of Medicine, the University of Alabama at Birmingham, AL 35233, USA
| | - Jake Y Chen
- Informatics Institute, School of Medicine, the University of Alabama at Birmingham, AL 35233, USA
| |
Collapse
|
61
|
Gustafsson JA, Strom A, Warner M. Update on ERbeta. J Steroid Biochem Mol Biol 2019; 191:105312. [PMID: 30995525 DOI: 10.1016/j.jsbmb.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/13/2023]
Abstract
ERbeta (ERβ) celebrated its 20th birthday in 2016 and although the overwhelming data in the literature indicate a role for this receptor in the control of epithelial proliferation, neurodegeneration and immune function, no ERβ agonists have yet made it to the clinics. This is the situation, despite the fact that very good safe ERβ agonists have been synthesized and at least one has been donated to the NIH for distribution to researchers, who want to study its possible clinical use. Clinical trials are ongoing for the use of ERβ agonists in prostate cancer and schizophrenia but even today reviewers of our grants still make comments like "The grant is excellent except that the focus of the grant is ERβ". There are multiple reasons for the non-acceptance of the value of ERβ and in this paper we will discuss issues raised by labs which do not support a role for ERβ in physiology or pathology.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States.
| | - Anders Strom
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| | - Margaret Warner
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| |
Collapse
|
62
|
Zhou M, Sareddy GR, Li M, Liu J, Luo Y, Venkata PP, Viswanadhapalli S, Tekmal RR, Brenner A, Vadlamudi RK. Estrogen receptor beta enhances chemotherapy response of GBM cells by down regulating DNA damage response pathways. Sci Rep 2019; 9:6124. [PMID: 30992459 PMCID: PMC6467924 DOI: 10.1038/s41598-019-42313-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed brain tumor that exhibit high mortality rate and chemotherapy resistance is a major clinical problem. Recent studies suggest that estrogen receptor beta (ERβ), may function as a tumor suppressor in GBM. However, the mechanism(s) by which ERβ contributes to GBM suppression and chemotherapy response remains unknown. We examined the role of ERβ in the DNA damage response of GBM cells, and tested whether ERβ sensitizes GBM cells to chemotherapy. Cell viability and survival assays using multiple epitope tagged ERβ expressing established and primary GBM cells demonstrated that ERβ sensitizes GBM cells to DNA damaging agents including temozolomide (TMZ). RNA-seq studies using ERβ overexpression models revealed downregulation of number of genes involved in DNA recombination and repair, ATM signaling and cell cycle check point control. Gene set enrichment analysis (GSEA) suggested that ERβ–modulated genes were correlated negatively with homologous recombination, mismatch repair and G2M checkpoint genes. Further, RT-qPCR analysis revealed that chemotherapy induced activation of cell cycle arrest and apoptosis genes were attenuated in ERβKO cells. Additionally, ERβ overexpressing cells had a higher number of γH2AX foci following TMZ treatment. Mechanistic studies showed that ERβ plays an important role in homologous recombination (HR) mediated repair and ERβ reduced expression and activation of ATM upon DNA damage. More importantly, GBM cells expressing ERβ had increased survival when compared to control GBM cells in orthotopic GBM models. ERβ overexpression further enhanced the survival of mice to TMZ therapy in both TMZ sensitive and TMZ resistant GBM models. Additionally, IHC analysis revealed that ERβ tumors had increased expression of γH2AX and cleaved caspase-3. Using ERβ-overexpression and ERβ-KO GBM model cells, we have provided the evidence that ERβ is required for optimal chemotherapy induced DNA damage response and apoptosis in GBM cells.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Gastroenterology, The Second Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Respiratory Medicine, Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Jinyou Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Oncology, The Second Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Andrew Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
63
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
64
|
Liu X, Zhang L, Tong Y, Yu M, Wang M, Dong D, Shao J, Zhang F, Niu R, Zhou Y. MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERα. Life Sci 2018; 217:57-69. [PMID: 30502362 DOI: 10.1016/j.lfs.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
