51
|
Zhang SH, Shurin GV, Khosravi H, Kazi R, Kruglov O, Shurin MR, Bunimovich YL. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother 2020; 69:245-253. [PMID: 31676924 PMCID: PMC11027810 DOI: 10.1007/s00262-019-02424-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Schwann cells are the principal glial cells of the peripheral nervous system which maintain neuronal homeostasis. Schwann cells support peripheral nerve functions and play a critical role in many pathological processes including injury-induced nerve repair, neurodegenerative diseases, infections, neuropathic pain and cancer. Schwann cells are implicated in a wide range of diseases due, in part, to their ability to interact and modulate immune cells. We discuss the accumulating examples of how Schwann cell regulation of the immune system initiates and facilitates the progression of various diseases. Furthermore, we highlight how Schwann cells may orchestrate an immunosuppressive tumor microenvironment by polarizing and modulating the activity of the dendritic cells.
Collapse
Affiliation(s)
- Sophia H Zhang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hasan Khosravi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Rashek Kazi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
52
|
Silva VM, Gomes JA, Tenório LPG, de Omena Neta GC, da Costa Paixão K, Duarte AKF, da Silva GCB, Ferreira RJS, Koike BDV, de Sales Marques C, da Silva Miguel RD, de Queiroz AC, Pereira LX, de Carvalho Fraga CA. Schwann cell reprogramming and lung cancer progression: a meta-analysis of transcriptome data. Oncotarget 2019; 10:7288-7307. [PMID: 31921388 PMCID: PMC6944448 DOI: 10.18632/oncotarget.27204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022] Open
Abstract
Schwann cells were identified in the tumor surrounding area prior to initiate the invasion process underlying connective tissue. These cells promote cancer invasion through direct contact, while paracrine signaling and matrix remodeling are not sufficient to proceed. Considering the intertwined structure of signaling, regulatory, and metabolic processes within a cell, we employed a genome-scale biomolecular network. Accordingly, a meta-analysis of Schwann cells associated transcriptomic datasets was performed, and the core information on differentially expressed genes (DEGs) was obtained by statistical analyses. Gene set over-representation analyses was performed on core DEGs to identify significantly functional and pathway enrichment analysis between Schwann cells and, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). DEGs were further integrated with genome-scale human biomolecular networks. miRNAs were proposed by the reconstruction of a transcriptional and post-transcriptional regulatory network. Moreover, microarray-based transcriptome profiling was performed, and the prognostic power of selected dedifferentiated Schwann cell biomolecules was predicted. We observed that pathways associated with Schwann cells dedifferentiation was overexpressed in lung cancer samples. However, genes associated with Schwann cells migration inhibition system were downregulated. Besides, miRNA targeting those pathways were also deregulated. In this study, we report valuable data for further experimental and clinical analysis, because the proposed biomolecules have significant potential as systems biomarkers for screening or for therapeutic purposes in perineural invasion of lung cancer.
Collapse
Affiliation(s)
| | - Jessica Alves Gomes
- Department of Medicine, Federal University of Alagoas, Campus Arapiraca, Brazil
| | | | | | | | | | | | | | - Bruna Del Vechio Koike
- Department of Medicine, Federal University of the São Francisco Valley, Petrolina, Brazil
| | | | | | | | | | | |
Collapse
|
53
|
Martyn GV, Shurin GV, Keskinov AA, Bunimovich YL, Shurin MR. Schwann cells shape the neuro-immune environs and control cancer progression. Cancer Immunol Immunother 2019; 68:1819-1829. [PMID: 30607548 PMCID: PMC11028256 DOI: 10.1007/s00262-018-02296-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/24/2018] [Indexed: 12/16/2022]
Abstract
At present, significant experimental and clinical data confirm the active involvement of the peripheral nervous system (PNS) in different phases of cancer development and progression. Most of the research effort focuses on the impact of distinct neuronal types, e.g., adrenergic, cholinergic, dopaminergic, etc. in carcinogenesis, generally ignoring neuroglia. The very fact that these cells far outnumber the other cellular types may also play an important role worthy of study in this context. The most prevalent neuroglia within the PNS consists of Schwann cells (SCs). These cells play a substantial role in maintaining homeostasis within the nervous system. They possess distinct immunomodulatory, inflammatory and regenerative capacities-also, one should consider their broad distribution throughout the body; this makes them a perfect target for malignant cells during the initial stages of cancer development and the very formation of the tumor microenvironment itself. We show that SCs in the tumor milieu attract different subsets of immune regulators and augment their ability to suppress effector T cells. SCs may also up-regulate invasiveness of tumor cells and support metastatic disease. We outline the interactive potential of SCs juxtaposed with cancerous cells, referring to data from various external sources alongside data of our own.
Collapse
Affiliation(s)
- German V Martyn
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anton A Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks, Ministry of Health, Moscow, Russia
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Clinical Immunopathology, University of Pittsburgh Medical Center, Clinical Lab Bldg, Room 4024, 3477 Euler Way, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
54
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
55
|
Shurin GV, Kruglov O, Ding F, Lin Y, Hao X, Keskinov AA, You Z, Lokshin AE, LaFramboise WA, Falo LD, Shurin MR, Bunimovich YL. Melanoma-Induced Reprogramming of Schwann Cell Signaling Aids Tumor Growth. Cancer Res 2019; 79:2736-2747. [PMID: 30914431 DOI: 10.1158/0008-5472.can-18-3872] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment has been compared with a nonhealing wound involving a complex interaction between multiple cell types. Schwann cells, the key regulators of peripheral nerve repair, have recently been shown to directly affect nonneural wound healing. Their role in cancer progression, however, has been largely limited to neuropathic pain and perineural invasion. In this study, we showed that melanoma activated otherwise dormant functions of Schwann cells aimed at nerve regeneration and wound healing. Such reprogramming of Schwann cells into repair-like cells occurred during the destruction and displacement of neurons as the tumor expanded and via direct signaling from melanoma cells to Schwann cells, resulting in activation of the nerve injury response. Melanoma-activated Schwann cells significantly altered the microenvironment through their modulation of the immune system and the extracellular matrix in a way that promoted melanoma growth in vitro and in vivo. Local inhibition of Schwann cell activity following cutaneous sensory nerve transection in melanoma orthotopic models significantly decreased the rate of tumor growth. Tumor-associated Schwann cells, therefore, can have a significant protumorigenic effect and may present a novel target for cancer therapy. SIGNIFICANCE: These findings reveal a role of the nerve injury response, particularly through functions of activated Schwann cells, in promoting melanoma growth.
Collapse
Affiliation(s)
- Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fei Ding
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yan Lin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Zhaoyang You
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anna E Lokshin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - William A LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. .,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|