HEADING AIMS This topic aims to clarify whether miR-22 directly targets and downregulates the expression of ERα and NK1R-Tr to inhibit the malignant behaviors of breast cancer cells. MATERIALS AND METHODS RT-PCR and Western Blotting were used to detect the expression profile of miR-22, NK1R-Tr and ERα. Luciferase reporter assay and CHIP experiment were conducted to investigate the regulation network between miR-22, NK1R-Tr and ERα. MCF-7-ERαI and MDA-MB-231-ERα cell lines were constructed to study the biological behaviors. The SP-NK1R-ERK1/2 signaling pathway was analyzed using Western Blotting. The subcutaneous and metastases tumor models were employed to study the effects of miR-22 on cell proliferation and metastasis of breast cancer cells in vivo. KEY FINDINGS MiR-22 expression level was significantly lower in breast cancerous tissues and cell lines than the adjacent normality, while that of NK1R-Tr increased. The ERα could positively regulate NK1R-Tr expression at DNA level. The descent degree of NK1R-Tr in MCF-7-ERαI cells was far less than that in wild MCF-7 cells, while the findings in MDA-MB-231-ERα cells was more apparent than wild MDA-MB-231 cells. The malignant phenotype was decreased in miR-22 overexpressing cells compared with the wild type. The peak of ERK1/2 phosphorylation was delayed and weakened in miR-22 overexpressing MCF-7 cells, which was agreed with the findings using NK1R-Tr antagonist. The size and number of metastatic tumors declined compared to the controls. SIGNIFICANCE MiR-22 downregulated the expression of NK1R-Tr and ERα to delay and weaken phosphorylation of ERK1/2 to inhibit proliferation and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Clinical Laboratory, Beijing Huaxin Hospital, First Hospital of TsingHua University, Beijing, China
| | - Lufang Zhang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Yingna Tong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Meng Wang
- Department of Clinical Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dong Dong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Jie Shao
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Fei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ruifang Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China.
| |
Collapse
|
65
|
Wan S, Jiang J, Zheng C, Wang N, Zhai X, Fei X, Wu R, Jiang X. Estrogen nuclear receptors affect cell migration by altering sublocalization of AQP2 in glioma cell lines. Cell Death Discov 2018; 4:49. [PMID: 30345080 PMCID: PMC6192986 DOI: 10.1038/s41420-018-0113-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastomas are capable of infiltrating into neighboring brain tissues. The prognosis of a male patient is worse than that of women. Here, we demonstrate the effects of estrogen on invasion of glioma cells via regulating estrogen nuclear receptors (ERα and ERβ) combined with aquaporin 2 (AQP2). In our study, we conclude that AQP2 was located mainly in the nuclei of the glioma cell lines and is capable of inhibiting cell invasion. According to the gene ontology analysis, out of 138 screened genes, three genes of ankyrin repeat and FYVE domain containing 1 (ANKFY1), lymphocyte transmembrane adaptor 1 (LAX1), and latent transforming growth factor beta-binding protein 1 (LTBP1) were found to be regulating the ERα and ERβ. The expression of ERα was found to be high, whereas the expression of both ERβ and AQP2 was low in glioma cells from patient tissues and glioblastoma cell lines. The expression levels of AQP2, ANKFY1, LAX1, and LTBP1 were upregulated by both ERα small interfering RNA (siRNA) and overexpression of ERβ. AQP2 inhibition of cell invasion was inversely influenced by LAX1siRNA. The luciferase report system indicated that AQP2 promoted the transcriptional activity of LAX1 and inhibited cell invasion. These data suggest that ERβ may function as AQP promoter in the nucleus to sustain cells' stability by promoting AQP production, while ERα acts as an antagonist of AQP2. The ratio between ERα and ERβ is likely to affect the distribution of AQP2 in the nucleus. Low level of ERβ reduces the inhibition of invasion of glioma cells influenced by high level of LAX1 expression, leading to an increase in the invasion ability of glioma cells.
Collapse
Affiliation(s)
- Shu Wan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Shi, Zhejiang Province China
| | - Juanjuan Jiang
- Department of Otolaryngology, Hangzhou Children’s Hospital, Hangzhou City, Zhejiang Province China
| | - Chuanming Zheng
- Key Laboratory of Head and Neck Cancer Translational Research, Department of Head and Neck Surgery of Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province China
| | - Ning Wang
- Department of Gynecology, Womens Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province China
| | - Xia Zhai
- Cell-land Biology Technology Co., Ltd., Hangzhou City, Zhejiang Province China
| | - Xiangwei Fei
- Department of Gynecology, Womens Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province China
| | - Ruijin Wu
- Department of Gynecology, Womens Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province China
| | - Xiuxiu Jiang
- Department of Gynecology, Womens Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province China
| |
Collapse
|
66
|
Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 2018; 7:24. [PMID: 30250760 PMCID: PMC6148803 DOI: 10.1186/s40164-018-0116-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigenesis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aberrant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alternative splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulating ER expression in human cancer.
Collapse
Affiliation(s)
- Hui Hua
- 1Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|